1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/*
Theseus - maximum likelihood superpositioning of macromolecular structures
Copyright (C) 2004-2015 Douglas L. Theobald
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the:
Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
-/_|:|_|_\-
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_sort_vector.h>
#include "DLTmath.h"
/*
Calculate eigenvalues of a square, symmetric, real matrix, using GSL.
Eigenvalues are returned in ascending order, smallest first.
Pointer *eval must be allocated.
Input matrix **cov is NOT perturbed.
*/
void
EigenvalsGSL(const double **mat, const int dim, double *eval)
{
double *mat_cpy = NULL;
mat_cpy = malloc(dim * dim * sizeof(double));
memcpy(mat_cpy, &mat[0][0], dim * dim * sizeof(double));
gsl_matrix_view m = gsl_matrix_view_array(mat_cpy, dim, dim);
gsl_vector_view evalv = gsl_vector_view_array(eval, dim);
gsl_eigen_symm_workspace *w = gsl_eigen_symm_alloc(dim);
gsl_eigen_symm(&m.matrix, &evalv.vector, w);
gsl_sort_vector(&evalv.vector);
gsl_eigen_symm_free(w);
free(mat_cpy);
}
/* This one destroys half of the input matrix **mat */
void
EigenvalsGSLDest(double **mat, const int dim, double *eval)
{
gsl_matrix_view m = gsl_matrix_view_array(mat[0], dim, dim);
gsl_vector_view evalv = gsl_vector_view_array(eval, dim);
gsl_eigen_symm_workspace *w = gsl_eigen_symm_alloc(dim);
gsl_eigen_symm(&m.matrix, &evalv.vector, w);
gsl_eigen_symm_free(w);
}
/*
gsl_eigen_symmv()
This function computes the eigenvalues and eigenvectors of the real
symmetric matrix A. Additional workspace of the appropriate size must be
provided in w. The diagonal and lower triangular part of A are destroyed
during the computation, but the strict upper triangular part is not
referenced. The eigenvalues are stored in the vector eval and are
unordered. The corresponding eigenvectors are stored in the columns of
the matrix evec. For example, the eigenvector in the first column
corresponds to the first eigenvalue. The eigenvectors are guaranteed to
be mutually orthogonal and normalised to unit magnitude.
*/
void
EigenGSL(const double **mat, const int dim, double *eval, double **evec, int order)
{
double *mat_cpy = NULL;
mat_cpy = malloc(dim * dim * sizeof(double));
memcpy(mat_cpy, &mat[0][0], dim * dim * sizeof(double));
gsl_matrix_view m = gsl_matrix_view_array(mat_cpy, dim, dim);
gsl_matrix_view v = gsl_matrix_view_array(evec[0], dim, dim);
gsl_vector_view evalv = gsl_vector_view_array(eval, dim);
gsl_eigen_symmv_workspace *w = gsl_eigen_symmv_alloc(dim);
gsl_eigen_symmv(&m.matrix, &evalv.vector, &v.matrix, w);
if (order == 0)
gsl_eigen_symmv_sort(&evalv.vector, &v.matrix, GSL_EIGEN_SORT_VAL_ASC);
else if (order == 1)
gsl_eigen_symmv_sort(&evalv.vector, &v.matrix, GSL_EIGEN_SORT_VAL_DESC);
gsl_eigen_symmv_free(w);
free(mat_cpy);
}
/* This one destroys half of the input matrix **mat */
void
EigenGSLDest(double **mat, const int dim, double *eval, double **evec, int order)
{
gsl_matrix_view m = gsl_matrix_view_array(mat[0], dim, dim);
gsl_matrix_view v = gsl_matrix_view_array(evec[0], dim, dim);
gsl_vector_view evalv = gsl_vector_view_array(eval, dim);
gsl_eigen_symmv_workspace *w = gsl_eigen_symmv_alloc(dim);
gsl_eigen_symmv(&m.matrix, &evalv.vector, &v.matrix, w);
if (order == 0)
gsl_eigen_symmv_sort(&evalv.vector, &v.matrix, GSL_EIGEN_SORT_VAL_ASC);
else if (order == 1)
gsl_eigen_symmv_sort(&evalv.vector, &v.matrix, GSL_EIGEN_SORT_VAL_DESC);
gsl_eigen_symmv_free(w);
}
void
CalcGSLSVD3(double **a, double **u, double *s, double **vt)
{
memcpy(u[0], a[0], 9 * sizeof(double));
// GSL says Jacobi SVD is more accurate the Golub
svdGSLJacobiDest(u, 3, s, vt);
Mat3TransposeIp(vt);
}
void
svdGSLDest(double **A, const int dim, double *singval, double **V)
{
gsl_matrix_view a = gsl_matrix_view_array(A[0], dim, dim);
gsl_matrix_view v = gsl_matrix_view_array(V[0], dim, dim);
gsl_vector_view singv = gsl_vector_view_array(singval, dim);
