File: integrate.c

package info (click to toggle)
theseus 3.3.0-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 91,424 kB
  • sloc: ansic: 41,682; makefile: 267; sh: 121
file content (289 lines) | stat: -rw-r--r-- 11,669 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2015 Douglas L. Theobald

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the:

    Free Software Foundation, Inc.,
    59 Temple Place, Suite 330,
    Boston, MA  02111-1307  USA

    -/_|:|_|_\-
*/

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "integrate.h"

/* WARNING: this integration is not very precise (see EPS below) */

#define EPS 1.0e-7
#define JMAX 20

double
trapzd(double (*func)(double, double, double),
       double param1, double param2, double a, double b, int n)
{
    double          x, tnm, sum, del, val;
    static double   s;
    int             it, j;

    if (n == 1)
    {
        return (s = 0.5 * (b - a) * (func(a, param1, param2) + func(b, param1, param2)));
    }
    else
    {
        for (it = 1, j = 1; j < n-1; ++j)
            it <<= 1;
/* SCREAMD(it); */
        tnm = it;
        del = (b - a) / tnm;
        x = a + 0.5 * del;

        sum = 0.0;
        for (j = 1; j <= it; j++, x += del)
        {
            val = func(x, param1, param2);
            /* printf("\n--> %12.6f ", val); */
            sum += val;
        }

        s = 0.5 * (s + (b - a) * sum / tnm);

        return (s);
    }
}


double
integrate_qsimp(double (*func)(double a, double param1, double param2),
               double param1, double param2, double a, double b)
{
    int             j;
    double          s, st, ost = 0.0, os = 0.0;

    for (j = 1; j <= JMAX; ++j)
    {
        st = trapzd(func, param1, param2, a, b, j);
        s = (4.0 * st - ost) / 3.0;

/*         if (j > 5) */
/*         { */

        if ((fabs(s - os) < EPS * fabs(os)) ||
            (s == 0.0 && os == 0.0))
        {
            /* SCREAMD(j); */
            return (s);
        }

/*         } */

        os = s;
        ost = st;
    }

    fprintf(stderr, "\n ERROR303: Too many iterations in routine qsimp ");
    /* exit (EXIT_FAILURE); */
    return (s);
}

#undef EPS
#undef JMAX


/*////////////////////////////////////////////////////////////////////////////////
// File: rombergs_method.c                                                    //
// Routines:                                                                  //
//    Rombergs_Integration_Method                                             //
////////////////////////////////////////////////////////////////////////////////*/
#include <math.h>        /* // required for fabs() */

static const double richardson[] = {
    3.333333333333333333e-01, 6.666666666666666667e-02, 1.587301587301587302e-02,
    3.921568627450980392e-03, 9.775171065493646139e-04, 2.442002442002442002e-04,
    6.103888176768601599e-05, 1.525902189669642176e-05, 3.814711817595739730e-06,
    9.536752259018191355e-07, 2.384186359449949133e-07, 5.960464832810451556e-08,
    1.490116141589226448e-08, 3.725290312339701922e-09, 9.313225754828402544e-10,
    2.328306437080797376e-10, 5.820766091685553902e-11, 1.455191522857861004e-11,
    3.637978807104947841e-12, 9.094947017737554185e-13, 2.273736754432837583e-13,
    5.684341886081124604e-14, 1.421085471520220567e-14, 3.552713678800513551e-15,
    8.881784197001260212e-16, 2.220446049250313574e-16
};

#define MAX_COLUMNS 1+sizeof(richardson)/sizeof(richardson[0])

#define max(x,y) ( (x) < (y) ? (y) : (x) )
#define min(x,y) ( (x) < (y) ? (x) : (y) )

/* //////////////////////////////////////////////////////////////////////////////// */
/* //  double Rombergs_Integration_Method( double a, double h, double tolerance, // */
/* //                             int max_cols, double (*f)(double), int *err ); // */
/* //                                                                            // */
/* //  Description:                                                              // */
/* //    If T(f,h,a,b) is the result of applying the trapezoidal rule to approx- // */
/* //    imating the integral of f(x) on [a,b] using subintervals of length h,   // */
/* //    then if I(f,a,b) is the integral of f(x) on [a,b], then                 // */
/* //                           I(f,a,b) = lim T(f,h,a,b)                        // */
/* //    where the limit is taken as h approaches 0.                             // */
/* //    The classical Romberg method applies Richardson Extrapolation to the    // */
/* //    limit of the sequence T(f,h,a,b), T(f,h/2,a,b), T(f,h/4,a,b), ... ,     // */
/* //    in which the limit is approached by successively deleting error terms   // */
/* //    in the Euler-MacLaurin summation formula.                               // */
/* //                                                                            // */
/* //  Arguments:                                                                // */
/* //     double a          The lower limit of the integration interval.         // */
/* //     double h          The length of the interval of integration, h > 0.    // */
/* //                       The upper limit of integration is a + h.             // */
/* //     double tolerance  The acceptable error estimate of the integral.       // */
/* //                       Iteration stops when the magnitude of the change of  // */
/* //                       the extrapolated estimate falls below the tolerance. // */
/* //     int    max_cols   The maximum number of columns to be used in the      // */
/* //                       Romberg method.  This corresponds to a minimum       // */
/* //                       integration subinterval of length 1/2^max_cols * h.  // */
/* //     double *f         Pointer to the integrand, a function of a single     // */
/* //                       variable of type double.                             // */
/* //     int    *err       0 if the extrapolated error estimate falls below the // */
/* //                       tolerance; -1 if the extrapolated error estimate is  // */
/* //                       greater than the tolerance and the number of columns // */
/* //                       is max_cols.                                         // */
/* //                                                                            // */
/* //  Return Values:                                                            // */
/* //     The integral of f(x) from a to a +  h.                                 // */
/* //                                                                            // */
/* //////////////////////////////////////////////////////////////////////////////// */
/* //                                                                            // */
double 
romberg_int(double a, double h, double tolerance,
            int max_cols, double (*f) (double), int *err)
{
    double          upper_limit = a + h;
    //upper limit of integration
    double          dt[MAX_COLUMNS];
    //dt[i] is the last element in column i.
    double          integral = 0.5 * ((*f) (a) + (*f) (a + h));
    double          x, old_h, delta = 0.0;
    int             j, k;

