File: pareto_dist.c

package info (click to toggle)
theseus 3.3.0-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 91,424 kB
  • sloc: ansic: 41,682; makefile: 267; sh: 121
file content (133 lines) | stat: -rw-r--r-- 3,072 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2015 Douglas L. Theobald

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the:

    Free Software Foundation, Inc.,
    59 Temple Place, Suite 330,
    Boston, MA  02111-1307  USA

    -/_|:|_|_\-
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include "DLTmath.h"
#include "statistics.h"
#include "pareto_dist.h"

double
pareto_dev(const double a, const double c, const gsl_rng *r2)
{
    double         logdum;

    logdum = log(a) - (1.0 / c) * log(1.0 - gsl_rng_uniform(r2));

    return (exp(logdum));
}


double
pareto_pdf(const double x, const double a, const double c)
{
    if (x < c)
        return (0.0);
    else 
        return(exp(log(c) + c * log(a) - (c+1) * log(x)));
}


double
pareto_lnpdf(const double x, const double a, const double c)
{
    if (x == 0.0)
        return(log(c) + c * log(a));
    else 
        return(log(c) + c * log(a) - (c+1) * log(x));
}


double
pareto_cdf(const double x, const double a, const double c)
{
    if (x < a)
        return(0.0);
    else
        return(1.0 - pareto_sdf(x, a, c));
}


double
pareto_sdf(const double x, const double a, const double c)
{
    if (x <= a)
        return(1.0);
    else if (a == 0.0)
        return(0.0);
    else if (c == 0.0)
        return(1.0);
    else
        return(exp(c * log(a / x)));
}


double
pareto_int(const double x, const double y, const double a, const double c)
{
    return (pareto_sdf(x, a, c) - pareto_sdf(y, a, c));
}


double
pareto_logL(const double a, const double c)
{
    return (-log(a / c) - 1.0 - 1.0 / c);
}


/* Maximum likelihood fit to a pareto distribution
   Based on _Statistical Distributions_ 3rd ed. Evans, Hastings, and Peacock, p 154. */
double
pareto_fit(const double *data, const int num, double *a, double *c, double *prob)
{
    double          invc, min = DBL_MAX;
    int             i;

    for (i = 0; i < num; ++i)
        if(data[i] < min)
            min = data[i];

    if (min <= 0.0)
    {
        fprintf(stderr, "\n ERROR345: min data = %e; Pareto distributed data must be > 0.0 ", min);
        return(-1.0);
    }

    *a = min;

    invc = 0.0;
    for (i = 0; i < num; ++i)
        invc += log(data[i] / min);
    invc /= (double) num;

    *c = 1.0 / invc;

    return(chi_sqr_adapt(data, num, 0, prob, *a, *c, pareto_pdf, pareto_lnpdf, pareto_int));
}