1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*
Theseus - maximum likelihood superpositioning of macromolecular structures
Copyright (C) 2004-2015 Douglas L. Theobald
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the:
Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
-/_|:|_|_\-
*/
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include "statistics.h"
#include "DLTmath.h"
#include "normal_dist.h"
/* The normal distribution has the form
*/
double
normal_dev(const double mean, const double var, const gsl_rng *r2)
{
return (gsl_ran_gaussian_ziggurat(r2, sqrt(var)) + mean);
}
/* double */
/* normal_dev(const double mean, const double var, const gsl_rng *r2) */
/* { */
/* double fac, r, v1, v2; */
/* */
/* do */
/* { */
/* v1 = 2.0 * gsl_rng_uniform(r2) - 1.0; */
/* v2 = 2.0 * gsl_rng_uniform(r2) - 1.0; */
/* r = v1*v1 + v2*v2; */
/* } */
/* while (r >= 1.0); */
/* */
/* fac = sqrt(-2.0 * log(r) / r); */
/* */
/* return (v2 * fac * sqrt(var) + mean); */
/* } */
double
normal_pdf(const double x, const double mean, const double var)
{
double p, term;
if (var == 0.0)
{
if (x == mean)
return(1.0);
else
return(0.0);
}
term = x - mean;
p = (1.0 / sqrt(2.0 * MY_PI * var)) * exp(-term * term / (2.0 * var));
return (p);
}
double
normal_lnpdf(const double x, const double mean, const double var)
{
double p;
p = (-0.5 * log(2.0 * MY_PI * var)) - (mysquare(x - mean) / (2.0 * var));
return (p);
}
double
normal_cdf(const double x, const double mean, const double var)
{
double p;
p = 0.5 * (1.0 + erf((x - mean) / (sqrt(2.0 * var))));
return (p);
}
double
normal_sdf(const double x, const double mean, const double var)
{
double p;
p = 0.5 * erfc((x - mean) / (sqrt(2.0 * var)));
return (p);
}
double
normal_int(const double x, const double y, const double mean, const double var)
{
double p, xn, yn;
xn = (x - mean) / (sqrt(2.0 * var));
yn = (y - mean) / (sqrt(2.0 * var));
if ((x + y) < 2.0 * mean)
p = 0.5 * (erf(yn) - erf(xn));
else
p = 0.5 * (erfc(xn) - erfc(yn));
return (p);
}
double
normal_logL(const double mean, const double var)
{
return(-log(sqrt(var * 2.0 * MY_PI * MY_E)));
}
/* maximum likelihood fit of data to a normal distribution */
/* screw bias, it's overblown */
double
normal_fit(const double *x, const int n, double *mean, double *var, double *logL)
{
double nd = (double) n;
double ave, variance, verror;
int i;
ave = 0.0;
for (i = 0; i < n; ++i)
ave += x[i];
ave /= nd;
variance = verror = 0.0;
for (i = 0; i < n; ++i)
{
variance += mysquare(x[i] - ave);
verror += (x[i] - ave);
}
verror = mysquare(verror) / nd;
variance = (variance - verror) / nd; /* more accurate corrected two-pass algorithm */
/* with no rounding error, verror = 0 */
*mean = ave;
*var = variance;
/* printf("\n\nnormal logL %e\n", normal_logL(*mean, *var)); */
return(chi_sqr_adapt(x, n, 0, logL, *mean, *var, normal_pdf, normal_lnpdf, normal_int));
}
double
normal_fit_w(const double *x, const int n, const double *wts, double *mean,
double *var, double *logL)
{
double ave, variance, tmp, wtsum;
int i;
ave = wtsum = 0.0;
for (i = 0; i < n; ++i)
{
ave += wts[i] * x[i];
wtsum += wts[i];
}
ave /= wtsum;
variance = 0.0;
for (i = 0; i < n; ++i)
{
tmp = (x[i] - ave);
variance += wts[i] * tmp * tmp;
}
variance /= wtsum;
*mean = ave;
*var = variance;
return(1.0);
}
void
normal_init_mix_params(const double *x, const int n, const int mixn, double *mean,
double *var)
{
int j;
double imean, ivar, ilogL;
normal_fit(x, n, &imean, &ivar, &ilogL);
for (j = 0; j < mixn; ++j)
{
mean[j] = imean - (2.0 * sqrt(ivar)) + (4.0 * sqrt(ivar) * (j + 1.0) / (1.0 + mixn));
var[j] = ivar / mixn;
}
}
|