/* // Initialize err and the first column, dt[0], to the numerical estimate // */
/* // of the integral using the trapezoidal rule with a step size of h.     // */
    *err = 0;
    dt[0] = 0.5 * h * ((*f) (a) + (*f) (a + h));

/* // For each possible succeeding column, halve the step size, calculate  // */
/* // the composite trapezoidal rule using the new step size, and up date  // */
/* // preceeding columns using Richardson extrapolation.                   // */
    max_cols = min(max(max_cols, 0), MAX_COLUMNS);

    for (k = 1; k < max_cols; k++)
    {
        old_h = h;
    
        /* // Calculate T(f,h/2,a,b) using T(f,h,a,b) // */
        h *= 0.5;
        integral = 0.0;
        for (x = a + h; x < upper_limit; x += old_h)
            integral += (*f) (x);

        integral = h * integral + 0.5 * dt[0];

        /* //  Calculate the Richardson Extrapolation to the limit // */
        for (j = 0; j < k; j++)
        {
            delta = integral - dt[j];
            dt[j] = integral;
            integral += richardson[j] * delta;
        }
    
    /*       //  If the magnitude of the change in the extrapolated estimate // */
    /*       //  for the integral is less than the preassigned tolerance,    // */
    /*       //  return the estimate with err = 0.                           // */
        if (fabs(delta) < tolerance)
            return (integral);

    /*              //  Store the current esimate in the kth column. // */
        dt[k] = integral;
    }

/*      // The process didn't converge within the preassigned tolerance // */
/*      // using the maximum number of columns designated.              // */
/*      // Return the current estimate of integral and set err = -1.    // */

    *err = -1;
    return (integral);
}


double
integrate_romberg(double (*f)(double a, double p1, double p2),
                  double p1, double p2, double a, double b)
{
    double          h = b - a;
    double          upper_limit = a + h;
    //upper limit of integration
    double          dt[MAX_COLUMNS];
    //dt[i] is the last element in column i.
    double          integral = 0.5 * ((*f)(a, p1, p2) + (*f)(a+h, p1, p2));
    double          x, old_h, delta = 0.0;
    int             j, k;
    int             max_cols = 5;
    double          tolerance = 1e-8;

/* // Initialize err and the first column, dt[0], to the numerical estimate // */
/* // of the integral using the trapezoidal rule with a step size of h.     // */
    dt[0] = 0.5 * h * ((*f)(a, p1, p2) + (*f)(a+h, p1, p2));

/* // For each possible succeeding column, halve the step size, calculate  // */
/* // the composite trapezoidal rule using the new step size, and up date  // */
/* // preceeding columns using Richardson extrapolation.                   // */
    max_cols = min(max(max_cols, 0), MAX_COLUMNS);

    for (k = 1; k < max_cols; k++)
    {
        old_h = h;
    
        /* // Calculate T(f,h/2,a,b) using T(f,h,a,b) // */
        h *= 0.5;
        integral = 0.0;
        for (x = a + h; x < upper_limit; x += old_h)
            integral += (*f)(x, p1, p2);

        integral = h * integral + 0.5 * dt[0];

        /* //  Calculate the Richardson Extrapolation to the limit // */
        for (j = 0; j < k; j++)
        {
            delta = integral - dt[j];
            dt[j] = integral;
            integral += richardson[j] * delta;
        }
    
    /*       //  If the magnitude of the change in the extrapolated estimate // */
    /*       //  for the integral is less than the preassigned tolerance,    // */
    /*       //  return the estimate with err = 0.                           // */
        if (fabs(delta) < tolerance)
            return (integral);

    /*              //  Store the current esimate in the kth column. // */
        dt[k] = integral;
    }

/*      // The process didn't converge within the preassigned tolerance // */
/*      // using the maximum number of columns designated.              // */
/*      // Return the current estimate of integral and set err = -1.    // */
    return (integral);
}