1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
// -*- C++ -*-
//
// VectorWaveFunction.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 2003-2011 Peter Richardson, Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_VectorWaveFunction_H
#define ThePEG_VectorWaveFunction_H
//
// This is the declaration of the VectorWaveFunction class.
//
#include "WaveFunctionBase.h"
#include <ThePEG/Helicity/LorentzPolarizationVector.h>
#include <ThePEG/Helicity/VectorSpinInfo.h>
#include <ThePEG/EventRecord/RhoDMatrix.h>
#include <ThePEG/EventRecord/Particle.h>
namespace ThePEG {
namespace Helicity {
/** \ingroup Helicity
* Definition of the enumerated values of the phase to include in the
* calculation of the polarization vector.
*/
enum VectorPhase {
vector_phase, /**< Include the phase factor.*/
vector_nophase, /**< No phase-factor. */
default_vector_phase=vector_nophase /**< Default option.*/
};
/** \ingroup Helicity
*
* \author Peter Richardson
*
* The VectorWaveFunction class is designed to store the wavefunction
* of a vector in a form suitable for use in helicity amplitude calculations
* of the matrix element using a similar philosophy to the FORTRAN HELAS code.
*
* In addition to storing the vector using the LorentzPolarizationVector class
* it inherits from the WaveFunctionBase class to provide storage of the
* momentum and ParticleData for the vector boson.
*
* This class also contains the code which does the actually calculation of the
* vector wavefunction.
*
* There are two choices available for the calculation of the wavefunction.
* These are set using the VectorPhase enumeration which specifies a default choice.
* The first choice, vector_phase, includes a phase factor \f$\exp(\pm i \phi)\f$
* for the \f$\pm\f$ helicity states while the second, vector_nophase, does not.
*
* N.B. In our convention 0 is the \f$-1\f$ helicity state and
* 1 is the \f$0\f$ helicity state
* 2 is the \f$+1\f$ helicity state
*
* @see WaveFunctionBase
* @see LorentzPolarizationVector
*/
class VectorWaveFunction : public WaveFunctionBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Constructor, set the momentum and Wavefunction, the direction can also
* be specified.
* @param p The momentum.
* @param part The ParticleData pointer
* @param wave The wavefunction, \e i.e. the polarization vector.
* @param dir The direction of the particle.
*/
VectorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,
const LorentzPolarizationVector & wave,
Direction dir=intermediate)
: WaveFunctionBase(p,part,dir), _wf(wave)
{
assert(iSpin()==3);
}
/**
* Constructor, set the momentum and components of the wavefunction.
* @param p The momentum.
* @param part The ParticleData pointer
* @param x The x component of the polarization vector
* @param y The y component of the polarization vector
* @param z The z component of the polarization vector
* @param t The t component of the polarization vector
*/
VectorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,const Complex & x,
const Complex & y,const Complex & z, const Complex & t)
: WaveFunctionBase(p,part), _wf(x,y,z,t)
{
assert(iSpin()==3);
}
/**
* Constructor, set the momentum, helicity and direction, optionally the choice
* of the phase.
* @param p The momentum.
* @param part The ParticleData pointer.
* @param ihel The helicity (0,1,2 as described above.)
* @param dir The direction.
* @param phase The phase choice.
*/
VectorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,
unsigned int ihel,Direction dir,
VectorPhase phase=default_vector_phase)
: WaveFunctionBase(p,part,dir)
{
assert(iSpin()==3);
calculateWaveFunction(ihel,phase);
}
/**
* Constructor, set the 5-momentum and direction, zero the wavefunction.
* @param p The 5-momentum.
* @param part The ParticleData pointer.
* @param dir The direction.
*/
VectorWaveFunction(const Lorentz5Momentum &p,
tcPDPtr part,Direction dir)
: WaveFunctionBase(p,part,dir), _wf()
{
assert(iSpin()==3);
}
/**
* Default constructor.
*/
VectorWaveFunction() {}
/**
* Special for spin correlations \todo make static?
*/
VectorWaveFunction(vector<VectorWaveFunction> & wave,
tPPtr part,Direction dir,bool time,bool massless,
bool=true,
VectorPhase phase=default_vector_phase) {
calculateWaveFunctions(wave,part,dir,massless,phase);
constructSpinInfo(wave,part,dir,time,massless);
}
//@}
/**
* Access to the wavefunction and its components.
*/
//@{
/**
* Return wavefunction as polarization vector.
*/
const LorentzPolarizationVector & wave() const { return _wf;}
/**
* Get x component.
*/
Complex x() const {return _wf.x();}
/**
* Get y component.
*/
Complex y() const {return _wf.y();}
/**
* Get z component.
*/
Complex z() const {return _wf.z();}
/**
* Get t component.
*/
Complex t() const {return _wf.t();}
/**
* Reset functions.
*/
//@{
/**
* Reset the helicity (recalculation the polarization vector).
* @param ihel The new helicity (0,1,2 as described above.)
* @param phase The phase choice.
*/
void reset(unsigned int ihel,VectorPhase phase=default_vector_phase) {
calculateWaveFunction(ihel,phase);
}
//@}
public:
/**
* Perform the Lorentz transformation of the wave function
*/
void transform(const LorentzRotation & r) {
_wf.transform(r);
transformMomentum(r);
}
public:
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<LorentzPolarizationVector> & waves,
tPPtr particle,Direction,bool massless,
VectorPhase phase=default_vector_phase);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<VectorWaveFunction> & waves,
tPPtr particle,Direction,bool massless,
VectorPhase phase=default_vector_phase);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<LorentzPolarizationVector> & waves,
RhoDMatrix & rho,
tPPtr particle,Direction,bool massless,
VectorPhase phase=default_vector_phase);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<VectorWaveFunction> & waves,
RhoDMatrix & rho,
tPPtr particle,Direction,bool massless,
VectorPhase phase=default_vector_phase);
/**
* Construct the SpinInfo object
*/
static void constructSpinInfo(const vector<LorentzPolarizationVector> & waves,
tPPtr part,Direction dir, bool time,bool massless);
/**
* Construct the SpinInfo object
*/
static void constructSpinInfo(const vector<VectorWaveFunction> & waves,
tPPtr part,Direction dir, bool time,bool massless);
private:
/**
* Calculate the wavefunction
* @param ihel The helicity (0,1,2 as described above.)
* @param phase The phase choice.
*/
void calculateWaveFunction(unsigned int ihel,
VectorPhase phase=default_vector_phase);
private:
/**
* Storage of the wavefunction as a Lorentz Vector.
*/
LorentzPolarizationVector _wf;
};
}
}
#endif
|