File: myrandom.c

package info (click to toggle)
theseus 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,152 kB
  • ctags: 2,447
  • sloc: ansic: 42,404; makefile: 250; sh: 131
file content (360 lines) | stat: -rw-r--r-- 9,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2014 Douglas L. Theobald

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the:

    Free Software Foundation, Inc.,
    59 Temple Place, Suite 330,
    Boston, MA  02111-1307  USA

    -/_|:|_|_\-
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "myrandom.h"

/* The Mersenne Twister algorithm for generating random numbers:
   A C-program for MT19937, with initialization improved 2002/2/10.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed) 
   or init_by_array(init_key, key_length).

   http://www.math.keio.ac.jp/matumoto/emt.html */

/* Period parameters */  
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL   /* constant vector a */
#define UMASK 0x80000000UL /* most significant w-r bits */
#define LMASK 0x7ffffffUL /* least significant r bits */
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))

static unsigned long state[N]; /* the array for the state vector  */
static int left = 1;
static int initf = 0;
static unsigned long *next;

/* initializes state[N] with a seed */
void init_genrand(unsigned long s)
{
    int j;
    state[0]= s & 0xffffffffUL;
    for (j=1; j<N; j++) {
        state[j] = (1812433253UL * (state[j-1] ^ (state[j-1] >> 30)) + j); 
        /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
        /* In the previous versions, MSBs of the seed affect   */
        /* only MSBs of the array state[].                        */
        /* 2002/01/09 modified by Makoto Matsumoto             */
        state[j] &= 0xffffffffUL;  /* for >32 bit machines */
    }
    left = 1; initf = 1;
}


/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
void init_by_array(init_key, key_length)
unsigned long init_key[], key_length;
{
    int i, j, k;
    init_genrand(19650218UL);
    i=1; j=0;
    k = (N>key_length ? N : key_length);
    for (; k; k--) {
        state[i] = (state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1664525UL))
          + init_key[j] + j; /* non linear */
        state[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
        i++; j++;
        if (i>=N) { state[0] = state[N-1]; i=1; }
        if (j>=key_length) j=0;
    }
    for (k=N-1; k; k--) {
        state[i] = (state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL))
          - i; /* non linear */
        state[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
        i++;
        if (i>=N) { state[0] = state[N-1]; i=1; }
    }

    state[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ 
    left = 1; initf = 1;
}


static void next_state(void)
{
    unsigned long *p=state;
    int j;

    /* if init_genrand() has not been called, */
    /* a default initial seed is used         */
    if (initf==0) init_genrand(5489UL);

    left = N;
    next = state;
    
    for (j=N-M+1; --j; p++) 
        *p = p[M] ^ TWIST(p[0], p[1]);

    for (j=M; --j; p++) 
        *p = p[M-N] ^ TWIST(p[0], p[1]);

    *p = p[M-N] ^ TWIST(p[0], state[0]);
}


/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void)
{
    unsigned long y;

    if (--left == 0) next_state();
    y = *next++;

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return y;
}


/* generates a random number on [0,0x7ffffff]-interval */
long genrand_int31(void)
{
    unsigned long y;

    if (--left == 0) next_state();
    y = *next++;

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return (long)(y>>1);
}


/* generates a random number on [0,1]-real-interval (closed, 0 <= x <= 1) */
double genrand_real1(void)
{
    unsigned long y;

    if (--left == 0) next_state();
    y = *next++;

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return (double)y * (1.0/4294967295.0); 
    /* divided by 2^32-1 */ 
}


/* generates a random number on [0,1)-real-interval (half-closed, 0 <= x < 1) */
double genrand_real2(void)
{
    unsigned long y;

    if (--left == 0) next_state();
    y = *next++;

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return (double)y * (1.0/4294967296.0); 
    /* divided by 2^32 */
}


/* generates a random number on (0,1)-real-interval (open, 0 < x < 1) */
double genrand_real3(void)
{
    unsigned long y;

    if (--left == 0) next_state();
    y = *next++;

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return ((double)y + 0.5) * (1.0/4294967296.0); 
    /* divided by 2^32 */
}


/* generates a random number on [0,1) with 53-bit resolution*/
double genrand_res53(void) 
{ 
    unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; 
    return(a*67108864.0+b)*(1.0/9007199254740992.0); 
} 
/* These real versions are due to Isaku Wada, 2002/01/09 added */


/*int main(void)
{
    int i;
    unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4;
    init_by_array(init, length);*/
    
    /* This is an example of initializing by an array.       */
    /* You may use init_genrand(seed) with any 32bit integer */
    /* as a seed for a simpler initialization                */

/*    printf("1000 outputs of genrand_int32()\n");
    for (i=0; i<1000; i++) {
      printf("%10lu ", genrand_int32());
      if (i%5==4) printf("\n");
    }
    printf("\n1000 outputs of genrand_real2()\n");
    for (i=0; i<1000; i++) {
      printf("%10.8f ", genrand_real2());
      if (i%5==4) printf("\n");
    }

    return 0;
}*/


double
expondev(void)
{
    double          dum;

    do
    {
        dum = genrand_real2();
    }
    while (dum == 0.0);

    return(-log(dum));
}


/* based on NR, mean = 0, std-dev = 1
   has a small kurtosis problem = -0.012053091
   out of 5000 points */
double
gaussdev(void)
{
    double          fac, rsq, v1, v2;

    do
    {
        v1 = 2.0 * genrand_real2() - 1.0;
        v2 = 2.0 * genrand_real2() - 1.0;
        rsq = (v1 * v1) + (v2 * v2);
    } while (rsq >= 1.0);

    fac = sqrt(-2.0 * log(rsq) / rsq);

    return (v2*fac);
}


double
Normal(void)
/* ========================================================================
 * Returns a normal (Gaussian) distributed real number.
 * NOTE: mean = 0, std-dev = 1
 *
 * Uses a very accurate approximation of the normal idf due to Odeh & Evans, 
 * J. Applied Statistics, 1974, vol 23, pp 96-97.
 *
 * small kurtosis problem, Kurtosis -0.032404617 from 7000 pts.
 *                         Std Deviation    0.99745242, should be = 1.0
 * ========================================================================
 */
{ 
  const double p0 = 0.322232431088;     const double q0 = 0.099348462606;
  const double p1 = 1.0;                const double q1 = 0.588581570495;
  const double p2 = 0.342242088547;     const double q2 = 0.531103462366;
  const double p3 = 0.204231210245e-1;  const double q3 = 0.103537752850;
  const double p4 = 0.453642210148e-4;  const double q4 = 0.385607006340e-2;
  double u, t, p, q, z;

  u   = genrand_real2();

  if (u < 0.5)
      t = sqrt(-2.0 * log(u));
  else
      t = sqrt(-2.0 * log(1.0 - u));

  p   = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)));
  q   = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4)));

  if (u < 0.5)
      z = (p / q) - t;
  else
      z = t - (p / q);

  return (z);
}


/* Knuth, _Seminumerical_Algorithms_ (Vol. 2 of "The Art of Computer Programming"),
   p. 139, 2nd ed. */
void
shuffle(int *a, int n)
{
    int             i, j, t;
    
    for (i = 0; i < n; i++)
        a[i] = i;
    
    for (j = n-1; j > 0; j--)
    {
        i = (int) (genrand_real2() * (double) (j+1));
        t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}


void
shufflef(double *a, int n)
{
    int             i, j;
    double          t;
    
    for (j = n-1; j > 0; j--)
    {
        i = (int) (genrand_real2() * (double) (j+1));
        t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}