1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*
Theseus - maximum likelihood superpositioning of macromolecular structures
Copyright (C) 2004-2015 Douglas L. Theobald
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the:
Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
-/_|:|_|_\-
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_psi.h>
//#include "DLTmath.h"
#include "statistics.h"
#include "gamma_dist.h" /* gamma_dev() */
#include "chisqrgen_dist.h"
/* The chi^2 distribution has the form
p(x) dx = (1/(2^(n/2) * Gamma(nu/2))) * x^((nu - 2)/2) * exp(-x/2)) dx
0 <= x < +inf
nu > 0
*/
double
chisqrgen_dev(const double nu, const double lambda, const gsl_rng *r2)
{
return(lambda * 2.0 * gamma_dev(1.0, 0.5*nu, r2));
}
double
chisqrgen_pdf(const double x, const double nu, const double lambda)
{
double p, nu2;
if (x <= 0.0)
{
return(0.0);
}
else
{
nu2 = 0.5*nu;
p = (nu2-1.0)*log(x/lambda) - 0.5*x/lambda - nu2*log(2.0) - lgamma(nu2);
return(exp(p)/lambda);
}
}
double
chisqrgen_lnpdf(const double x, const double nu, const double lambda)
{
double nu2 = 0.5*nu;
return((nu2-1.0)*log(x/lambda) - 0.5*x/lambda - nu2*log(2.0) - lgamma(nu2) - log(lambda));
}
double
chisqrgen_cdf(const double x, const double nu, const double lambda)
{
if (x <= 0.0)
return(0.0);
else
{
/* printf("\n****** %f %f %f", */
/* gsl_sf_gamma_inc_P(0.5*nu, 0.5*x/lambda), */
/* IncompleteGamma(0.5*nu, 0.5*x/lambda), */
/* 1.0 - IncompleteGamma(0.5*nu, 0.5*x/lambda)/tgamma(0.5*x/lambda)); */
return(gsl_sf_gamma_inc_P(0.5*nu, 0.5*x/lambda));
}
}
double
chisqrgen_sdf(const double x, const double nu, const double lambda)
{
if (x <= 0.0)
return(1.0);
else
return(1.0 - chisqrgen_cdf(x, nu, lambda));
}
double
chisqrgen_int(const double x, const double y, const double nu, const double lambda)
{
if (x <= 0.0)
return(chisqrgen_cdf(y, nu, lambda));
else
return(chisqrgen_cdf(y, nu, lambda) - chisqrgen_cdf(x, nu, lambda));
}
/* This is from Cover and Thomas (_Elements of Information Theory_),
but it is wrong. Something's wrong.
I even did the integration myself and got the same answer. Weird.
*/
/* double */
/* chisqrgen_logL(const double nu, const double lambda) */
/* { */
/* double logL, nu2; */
/* */
/* nu2 = nu / 2.0; */
/* */
/* logL = -log(2.0 * tgamma(nu2)) - (1.0 - nu2) * gsl_sf_psi(nu2) - nu2; */
/* */
/* return(logL); */
/* } */
double
chisqrgen_logL(const double nu, const double lambda)
{
double nu2 = 0.5*nu;
/* printf("\nchisqrgen logL: %f %f %f %f %f\n", */
/* (nu2 - 1.0)*gsl_sf_psi(nu2), - log(2.0), - nu2, - lgammav, */
/* (nu2 - 1.0)*gsl_sf_psi(nu2) - log(2.0) - nu2 - lgammav); */
return((nu2 - 1.0)*gsl_sf_psi(nu2) - log(2.0) - nu2 - lgamma(nu2));
}
/* For the maximum likelihood fit we nust find the root of:
F1 = (1/N)\Sum{log(x)} - log(2 lambda) - digamma{nu/2} = 0
where the first derivative with repect to nu (dF1/dnu) is:
F1' = -trigamma(nu/2)/2 = 0
*/
static void
evalchisqrgenML(const double logterm, const double nu, const double lambda, double *fx, double *dfx)
{
*fx = logterm - gsl_sf_psi(0.5*nu) - log(2.0 * lambda);
*dfx = -0.5*gsl_sf_psi_1(0.5*nu);
}
/* fit a chisqrgen distribution by maxinum likelihood */
double
chisqrgen_fit(const double *data, const int num, double *nu, double *lambda, double *prob)
{
double ave, var, logterm, fx, dfx, guess_nu;
int i;
double iter = 100;
double tol = 1e-8;
ave = 0.0;
for (i = 0; i < num; ++i)
{
if (data[i] < 0.0)
{
fprintf(stderr, "\n ERROR345: chi^2 distributed data must be >= 0.0 ");
return(-1.0);
}
else
{
ave += data[i];
}
}
ave /= (double) num;
var = 0.0;
for (i = 0; i < num; ++i)
var += (data[i] - ave) * (data[i] - ave);
var /= (double) num;
guess_nu = *nu = 2.0 * ave * ave / var;
*lambda = 0.5 * var / ave;
logterm = 0.0;
for (i = 0; i < num; ++i)
{
if(data[i] == 0.0)
continue;
logterm += log(data[i]);
}
logterm /= (double) num;
for (i = 0; i < iter; ++i)
{
evalchisqrgenML(logterm, *nu, *lambda, &fx, &dfx);
if (fabs(fx) < tol)
break; /* success */
*nu -= (fx / dfx); /* Newton-Raphson correction */
if (*nu <= 0.0)
*nu = tol;
*lambda = ave / *nu;
/* printf("\n chi^2 gen -- nu: %f lambda: %f ", *nu, *lambda); */
/* fflush(NULL); */
}
if (i == iter)
*nu = guess_nu;
/* chisqrgen_logL(*nu, 0.0); */
return(chi_sqr_adapt(data, num, 0, prob, *nu, *lambda, chisqrgen_pdf, chisqrgen_lnpdf, chisqrgen_int));
}
|