File: lognormal_dist.c

package info (click to toggle)
theseus 3.3.0-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 91,424 kB
  • sloc: ansic: 41,682; makefile: 267; sh: 121
file content (170 lines) | stat: -rw-r--r-- 3,980 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2015 Douglas L. Theobald

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the:

    Free Software Foundation, Inc.,
    59 Temple Place, Suite 330,
    Boston, MA  02111-1307  USA

    -/_|:|_|_\-
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include "DLTmath.h"
#include "statistics.h"
#include "lognormal_dist.h"

double
lognormal_dev(const double zeta, const double sigma, const gsl_rng *r2)
{
    double u, v, rr2, normal, z;

    do
    {
        /* choose x,y in uniform square (-1,-1) to (+1,+1) */
        u = -1.0 + 2.0 * gsl_rng_uniform(r2);
        v = -1.0 + 2.0 * gsl_rng_uniform(r2);

        /* see if it is in the unit circle */
        rr2 = u*u + v*v;
    }
    while (rr2 > 1.0 || rr2 == 0.0);

    normal = u * sqrt(-2.0 * log(rr2) / rr2);

    z = exp(sigma * normal + zeta);

    return (z);
}


double
lognormal_pdf(const double x, const double zeta, const double sigma)
{
    double          u;

    if (x <= 0.0)
    {
        return (0.0);
    }
    else
    {
        u = (log(x) - zeta) / sigma;

        return (exp(-0.5*u*u) / (x * fabs(sigma) * sqrt(2.0 * MY_PI)));
    }
}


double
lognormal_lnpdf(const double x, const double zeta, const double sigma)
{
    double          u, p;

    u = (log(x) - zeta) / sigma;
    p = -log(x * fabs(sigma)) - (log(2.0 * MY_PI) / 2.0) - (mysquare(u) / 2.0);

    return (p);
}


double
lognormal_cdf(const double x, const double zeta, const double sigma)
{
    if (x <= 0.0)
        return (0.0);
    else
        return (0.5 * (1.0 + erf((log(x) - zeta) / (sigma * sqrt(2.0)))));
}


double
lognormal_sdf(const double x, const double zeta, const double sigma)
{
    if (x <= 0.0)
        return (1.0);
    else
        return (1.0 - lognormal_cdf(x, zeta, sigma));
}


double
lognormal_int(const double x, const double y, const double zeta, const double sigma)
{
    if (x <= 0.0)
        return (lognormal_cdf(y, zeta, sigma));
    else
        return (lognormal_cdf(y, zeta, sigma) - lognormal_cdf(x, zeta, sigma));
}


/* correct */
double
lognormal_logL(const double zeta, const double sigma)
{
    return (-(zeta + 0.5 * log(2.0 * MY_PI * MY_E * mysquare(sigma))));
}


/* fit a lognormal distribution by maximum likelihood */
double
lognormal_fit(const double *data, const int num, double *zeta, double *sigma, double *prob)
{
    double          ave, avesqr, var, x;
    int             i;

    ave = avesqr = 0.0;
    for (i = 0; i < num; ++i)
    {
        if (data[i] == 0.0)
            continue;
        else if (data[i] < 0.0)
        {
            fprintf(stderr, "\n ERROR345: lognormal data must be > 0.0 ");
            return(-1.0);
        }
        else
        {
            x = log(data[i]);
            ave += x;
            avesqr += (x*x);
        }
    }
    ave /= (double) num;
    avesqr /= (double) num;

    /* m = exp(ave); */ /* this is the scale parameter */

    var = 0.0;
    for (i = 0; i < num; ++i)
    {
        if (data[i] == 0.0)
            var += mysquare(ave);
        else
            var += mysquare(log(data[i]) - ave);
    }
    var /= (double) num - 1;

    *zeta = ave;
    *sigma = sqrt(var);

    return(chi_sqr_adapt(data, num, 0, prob, *zeta, *sigma, lognormal_pdf, lognormal_lnpdf, lognormal_int));
}