File: MultiPosePth.c

package info (click to toggle)
theseus 3.3.0-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 91,424 kB
  • sloc: ansic: 41,682; makefile: 267; sh: 121
file content (326 lines) | stat: -rw-r--r-- 9,917 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2015 Douglas L. Theobald

    This file is part of THESEUS.

    THESEUS is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as
    published by the Free Software Foundation, either version 3 of
    the License, or (at your option) any later version.

    THESEUS is distributed in the hope that it will be useful, but
    WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public
    License along with THESEUS in the file 'COPYING'. If not, see
    <http://www.gnu.org/licenses/>.

    -/_|:|_|_\-
*/

#include "MultiPosePth_local.h"
#include "MultiPosePth.h"


static void
*CalcRot_pth(void *rotdata_ptr);

static double
CalcRotations_pth(CdsArray *cdsA, RotData **rotdata, pthread_t *callThd,
                  pthread_attr_t *attr, const int thrdnum);


static void
*CalcRot_pth(void *rotdata_ptr)
{
    int             i;
    double          deviation = 0.0;
    RotData        *rotdata = (RotData *) rotdata_ptr;
    Cds            *cds = NULL;

    for (i = rotdata->start; i < rotdata->end; ++i)
    {
        cds = rotdata->cds[i];
        /* note that the avecds are already multiplied by the weight matrices */
//        deviation = CalcRMSDRotationalMatrix(cds, rotdata->tcds, cds->vlen, &cds->matrix[0][0], NULL);

        /* rotate the scratch cds with new rotation matrix */
        RotateCdsIp(cds, (const double **) cds->matrix);

        /* find global rmsd and average cds (both held in structure) */
        cds->wRMSD_from_mean = sqrt(deviation / (3 * rotdata->vlen));
    }

    pthread_exit((void *) 0);
}


static double
CalcRotations_pth(CdsArray *cdsA, RotData **rotdata, pthread_t *callThd,
                  pthread_attr_t *attr, const int thrdnum)
{
    Cds           **cds = cdsA->cds;
    const Cds      *avecds = cdsA->avecds;
    const double   *wts = (const double *) cdsA->w;
    Cds            *tcds = cdsA->tcds;
    double          deviation_sum = 0.0;
    int             i, rc = 0, incr;
    const int       cnum = cdsA->cnum;

    if (algo->covweight)
    {
        MatMultCdsMultMatDiag(tcds,
                              (const double **) cdsA->WtMat,
                              avecds);
    }
    else if (algo->varweight || algo->leastsquares)
    {
        MatDiagMultCdsMultMatDiag(tcds, wts, avecds);
    }

    incr = cnum / thrdnum;

    for (i = 0; i < thrdnum - 1; ++i)
    {
        rotdata[i]->cds = cds;
        rotdata[i]->tcds = tcds;
        rotdata[i]->start = i * incr;
        rotdata[i]->end = i*incr + incr;
        rotdata[i]->vlen = cdsA->vlen;

        rc = pthread_create(&callThd[i], attr, CalcRot_pth, (void *) rotdata[i]);

        if (rc)
        {
            printf("ERROR811: return code from pthread_create() %d is %d\n", i, rc);
            exit(EXIT_FAILURE);
        }
    }

    rotdata[thrdnum - 1]->cds = cds;
    rotdata[thrdnum - 1]->tcds = tcds;
    rotdata[thrdnum - 1]->start = (thrdnum - 1) * incr;
    rotdata[thrdnum - 1]->end = cnum;
    rotdata[thrdnum - 1]->vlen = cdsA->vlen;

    rc = pthread_create(&callThd[thrdnum - 1], attr, CalcRot_pth, (void *) rotdata[thrdnum - 1]);

    if (rc)
    {
        printf("ERROR811: return code from pthread_create() %d is %d\n", i, rc);
        exit(EXIT_FAILURE);
    }

    for (i = 0; i < thrdnum; ++i)
    {
        rc = pthread_join(callThd[i], (void **) NULL);

        if (rc)
        {
            printf("ERROR812: return code from pthread_join() %d is %d\n", i, rc);
            exit(EXIT_FAILURE);
        }
    }

    for (i = 0; i < cnum; ++i)
        deviation_sum += 3 * cdsA->vlen * cds[i]->wRMSD_from_mean * cds[i]->wRMSD_from_mean;

    return(deviation_sum);
}


int
MultiPose_pth(CdsArray *baseA)
{
    int             i, round, innerround;
    int             slxn; /* index of random coord to select as first */
    const int       cnum = baseA->cnum;
    const int       vlen = baseA->vlen;
    double         *evals = malloc(3 * sizeof(double));
    Algorithm      *algo = NULL;
    Statistics     *stats = NULL;
    Cds           **cds = NULL;
    Cds            *avecds = NULL;
    CdsArray       *scratchA = NULL;

    gsl_rng               *r2 = NULL;
    const gsl_rng_type    *T = NULL;

    T = gsl_rng_ranlxs2;
    r2 = gsl_rng_alloc(T);

