1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
// -*- C++ -*-
//
// RandomGenerator.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_RandomGenerator_H
#define ThePEG_RandomGenerator_H
// This is the declaration of the RandomGenerator class.
#include "ThePEG/Config/ThePEG.h"
#include "ThePEG/Interface/Interfaced.h"
#include "gsl/gsl_rng.h"
namespace ThePEG {
/**
* RandomGenerator is an interface to the CLHEP::RandomEngine
* classes. To avoid excessive virtual function calls, the
* RandomGenerator caches random numbers generated by the engine which
* are then retrieved by the non-virtual inlined rnd() method.
*
* Sub-classes of RandomGenerator should be used to
* implement a particular random engine.
*
* RandomGenerator only provides a flat distribution between 0 and
* 1. Any other distribution can be achieved using the CLHEP random
* classes using the engine returned from the randomGenerator()
* method.
*
* @see \ref RandomGeneratorInterfaces "The interfaces"
* defined for RandomGenerator.
* @see UseRandom
*/
class RandomGenerator: public Interfaced {
public:
/** A vector of doubles. */
typedef vector<double> RndVector;
/** The size_type of RndVector. */
typedef RndVector::size_type size_type;
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
RandomGenerator();
/**
* Copy-constructor.
*/
RandomGenerator(const RandomGenerator &);
/**
* Destructor.
*/
virtual ~RandomGenerator();
//@}
/**
* Reset the underlying random engine with the given \a seed. If the
* \a seed is set to -1 a standard seed will be used.
*/
virtual void setSeed(long seed) = 0;
/** @name Functions to return random numbers. */
//@{
/**
* Return a (possibly cached) flat random number in the interval
* \f$]0,1[\f$.
*/
double rnd() {
if ( nextNumber == theNumbers.end() ) fill();
return *nextNumber++;
}
/**
* Return a flat random number in the interval
* \f$]0,b[\f$.
*/
template <typename Unit> Unit rnd(Unit b) { return b*rnd(); }
/**
* Return a flat random number in the interval
* \f$]a,b[\f$.
*/
template <typename Unit>
Unit rnd(Unit a, Unit b) { return a + rnd(b - a); }
/**
* Return \a n flat random number in the interval
* \f$]0,1[\f$.
*/
RndVector rndvec(int n) {
RndVector ret(n);
for ( int i = 0; i < n; ++i ) ret[i] = rnd();
return ret;
}
/**
* Return a (possibly cached) flat random number in the interval
* \f$]0,1[\f$.
*/
double operator()() { return rnd(); }
/**
* Return a (possibly cached) flat integer random number in the
* interval \f$[0,N[\f$.
*/
long operator()(long N) { return long(rnd() * N); }
/**
* Return a true with probability \a p. Uses rnd(). Also uses
* push_back(double).
*/
bool rndbool(double p = 0.5);
/**
* Return a true with probability \a p1/(\a p1+\a p2). Uses
* rnd(). Also uses push_back(double).
*/
bool rndbool(double p1, double p2) { return rndbool(p1/(p1 + p2)); }
/**
* Return -1, 0, or 1 with relative probabilities \a p1, \a p2, \a
* p3. Uses rnd(). Also uses push_back(double).
*/
int rndsign(double p1, double p2, double p3);
/**
* Return an integer \f$i\f$ with probability p\f$i\f$/(\a p0+\a
* p1). Uses rnd().
*/
int rnd2(double p0, double p1) {
return rndbool(p0, p1)? 0: 1;
}
/**
* Return an integer \f$i\f$ with probability p\f$i\f$/(\a p0+\a
* p1+\a p2). Uses rnd().
*/
int rnd3(double p0, double p1, double p2) {
return 1 + rndsign(p0, p1, p2);
}
/**
* Return an integer/ \f$i\f$ with probability p\f$i\f$(\a p0+\a
* p1+\a p2+\a p3). Uses rnd().
*/
int rnd4(double p0, double p1, double p2, double p3);
/**
* Return a number between zero and infinity, distributed according
* to \f$e^-x\f$.
*/
double rndExp() {
return -log(rnd());
}
/**
* Return a number between zero and infinity, distributed according
* to \f$e^-{x/\mu}\f$ where \f$\mu\f$ is the \a mean value.
*/
template <typename Unit>
Unit rndExp(Unit mean) { return mean*rndExp(); }
/**
* Return a number distributed according to a Gaussian distribution
* with zero mean and unit variance.
*/
double rndGauss() {
if ( gaussSaved ) {
gaussSaved = false;
return savedGauss;
}
double r = sqrt(-2.0*log(rnd()));
double phi = rnd()*2.0*Constants::pi;
savedGauss = r*cos(phi);
gaussSaved = true;
return r*sin(phi);
}
/**
* Return a number distributed according to a Gaussian distribution
* with a given standard deviation, \a sigma, and a given \a mean.
*/
template <typename Unit>
Unit rndGauss(Unit sigma, Unit mean = Unit()) {
return mean + sigma*rndGauss();
}
/**
* Return a positive number distributed according to a
* non-relativistic Breit-Wigner with a given width, \a gamma, and a
* given \a mean.
