1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
// -*- C++ -*-
//
// TensorWaveFunction.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 2003-2011 Peter Richardson, Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_TensorWaveFunction_H
#define ThePEG_TensorWaveFunction_H
//
// This is the declaration of the TensorWaveFunction class.
//
#include "WaveFunctionBase.h"
#include "VectorWaveFunction.h"
#include <ThePEG/Helicity/LorentzTensor.h>
#include <ThePEG/Helicity/TensorSpinInfo.h>
#include <ThePEG/EventRecord/Particle.h>
#include <ThePEG/EventRecord/RhoDMatrix.h>
namespace ThePEG {
namespace Helicity {
/**\ingroup Helicity
* Definition of the enumerated values of the phase to include in the
* calculation of the polarization tensor.
*/
enum TensorPhase {
tensor_phase, /**< Include the phase factor.*/
tensor_nophase, /**< No phase-factor. */
default_tensor_phase=tensor_nophase /**< Default option.*/
};
/** \ingroup Helicity
* \author Peter Richardson
*
* The TensorWaveFunction class is designed to store the wavefunction
* of a tensor in a form suitable for use in helicity amplitude
* calculations of the matrix element using a similar philosophy to the
* FORTRAN HELAS code.
*
* In addition to storing the tensor using the LorentzTensor class
* it inherits from the WaveFunctionBase class to provide storage of
* the momentum and ParticleData for the tensor particle.
*
* This class also contains the code which does the actually
* calculation of the tensor wavefunction.
*
* There are two choices available for the calculation of the
* wavefunction. These are set using the TensorPhase enumeration
* which specifies a default choice.
* The first choice, tensor_phase, includes a phase factor
* \f$\exp(\pm i \phi)\f$ for the \f$\pm\f$ helicity states while the second,
* tensor_nophase, does not.
*
* N.B. In our convention
* 0 is the \f$-2\f$ helicity state,
* 1 is the \f$-1\f$ helicity state,
* 2 is the \f$ 0\f$ helicity state,
* 3 is the \f$+1\f$ helicity state and
* 4 is the \f$+2\f$ helicity state.
*
* @see WaveFunctionBase
* @see LorentzTensor
* @see VectorWaveFunction
*/
class TensorWaveFunction : public WaveFunctionBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Constructor, set the momentum and Wavefunction, the direction can also
* be specified.
* @param p The momentum.
* @param part The ParticleData pointer
* @param wave The wavefunction, \e i.e. the polarization vector.
* @param dir The direction of the particle.
*/
TensorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,
const LorentzTensor<double> & wave,
Direction dir=intermediate)
: WaveFunctionBase(p,part,dir), _wf(wave)
{
assert(iSpin()==PDT::Spin2);
}
/**
* Constructor, set the momentum and the components of the tensor.
* @param p The momentum.
* @param part The ParticleData pointer
* @param xx The \f$xx\f$ component.
* @param xy The \f$xy\f$ component.
* @param xz The \f$xz\f$ component.
* @param xt The \f$xt\f$ component.
* @param yx The \f$yx\f$ component.
* @param yy The \f$yy\f$ component.
* @param yz The \f$yz\f$ component.
* @param yt The \f$yt\f$ component.
* @param zx The \f$zx\f$ component.
* @param zy The \f$zy\f$ component.
* @param zz The \f$zz\f$ component.
* @param zt The \f$zt\f$ component.
* @param tx The \f$tx\f$ component.
* @param ty The \f$ty\f$ component.
* @param tz The \f$tz\f$ component.
* @param tt The \f$tt\f$ component.
*/
TensorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,
Complex xx,Complex xy,Complex xz,Complex xt,Complex yx,
Complex yy,Complex yz,Complex yt,Complex zx,Complex zy,
Complex zz,Complex zt,Complex tx,Complex ty,Complex tz,
Complex tt)
: WaveFunctionBase(p,part), _wf(xx,xy,xz,xt,
yx,yy,yz,yt,
zx,zy,zz,zt,
tx,ty,tz,tt)
{
assert(iSpin()==PDT::Spin2);
}
/**
* Constructor, set the momentum, helicity, direction and optionally the phase
* @param p The momentum.
* @param part The ParticleData pointer
* @param ihel The helicity (0,1,2,3,4 as described above.)
* @param dir The direction.
* @param phase The phase choice.
*/
TensorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,
unsigned int ihel,Direction dir,
TensorPhase phase=default_tensor_phase)
: WaveFunctionBase(p,part,dir)
{
assert(iSpin()==PDT::Spin2);
calculateWaveFunction(ihel,phase);
}
/**
* Constructor, set the 5-momentum and direction, zero the wavefunction.
* @param p The momentum.