    // THREAD STUFF /////////////////////////////////////////////////////
    const int       thrdnum = algo->threads;
    RotData       **rotdata = malloc(thrdnum * sizeof(RotData *));
    AveData       **avedata = malloc(thrdnum * sizeof(AveData *));
    pthread_t      *callThd = malloc(thrdnum * sizeof(pthread_t));
    pthread_attr_t  attr;

    for (i = 0; i < thrdnum; ++i)
    {
        rotdata[i] = malloc(sizeof(RotData));
        avedata[i] = malloc(sizeof(AveData));
    }

    pthread_attr_init(&attr);
/*     pthread_attr_getstacksize (&attr, &stacksize); */
/*     printf("\nDefault stack size = %d", (int) stacksize); */
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
    pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
    // THREAD STUFF /////////////////////////////////////////////////////

    /* setup scratchA */
    scratchA = CdsArrayInit();
    CdsArrayAlloc(scratchA, cnum, vlen);
    CdsArraySetup(scratchA);

    baseA->scratchA = scratchA;

    /* duplicate baseA -- copy to scratchA */
    CdsArrayCopy(scratchA, baseA);

    /* setup local aliases based on scratchA */
    cds = scratchA->cds;
    avecds = scratchA->avecds;

    stats->hierarch_p1 = 1.0;
    stats->hierarch_p2 = 1.0;

    slxn = gsl_rng_uniform_int(r2, cnum);
    CdsCopyAll(avecds, baseA->cds[slxn]);

    if (algo->dotrans)
    {
        CenMass(avecds);
        ApplyCenterIp(avecds);
    }

    /* The outer loop:
       (1) First calculates the translations
       (2) Does inner loop -- calc rotations and average till convergence
       (3) Holding the superposition constant, calculates the covariance
           matrices and corresponding weight matrices, looping till
           convergence when using a dimensional/axial covariance matrix
    */
    round = 0;
    while(1)
    {
        if (algo->nullrun)
            break;

        ++round;
        algo->rounds = round;

        /* Find weighted center and translate all cds */
        if (algo->dotrans)
        {
            CalcTranslationsOp(baseA, algo); // DLT OP
            for (i = 0; i < cnum; ++i)
                ApplyCenterIp(cds[i]);

            /* save the translation vector for each coord in the array */
            for (i = 0; i < cnum; ++i)
                memcpy(cds[i]->translation, cds[i]->center, 3 * sizeof(double));
        }

        /* Inner loop:
           (1) Calc rotations given weights/weight matrices
           (2) Rotate cds with new rotations
           (3) Recalculate average

           Loops till convergence, holding constant the weights, variances, and covariances
           (and thus the translations too) */
        innerround = 0;
        do
        {
            ++innerround;
            algo->innerrounds += innerround;

            /* save the old rotation matrices to test convergence at bottom of loop */
            for (i = 0; i < cnum; ++i)
                MatCpySqr(cds[i]->last_matrix, (const double **) cds[i]->matrix, 3);

            /* find the optimal rotation matrices */
            if (algo->dorot)
            {
                if (algo->alignment)
                {
                    CalcRotations(scratchA);
                }
                else
                {
                    // THREAD STUFF /////////////////////////////////////////////////////
                    CalcRotations_pth(scratchA, rotdata, callThd, &attr, thrdnum);
                    // THREAD STUFF /////////////////////////////////////////////////////
                }
            }

            if (innerround == 1 &&
                CheckConvergenceOuter(scratchA, round, algo->precision))
                   goto outsidetheloops;

            /* find global rmsd and average cds (both held in structure) */
            if (algo->doave)
            {
                if (algo->alignment)
                {
                    AveCdsNu(scratchA);
                    EM_MissingCds(scratchA);
                }
                else
                {
                    // THREAD STUFF /////////////////////////////////////////////////////
                    AveCds_pth(scratchA, avedata, callThd, &attr, thrdnum);
                    // THREAD STUFF /////////////////////////////////////////////////////
                }
            }

            //stats->wRMSD_from_mean = sqrt(deviation_sum / (3 * vlen * cnum));

            if (algo->noinnerloop)
                break;
            else if (innerround > 160)
            {
                putchar(',');
                fflush(NULL);
                break;
            }
        }
        while(CheckConvergenceInner(scratchA, algo->precision) == 0);

        if (algo->docovars)
        {
            CalcCovariances(scratchA);
            if (algo->varweight || algo->covweight)
                HierarchVars(scratchA);
        }

        CalcWts(scratchA);
    }

    outsidetheloops:

    CdsArrayDestroy(&scratchA);
    MyFree(evals);

    // THREAD STUFF /////////////////////////////////////////////////////
    pthread_attr_destroy(&attr);
    for (i = 0; i < thrdnum; ++i)
        MyFree(rotdata[i]);
    for (i = 0; i < thrdnum; ++i)
        MyFree(avedata[i]);
    MyFree(rotdata);
    MyFree(avedata);
    MyFree(callThd);
    // THREAD STUFF /////////////////////////////////////////////////////

    gsl_rng_free(r2);
    r2 = NULL;

    return(round);
}