1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
/*
Theseus - maximum likelihood superpositioning of macromolecular structures
Copyright (C) 2004-2015 Douglas L. Theobald
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the:
Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
-/_|:|_|_\-
*/
/* $Id: ncbi_math.c,v 1.16 2005/04/27 19:06:25 coulouri Exp $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*/
#include <math.h>
#include <float.h>
#include "ncbi_math.h"
#ifndef DIM
/** dimension of an array. */
#define DIM(A) (sizeof(A)/sizeof((A)[0]))
#endif
#ifndef MIN
/** returns smaller of a and b. */
#define MIN(a,b) ((a)>(b)?(b):(a))
#endif
#ifndef MAX
/** returns larger of a and b. */
#define MAX(a,b) ((a)>=(b)?(a):(b))
#endif
double BLAST_Expm1(double x)
{
double absx = fabs(x);
if (absx > .33)
return exp(x) - 1.;
if (absx < 1.e-16)
return x;
return x * (1. + x *
(1./2. + x *
(1./6. + x *
(1./24. + x *
(1./120. + x *
(1./720. + x *
(1./5040. + x *
(1./40320. + x *
(1./362880. + x *
(1./3628800. + x *
(1./39916800. + x *
(1./479001600. +
x/6227020800.))))))))))));
}
/** size of the next series term that indicates convergence
in the log and polygamma functions */
#ifndef DBL_EPSILON
#define DBL_EPSILON 2.2204460492503131e-16
#endif
double BLAST_Log1p(double x)
{
int i;
double sum, y;
if (fabs(x) >= 0.2)
return log(x+1.);
/* Limit the loop to 500 terms. */
for (i=0, sum=0., y=x; i<500 ; ) {
sum += y/++i;
if (fabs(y) < DBL_EPSILON)
break;
y *= x;
sum -= y/++i;
if (y < DBL_EPSILON)
break;
y *= x;
}
return sum;
}
/** evaluate a specified-order derivative of ln(f(x))
* @param order The order of derivative to evaluate (0...LOGDERIV_ORDER_MAX).
* Derivative order 0 just computes ln(f(x))
* @param u A list of numerical values of f(x) and its derivatives, all at
* the same point x, to be used within the computations
* @return 'order'-th derivative of ln(f(x)) or DBL_MAX if
* order is out of range or u[0] is zero
*/
static double
s_LogDerivative(int order, double* u)
{
int i;
double y[LOGDERIV_ORDER_MAX+1];
double value, tmp;
if (order < 0 || order > LOGDERIV_ORDER_MAX) {
return DBL_MAX;
}
if (order > 0 && u[0] == 0.) {
return DBL_MAX;
}
for (i = 1; i <= order; i++)
y[i] = u[i] / u[0];
switch (order) {
case 0:
if (u[0] > 0.)
value = log(u[0]);
else {
return DBL_MAX;
}
break;
case 1:
value = y[1];
break;
case 2:
value = y[2] - y[1] * y[1];
break;
case 3:
value = y[3] - 3. * y[2] * y[1] + 2. * y[1] * y[1] * y[1];
break;
case 4:
value = y[4] - 4. * y[3] * y[1] - 3. * y[2] * y[2]
+ 12. * y[2] * (tmp = y[1] * y[1]);
value -= 6. * tmp * tmp;
break;
default:
return DBL_MAX;
}
return value;
}
/** auxiliary values for computation of derivative of ln(gamma(x)) */
static double _default_gamma_coef [] = {
4.694580336184385e+04,
-1.560605207784446e+05,
2.065049568014106e+05,
-1.388934775095388e+05,
5.031796415085709e+04,
-9.601592329182778e+03,
8.785855930895250e+02,
-3.155153906098611e+01,
2.908143421162229e-01,
-2.319827630494973e-04,
1.251639670050933e-10
};
/** Compute a specified-order derivative of ln(gamma(x))
* evaluated at some point x
* @param x Value at which derivative will be evaluated
* @param order Order of derivative (0...POLYGAMMA_ORDER_MAX)
* @return 'order'-th derivative of ln(gamma(x)) at specified x.
