1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// -*- C++ -*-
//
// ME2to2Base.cc is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ME2to2Base class.
//
#include "ME2to2Base.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/Cuts/Cuts.h"
using namespace ThePEG;
ME2to2Base::~ME2to2Base() {}
Energy2 ME2to2Base::scale() const {
switch ( scaleChoice() ) {
case 1:
return -tHat()*uHat()/(tHat() + uHat());
default:
return tHat()*uHat()/sHat();
}
}
void ME2to2Base::setKinematics() {
MEBase::setKinematics();
theLastTHat = (meMomenta()[0] - meMomenta()[2]).m2();
theLastUHat = (meMomenta()[1] - meMomenta()[2]).m2();
theLastPhi = meMomenta()[2].phi();
}
bool ME2to2Base::generateKinematics(const double * r) {
// generate the masses of the particles
for ( int i = 2, N = meMomenta().size(); i < N; ++i ) {
meMomenta()[i] = Lorentz5Momentum(mePartonData()[i]->generateMass());
}
double ctmin = -1.0;
double ctmax = 1.0;
Energy q = ZERO;
try {
q = SimplePhaseSpace::
getMagnitude(sHat(), meMomenta()[2].mass(), meMomenta()[3].mass());
} catch ( ImpossibleKinematics ) {
return false;
}
Energy e = sqrt(sHat())/2.0;
Energy2 m22 = meMomenta()[2].mass2();
Energy2 m32 = meMomenta()[3].mass2();
Energy2 e0e2 = 2.0*e*sqrt(sqr(q) + m22);
Energy2 e1e2 = 2.0*e*sqrt(sqr(q) + m22);
Energy2 e0e3 = 2.0*e*sqrt(sqr(q) + m32);
Energy2 e1e3 = 2.0*e*sqrt(sqr(q) + m32);
Energy2 pq = 2.0*e*q;
Energy2 thmin = lastCuts().minTij(mePartonData()[0], mePartonData()[2]);
if ( thmin > ZERO ) ctmax = min(ctmax, (e0e2 - m22 - thmin)/pq);
thmin = lastCuts().minTij(mePartonData()[1], mePartonData()[2]);
if ( thmin > ZERO ) ctmin = max(ctmin, (thmin + m22 - e1e2)/pq);
thmin = lastCuts().minTij(mePartonData()[1], mePartonData()[3]);
if ( thmin > ZERO ) ctmax = min(ctmax, (e1e3 - m32 - thmin)/pq);
thmin = lastCuts().minTij(mePartonData()[0], mePartonData()[3]);
if ( thmin > ZERO ) ctmin = max(ctmin, (thmin + m32 - e0e3)/pq);
Energy ptmin = max(lastCuts().minKT(mePartonData()[2]),
lastCuts().minKT(mePartonData()[3]));
if ( ptmin > ZERO ) {
double ctm = 1.0 - sqr(ptmin/q);
if ( ctm <= 0.0 ) return false;
ctmin = max(ctmin, -sqrt(ctm));
ctmax = min(ctmax, sqrt(ctm));
}
double ymin2 = lastCuts().minYStar(mePartonData()[2]);
double ymax2 = lastCuts().maxYStar(mePartonData()[2]);
double ymin3 = lastCuts().minYStar(mePartonData()[3]);
double ymax3 = lastCuts().maxYStar(mePartonData()[3]);
double ytot = lastCuts().Y() + lastCuts().currentYHat();
if ( ymin2 + ytot > -0.9*Constants::MaxRapidity )
ctmin = max(ctmin, sqrt(sqr(q) + m22)*tanh(ymin2)/q);
if ( ymax2 + ytot < 0.9*Constants::MaxRapidity )
ctmax = min(ctmax, sqrt(sqr(q) + m22)*tanh(ymax2)/q);
if ( ymin3 + ytot > -0.9*Constants::MaxRapidity )
ctmax = min(ctmax, sqrt(sqr(q) + m32)*tanh(-ymin3)/q);
if ( ymax3 + ytot < 0.9*Constants::MaxRapidity )
ctmin = max(ctmin, sqrt(sqr(q) + m32)*tanh(-ymax3)/q);
if ( ctmin >= ctmax ) return false;