gsl_vector *work = gsl_vector_alloc(dim);
gsl_linalg_SV_decomp(&a.matrix, &v.matrix, &singv.vector, work);
gsl_vector_free(work);
}
void
svdGSLJacobiDest(double **A, const int dim, double *singval, double **V)
{
gsl_matrix_view a = gsl_matrix_view_array(A[0], dim, dim);
gsl_matrix_view v = gsl_matrix_view_array(V[0], dim, dim);
gsl_vector_view singv = gsl_vector_view_array(singval, dim);
gsl_linalg_SV_decomp_jacobi(&a.matrix, &v.matrix, &singv.vector);
}
void
CholeskyGSLDest(double **A, const int dim)
{
gsl_matrix_view a = gsl_matrix_view_array(A[0], dim, dim);
gsl_linalg_cholesky_decomp(&a.matrix);
}
/* static void */
/* write_C_mat(const double **mat, const int dim, int precision, int wrap) */
/* { */
/* int i, j; */
/* */
/* if (wrap == 0) */
/* wrap = 5; */
/* */
/* if (precision == 0) */
/* precision = 6; */
/* */
/* printf("\n\nstatic double mat[%d][%d] = \n{\n", dim, dim); */
/* */
/* for (i = 0; i < dim; ++i) */
/* { */
/* printf(" {"); */
/* for (j = 0; j < dim; ++j) */
/* { */
/* if (j < dim - 1) */
/* printf("% *.*f, ", precision + 1, precision, mat[i][j]); */
/* else */
/* printf("% *.*f", precision + 1, precision, mat[i][j]); */
/* */
/* if ((j+1) % wrap == 0 && j != dim - 1) */
/* printf(" \n"); */
/* } */
/* */
/* if (i != dim - 1) */
/* printf("},\n"); */
/* else */
/* printf("}\n"); */
/* } */
/* printf("};\n\n"); */
/* fflush(NULL); */
/* } */
/* Calculates the Moore-Penrose pseudoinverse of a symmetric, square matrix.
Uses GSL to do the singular value decomposition inmat = U S V^T .
Then constructs the pseudoinverse by V S^-1 U^T .
Note that here S^-1 is the inverse of only the nonzero elements of S.
Also note that GSL returns V and not V^T (unlike LAPACK), so we have
to account for that in the matrix multiplication, since U & V are
asymmetric in general. */
void
PseudoinvSymGSL(const double **inmat, double **outmat, int n, double tol)
{
double **u = MatAlloc(n, n);
double **v = MatAlloc(n, n);
double *s = malloc(n * sizeof(double));
int i, j, k;
memcpy(u[0], inmat[0], n * n * sizeof(double));
svdGSLDest(u, n, s, v);
/* write_C_mat((const double **) u, n, 5, 10); */
/* write_C_mat((const double **) v, n, 5, 10); */
for (i = 0; i < n; ++i)
{
if (s[i] > tol)
s[i] = 1.0 / s[i];
else
s[i] = 0.0;
}
memset(outmat[0], 0, n*n*sizeof(double));
// for (i = 0; i < n; ++i)
// for (j = 0; j < n; ++j)
// outmat[i][j] = 0.0;
/* (i x k)(k x j) = (i x j) */
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
outmat[i][j] += (v[i][k] * s[k] * u[j][k]);
/* write_C_mat((const double **) outmat, n, 5, 10); */
free(s);
MatDestroy(&u);
MatDestroy(&v);
}
/* Calculates the Moore-Penrose pseudoinverse of a symmetric matrix
(if necessary). Returns the condition number of the matrix.
*/
double
InvSymEigenOp(double **invmat, const double **mat, int n,
double *evals, double **evecs, const double tol)
{
double cond;
int i, j, k;
double **tmpmat = MatAlloc(n, n);
memcpy(tmpmat[0], mat[0], n * n * sizeof(double));
EigenGSLDest(tmpmat, n, evals, evecs, 0);
cond = evals[n-1] / evals[0];
for (i = 0; i < n; ++i)
{
if (evals[i] > tol)
evals[i] = 1.0 / evals[i];
else
evals[i] = 0.0;
}
memset(invmat[0], 0, n * n * sizeof(double));
for (i = 0; i < n; ++i)
for (j = 0; j <= i; ++j)
for (k = 0; k < n; ++k)
invmat[i][j] += (evecs[i][k] * evals[k] * evecs[j][k]);
for (i = 0; i < n; ++i)
for (j = i + 1; j < n; ++j)
invmat[i][j] = invmat[j][i];
MatDestroy(&tmpmat);
return(cond);
}
/* Calculates A = LDL^t, where L is a matrix of right eigenvectors and D is
a diagonal matrix of eigenvalues, in one fell swoop. Except here the
eigenvalues are delivered as a 1 x n vector. */
/* This function is consistent with eigensym() above - 2006-05-10 */
void
EigenReconSym(double **mat, const double **evecs, const double *evals, const int n)
{
int i, j, k;
/* (i x k)(k x j) = (i x j) */
for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
{
mat[i][j] = 0.0;
for (k = 0; k < n; ++k)
mat[i][j] += (evecs[i][k] * evals[k] * evecs[j][k]);
}
}
}
|