*/
template <typename Unit>
Unit rndBW(Unit mean, Unit gamma) {
if ( gamma <= Unit() ) return mean;
return mean + 0.5*gamma*tan(rnd(atan(-2.0*mean/gamma), Constants::pi/2));
}
/**
* Return a positive number distributed according to a
* non-relativistic Breit-Wigner with a given width, \a gamma, and a
* given \a mean. The distribution is cut-off so that the number is
* between \a mean - \a cut and \a mean + \a cut
*/
template <typename Unit>
Unit rndBW(Unit mean, Unit gamma, Unit cut) {
if ( gamma <= Unit() || cut <= Unit() ) return mean;
return mean + 0.5*gamma*tan(rnd(atan(-2.0*min(mean,cut)/gamma),
atan(2.0*cut/gamma)));
}
/**
* Return a positive number distributed according to a relativistic
* Breit-Wigner with a given width, \a gamma, and a given \a mean.
*/
template <typename Unit>
Unit rndRelBW(Unit mean, Unit gamma) {
if ( gamma <= Unit() ) return mean;
return sqrt(sqr(mean) + mean*gamma*tan(rnd(atan(-mean/gamma),
Constants::pi/2)));
}
/**
* Return a positive number distributed according to a relativistic
* Breit-Wigner with a given width, \a gamma, and a given \a
* mean. The distribution is cut-off so that the number is between
* \a mean - \a cut and \a mean + \a cut
*/
template <typename Unit>
Unit rndRelBW(Unit mean, Unit gamma, Unit cut) {
if ( gamma <= Unit() || cut <= Unit() ) return mean;
double minarg = cut > mean? -mean/gamma:
(sqr(mean - cut) - sqr(mean))/(gamma*mean);
double maxarg = (sqr(mean + cut) - sqr(mean))/(mean*gamma);
return sqrt(sqr(mean) + mean*gamma*tan(rnd(atan(minarg), atan(maxarg))));
}
/**
* Return a non-negative number generated according to a Poissonian
* distribution with a given \a mean. Warning: the method
* implemented is very slow for large mean and large return
* values. For this reason the maximum return value is given by \a
* nmax.
*/
long rndPoisson(double mean);
//@}
/** @name Access the cached random numbers from the underlying engine. */
//@{
/**
* Give back a partly unused random number. This is typically used
* when generating integral random numbers. In eg. rndbool(double p)
* a random number <code>r</code> is drawn and if it is less than
* <code>p</code> true is returned, but <code>r</code> is still a
* good random number in the interval <code>]0,p[</code>. Hence
* <code>r/p</code> is still a good random number in the interval
* <code>]0,1[</code> and this is then pushed back into the cache
* and is used by the next call to rnd(). Note that the resulting
* random number is of lesser quality, and successive calls to
* push_back() should be avoided. To ensure a highest quality random
* number random number in the next call to rnd(), pop_back() should
* be used.
*/
void push_back(double r) {
if ( r > 0.0 && r < 1.0 && nextNumber != theNumbers.begin() )
*--nextNumber = r;
}
/**
* Discard the next random number in the cache.
*/
void pop_back() {
if ( nextNumber != theNumbers.end() ) ++nextNumber;
}
/**
* Discard all random numbers in the cache. Typically used after the
* internal random engine has been reinitialized for some reason.
*/
void flush() { nextNumber = theNumbers.end(); }
/**
* Generate n random numbers between 0 and 1 and put them in the
* output iterator.
*/
template <typename OutputIterator>
void rnd(OutputIterator o, size_type n) {
while ( n-- ) *o++ = rnd();
}
//@}
protected:
/**
* Initializes this random generator. This should be done first of
* all before the initialization of any other object associated with
* an event generator.
*/
virtual void doinit();
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interface.
*/
static void Init();
/**
* Return a gsl_rng interface to this random generator.
*/
gsl_rng * getGslInterface() { return gsl; }
protected:
/**
* Utility function for the interface.
*/
void setSize(size_type newSize);
/**
* Fill the cache with random numbers.
*/
virtual void fill() = 0;
/**
* A vector of cached numbers.
*/
RndVector theNumbers;
/**
* Iterator pointing to the next number to be extracted
*/
RndVector::iterator nextNumber;
/**
* The size of the cache.
*/
size_type theSize;
/**
* The seed to initialize the random generator with.
*/
long theSeed;
/**
* A saved Gaussian random number.
*/
mutable double savedGauss;
/**
* Indicate the precense of a saved Gaussian random number.
*/
mutable bool gaussSaved;
/**
* A pinter to a gsl_rng interface to this generator.
*/
gsl_rng * gsl;
private:
/**
* Describe a concrete class with persistent data. Note that the
* class should in principle be abstract.
*/
static ClassDescription<RandomGenerator> initRandomGenerator;
/**
* Private and non-existent assignment operator.
*/
RandomGenerator & operator=(const RandomGenerator &);
};
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the base classes
* of RandomGenerator. */
template <>
struct BaseClassTrait<RandomGenerator,1>: public ClassTraitsType {
/** Typedef of the first base class of RandomGenerator. */
typedef Interfaced NthBase;
};
/** This template specialization informs ThePEG about the name of the
* RandomGenerator class. */
template <>
struct ClassTraits<RandomGenerator>:
public ClassTraitsBase<RandomGenerator> {
/** Return a platform-independent class name */
static string className() { return "ThePEG::RandomGenerator";
}
/** This class should in principle be abstract, therefore the
create() method will throw a std::logic_error if called. */
static TPtr create() {
throw std::logic_error("Tried to instantiate abstract class"
"'Pythis7::RandomGenerator'");
}
};
/** @endcond */
}
#endif /* ThePEG_RandomGenerator_H */
|