double cth = getCosTheta(ctmin, ctmax, r);
Energy pt = q*sqrt(1.0-sqr(cth));
theLastPhi = rnd(2.0*Constants::pi);
meMomenta()[2].setVect(Momentum3( pt*sin(phi()), pt*cos(phi()), q*cth));
meMomenta()[3].setVect(Momentum3(-pt*sin(phi()), -pt*cos(phi()), -q*cth));
meMomenta()[2].rescaleEnergy();
meMomenta()[3].rescaleEnergy();
vector<LorentzMomentum> out(2);
out[0] = meMomenta()[2];
out[1] = meMomenta()[3];
tcPDVector tout(2);
tout[0] = mePartonData()[2];
tout[1] = mePartonData()[3];
if ( !lastCuts().passCuts(tout, out, mePartonData()[0], mePartonData()[1]) )
return false;
theLastTHat = pq*cth + m22 - e0e2;
theLastUHat = m22 + m32 - sHat() - theLastTHat;
jacobian((pq/sHat())*Constants::pi*jacobian());
return true;
}
double ME2to2Base::getCosTheta(double ctmin, double ctmax, const double * r) {
double cth = 0.0;
static const double eps = 1.0e-6;
if ( 1.0 + ctmin <= eps && 1.0 - ctmax <= eps ) {
jacobian(ctmax - ctmin);
cth = ctmin + (*r)*jacobian();
} else if ( 1.0 + ctmin <= eps ) {
cth = 1.0 - (1.0 - ctmax)*pow((1.0 - ctmin)/(1.0 - ctmax), *r);
jacobian(log((1.0 - ctmin)/(1.0 - ctmax))*(1.0 - cth));
} else if ( 1.0 - ctmax <= eps ) {
cth = -1.0 + (1.0 + ctmin)*pow((1.0 + ctmax)/(1.0 + ctmin), *r);
jacobian(log((1.0 + ctmax)/(1.0 + ctmin))*(1.0 + cth));
} else {
double zmin = 0.5*(1.0 - ctmax);
double zmax = 0.5*(1.0 - ctmin);
double A1 = -ctmin/(zmax*(1.0-zmax));
double A0 = -ctmax/(zmin*(1.0-zmin));
double A = *r*(A1 - A0) + A0;
double z = A < 2.0? 2.0/(sqrt(sqr(A) + 4.0) + 2 - A):
0.5*(A - 2.0 + sqrt(sqr(A) + 4.0))/A;
cth = 1.0 - 2.0*z;
jacobian(2.0*(A1 - A0)*sqr(z)*sqr(1.0 - z)/(sqr(z) + sqr(1.0 - z)));
}
return cth;
}
CrossSection ME2to2Base::dSigHatDR() const {
return me2()*jacobian()/(16.0*sqr(Constants::pi)*sHat())*sqr(hbarc);
}
void ME2to2Base::persistentOutput(PersistentOStream & os) const {
os << theScaleChoice << ounit(theLastTHat, GeV2) << ounit(theLastUHat, GeV2)
<< theLastPhi;
}
void ME2to2Base::persistentInput(PersistentIStream & is, int) {
is >> theScaleChoice >> iunit(theLastTHat, GeV2) >> iunit(theLastUHat, GeV2)
>> theLastPhi;
}
AbstractClassDescription<ME2to2Base> ME2to2Base::initME2to2Base;
// Definition of the static class description member.
Switch<ME2to2Base,int> & ME2to2Base::interfaceScaleChoice() {
static Switch<ME2to2Base,int> dummy
("ScaleChoice",
"Different options for calculating the scale of the generated "
"hard sub-process.",
&ME2to2Base::theScaleChoice, 0, false, false);
return dummy;
}
void ME2to2Base::Init() {
static ClassDocumentation<ME2to2Base> documentation
("The ThePEG::ME2to2Base class may be used as a base class "
"for all \\f$2\\rightarrow 2\\f$ matrix elements.");
static SwitchOption interfaceScaleChoice0
(interfaceScaleChoice(),
"that.uhat/shat", "\\f$\\hat{t}\\hat{u}/\\hat{s}\\f$", 0);
static SwitchOption interfaceScaleChoice1
(interfaceScaleChoice(),
"that.uhat/(that+uhat)",
"\\f$-\\hat{t}\\hat{u}/(\\hat{t}+\\hat{u})\\f$", 1);
}
|