1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/*
Theseus - maximum likelihood superpositioning of macromolecular structures
Copyright (C) 2004-2014 Douglas L. Theobald
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the:
Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
-/_|:|_|_\-
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "myrandom.h"
/* The Mersenne Twister algorithm for generating random numbers:
A C-program for MT19937, with initialization improved 2002/2/10.
Coded by Takuji Nishimura and Makoto Matsumoto.
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).
http://www.math.keio.ac.jp/matumoto/emt.html */
/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UMASK 0x80000000UL /* most significant w-r bits */
#define LMASK 0x7ffffffUL /* least significant r bits */
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
static unsigned long state[N]; /* the array for the state vector */
static int left = 1;
static int initf = 0;
static unsigned long *next;
/* initializes state[N] with a seed */
void init_genrand(unsigned long s)
{
int j;
state[0]= s & 0xffffffffUL;
for (j=1; j<N; j++) {
state[j] = (1812433253UL * (state[j-1] ^ (state[j-1] >> 30)) + j);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array state[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
state[j] &= 0xffffffffUL; /* for >32 bit machines */
}
left = 1; initf = 1;
}
/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
void init_by_array(init_key, key_length)
unsigned long init_key[], key_length;
{
int i, j, k;
init_genrand(19650218UL);
i=1; j=0;
k = (N>key_length ? N : key_length);
for (; k; k--) {
state[i] = (state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1664525UL))
+ init_key[j] + j; /* non linear */
state[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++; j++;
if (i>=N) { state[0] = state[N-1]; i=1; }
if (j>=key_length) j=0;
}
for (k=N-1; k; k--) {
state[i] = (state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL))
- i; /* non linear */
state[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++;
if (i>=N) { state[0] = state[N-1]; i=1; }
}
state[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
left = 1; initf = 1;
}
static void next_state(void)
{
unsigned long *p=state;
int j;
/* if init_genrand() has not been called, */
/* a default initial seed is used */
if (initf==0) init_genrand(5489UL);
left = N;
next = state;
for (j=N-M+1; --j; p++)
*p = p[M] ^ TWIST(p[0], p[1]);
for (j=M; --j; p++)
*p = p[M-N] ^ TWIST(p[0], p[1]);
*p = p[M-N] ^ TWIST(p[0], state[0]);
}
/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void)
{
unsigned long y;
if (--left == 0) next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
/* generates a random number on [0,0x7ffffff]-interval */
long genrand_int31(void)
{
unsigned long y;
if (--left == 0) next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return (long)(y>>1);
}
/* generates a random number on [0,1]-real-interval (closed, 0 <= x <= 1) */
double genrand_real1(void)
{
unsigned long y;
if (--left == 0) next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return (double)y * (1.0/4294967295.0);
/* divided by 2^32-1 */
}
/* generates a random number on [0,1)-real-interval (half-closed, 0 <= x < 1) */
double genrand_real2(void)
{
unsigned long y;
if (--left == 0) next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return (double)y * (1.0/4294967296.0);
/* divided by 2^32 */
}
/* generates a random number on (0,1)-real-interval (open, 0 < x < 1) */
double genrand_real3(void)
{
unsigned long y;
if (--left == 0) next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return ((double)y + 0.5) * (1.0/4294967296.0);
/* divided by 2^32 */
}
/* generates a random number on [0,1) with 53-bit resolution*/
double genrand_res53(void)
{
unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
return(a*67108864.0+b)*(1.0/9007199254740992.0);
}
/* These real versions are due to Isaku Wada, 2002/01/09 added */
/*int main(void)
{
int i;
unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4;
init_by_array(init, length);*/
/* This is an example of initializing by an array. */
/* You may use init_genrand(seed) with any 32bit integer */
/* as a seed for a simpler initialization */
/* printf("1000 outputs of genrand_int32()\n");
for (i=0; i<1000; i++) {
printf("%10lu ", genrand_int32());
if (i%5==4) printf("\n");
}
printf("\n1000 outputs of genrand_real2()\n");
for (i=0; i<1000; i++) {
printf("%10.8f ", genrand_real2());
if (i%5==4) printf("\n");
}
return 0;
}*/
double
expondev(void)
{
double dum;
do
{
dum = genrand_real2();
}
while (dum == 0.0);
return(-log(dum));
}
/* based on NR, mean = 0, std-dev = 1
has a small kurtosis problem = -0.012053091
out of 5000 points */
double
gaussdev(void)
{
double fac, rsq, v1, v2;
do
{
v1 = 2.0 * genrand_real2() - 1.0;
v2 = 2.0 * genrand_real2() - 1.0;
rsq = (v1 * v1) + (v2 * v2);
} while (rsq >= 1.0);
fac = sqrt(-2.0 * log(rsq) / rsq);
return (v2*fac);
}
double
Normal(void)
/* ========================================================================
* Returns a normal (Gaussian) distributed real number.
* NOTE: mean = 0, std-dev = 1
*
* Uses a very accurate approximation of the normal idf due to Odeh & Evans,
* J. Applied Statistics, 1974, vol 23, pp 96-97.
*
* small kurtosis problem, Kurtosis -0.032404617 from 7000 pts.
* Std Deviation 0.99745242, should be = 1.0
* ========================================================================
*/
{
const double p0 = 0.322232431088; const double q0 = 0.099348462606;
const double p1 = 1.0; const double q1 = 0.588581570495;
const double p2 = 0.342242088547; const double q2 = 0.531103462366;
const double p3 = 0.204231210245e-1; const double q3 = 0.103537752850;
const double p4 = 0.453642210148e-4; const double q4 = 0.385607006340e-2;
double u, t, p, q, z;
u = genrand_real2();
if (u < 0.5)
t = sqrt(-2.0 * log(u));
else
t = sqrt(-2.0 * log(1.0 - u));
p = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)));
q = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4)));
if (u < 0.5)
z = (p / q) - t;
else
z = t - (p / q);
return (z);
}
/* Knuth, _Seminumerical_Algorithms_ (Vol. 2 of "The Art of Computer Programming"),
p. 139, 2nd ed. */
void
shuffle(int *a, int n)
{
int i, j, t;
for (i = 0; i < n; i++)
a[i] = i;
for (j = n-1; j > 0; j--)
{
i = (int) (genrand_real2() * (double) (j+1));
t = a[i];
a[i] = a[j];
a[j] = t;
}
}
void
shufflef(double *a, int n)
{
int i, j;
double t;
for (j = n-1; j > 0; j--)
{
i = (int) (genrand_real2() * (double) (j+1));
t = a[i];
a[i] = a[j];
a[j] = t;
}
}
|