* @param part The ParticleData pointer.
* @param dir The direction.
*/
TensorWaveFunction(const Lorentz5Momentum & p,
tcPDPtr part,Direction dir)
: WaveFunctionBase(p,part,dir), _wf()
{
assert(iSpin()==PDT::Spin2);
}
/**
* Default constructor.
*/
TensorWaveFunction() {}
/**
* Special for spin correlations \todo make static?
*/
TensorWaveFunction(vector<TensorWaveFunction> & wave,
tPPtr part,Direction dir,bool time,bool massless,
bool=true,
TensorPhase phase=default_tensor_phase) {
calculateWaveFunctions(wave,part,dir,massless,phase);
constructSpinInfo(wave,part,dir,time,massless);
}
//@}
/**
* Access to the wavefunction and its components.
*/
//@{
/**
* Subscript operator for the wavefunction.
*/
Complex operator ()(int i, int j) const {
return _wf(i,j);
}
/**
* Set components by index.
*/
Complex & operator () (int i, int j) {
return _wf(i,j);
}
/**
* Return wavefunction as polarization vector.
*/
const LorentzTensor<double> & wave() const {return _wf;}
/**
* Get the \f$xx\f$ component.
*/
Complex xx() const {return _wf.xx();}
/**
* Get the \f$yx\f$ component.
*/
Complex yx() const {return _wf.yx();}
/**
* Get the \f$zx\f$ component.
*/
Complex zx() const {return _wf.zx();}
/**
* Get the \f$tx\f$ component.
*/
Complex tx() const {return _wf.tx();}
/**
* Get the \f$xy\f$ component.
*/
Complex xy() const {return _wf.xy();}
/**
* Get the \f$yy\f$ component.
*/
Complex yy() const {return _wf.yy();}
/**
* Get the \f$zy\f$ component.
*/
Complex zy() const {return _wf.zy();}
/**
* Get the \f$ty\f$ component.
*/
Complex ty() const {return _wf.ty();}
/**
* Get the \f$xz\f$ component.
*/
Complex xz() const {return _wf.xz();}
/**
* Get the \f$yz\f$ component.
*/
Complex yz() const {return _wf.yz();}
/**
* Get the \f$zz\f$ component.
*/
Complex zz() const {return _wf.zz();}
/**
* Get the \f$tz\f$ component.
*/
Complex tz() const {return _wf.tz();}
/**
* Get the \f$xt\f$ component.
*/
Complex xt() const {return _wf.xt();}
/**
* Get the \f$yt\f$ component.
*/
Complex yt() const {return _wf.yt();}
/**
* Get the \f$zt\f$ component.
*/
Complex zt() const {return _wf.zt();}
/**
* Get the \f$tt\f$ component.
*/
Complex tt() const {return _wf.tt();}
//@}
/**
* Reset functions.
*/
//@{
/**
* Reset helicity (recalculate the tensor ).
* @param ihel The new helicity (0,1,2,3,4 as described above.)
* @param phase The phase choice.
*/
void reset(unsigned int ihel,TensorPhase phase=default_tensor_phase) {
calculateWaveFunction(ihel,phase);
}
//@}
public:
/**
* Perform the Lorentz transformation of the wave function
*/
void transform(const LorentzRotation & r) {
_wf.transform(r);
transformMomentum(r);
}
public:
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<LorentzTensor<double> > & waves,
tPPtr particle,Direction,bool massless,
TensorPhase phase=default_tensor_phase);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<TensorWaveFunction> & waves,
tPPtr particle,Direction,bool massless,
TensorPhase phase=default_tensor_phase);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<LorentzTensor<double> > & waves,
RhoDMatrix & rho,
tPPtr particle,Direction,bool massless,
TensorPhase phase=default_tensor_phase);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<TensorWaveFunction> & waves,
RhoDMatrix & rho,
tPPtr particle,Direction,bool massless,
TensorPhase phase=default_tensor_phase);
/**
* Construct the SpinInfo object
*/
static void constructSpinInfo(const vector<LorentzTensor<double> > & waves,
tPPtr part,Direction dir, bool time,bool massless);
/**
* Construct the SpinInfo object
*/
static void constructSpinInfo(const vector<TensorWaveFunction> & waves,
tPPtr part,Direction dir, bool time,bool massless);
private:
/**
* Calculate the wavefunction.
* @param ihel The helicity (0,1,2,3,4 as described above.)
* @param phase The phase choice.
*/
void calculateWaveFunction(unsigned int ihel,
TensorPhase phase=default_tensor_phase);
private:
/**
* Storage of the wavefunction as a Lorentz Tensor.
*/
LorentzTensor<double> _wf;
};
}
}
#endif
|