* Accuracy is to 10 digits for x >= 1
*/
static double
s_GeneralLnGamma(double x, int order)
{
int i;
double xx, tx;
double y[POLYGAMMA_ORDER_MAX+1];
double tmp, value;
double *coef;
const int xgamma_dim = DIM(_default_gamma_coef);
xx = x - 1.; /* normalize from gamma(x + 1) to xx! */
tx = xx + xgamma_dim;
for (i = 0; i <= order; ++i) {
tmp = tx;
/* sum the least significant terms first */
coef = &_default_gamma_coef[xgamma_dim];
if (i == 0) {
value = *--coef / tmp;
while (coef > _default_gamma_coef)
value += *--coef / --tmp;
}
else {
value = *--coef / BLAST_Powi(tmp, i + 1);
while (coef > _default_gamma_coef)
value += *--coef / BLAST_Powi(--tmp, i + 1);
tmp = BLAST_Factorial(i);
value *= (i%2 == 0 ? tmp : -tmp);
}
y[i] = value;
}
++y[0];
value = s_LogDerivative(order, y);
tmp = tx + 0.5;
switch (order) {
case 0:
value += ((NCBIMATH_LNPI+NCBIMATH_LN2) / 2.)
+ (xx + 0.5) * log(tmp) - tmp;
break;
case 1:
value += log(tmp) - xgamma_dim / tmp;
break;
case 2:
value += (tmp + xgamma_dim) / (tmp * tmp);
break;
case 3:
value -= (1. + 2.*xgamma_dim / tmp) / (tmp * tmp);
break;
case 4:
value += 2. * (1. + 3.*xgamma_dim / tmp) / (tmp * tmp * tmp);
break;
default:
tmp = BLAST_Factorial(order - 2) * BLAST_Powi(tmp, 1 - order)
* (1. + (order - 1) * xgamma_dim / tmp);
if (order % 2 == 0)
value += tmp;
else
value -= tmp;
break;
}
return value;
}
/** Compute, to 10-digit accuracy, a specified order
* derivative of ln(abs(gamma(x))).
* @param x value at which derivative will be evaluated
* @param order Order of derivative (0...POLYGAMMA_ORDER_MAX)
* order = 0, 1, 2, corresponds to ln(gamma),
* digamma, trigamma, etc. Note that the value here
* is one less than that suggested by the "di" and "tri"
* prefixes of digamma, trigamma, etc. In other words,
* it is truly the order of the derivative.
* @return Computed derivative value, or DBL_MAX if order is out of range
*/
double
s_PolyGamma(double x, int order)
{
int k;
double value, tmp;
double y[POLYGAMMA_ORDER_MAX+1], sx;
if (order < 0 || order > POLYGAMMA_ORDER_MAX) {
return DBL_MAX;
}
if (x >= 1.)
return s_GeneralLnGamma(x, order);
if (x < 0.) {
value = s_GeneralLnGamma(1. - x, order);
value = ((order - 1) % 2 == 0 ? value : -value);
if (order == 0) {
sx = sin(NCBIMATH_PI * x);
sx = fabs(sx);
if ( (x < -0.1 && (ceil(x) == x || sx < 2.*DBL_EPSILON))
|| sx == 0.) {
return DBL_MAX;
}
value += NCBIMATH_LNPI - log(sx);
}
else {
y[0] = sin(x *= NCBIMATH_PI);
tmp = 1.;
for (k = 1; k <= order; k++) {
tmp *= NCBIMATH_PI;
y[k] = tmp * sin(x += (NCBIMATH_PI/2.));
}
value -= s_LogDerivative(order, y);
}
}
else {
value = s_GeneralLnGamma(1. + x, order);
if (order == 0) {
if (x == 0.) {
return DBL_MAX;
}
value -= log(x);
}
else {
tmp = BLAST_Factorial(order - 1) * BLAST_Powi(x, -order);
value += (order % 2 == 0 ? tmp : - tmp);
}
}
return value;
}
/** Compute ln(abs(gamma(x))) to 10-digit accuracy
* @param x Point to evaluate ln(abs(gamma(x)))
* @return The function value
*/
static double
s_LnGamma(double x)
{
return s_PolyGamma(x, 0);
}
/** Tabulated values of the first few factorials */
static const double kPrecomputedFactorial[] = {
1., 1., 2., 6., 24., 120., 720., 5040., 40320., 362880., 3628800.,
39916800., 479001600., 6227020800., 87178291200., 1307674368000.,
20922789888000., 355687428096000., 6402373705728000.,
121645100408832000., 2432902008176640000., 51090942171709440000.,
1124000727777607680000., 25852016738884976640000.,
620448401733239439360000., 15511210043330985984000000.,
403291461126605635584000000., 10888869450418352160768000000.,
304888344611713860501504000000., 8841761993739701954543616000000.,
265252859812191058636308480000000., 8222838654177922817725562880000000.,
263130836933693530167218012160000000.,
8683317618811886495518194401280000000.,
295232799039604140847618609643520000000.
};
double BLAST_Factorial(int n)
{
if (n < 0)
return 0.0; /* Undefined! */
if (n < DIM(kPrecomputedFactorial))
return kPrecomputedFactorial[n];
return exp(s_LnGamma((double)(n + 1)));
}
double BLAST_LnGammaInt(int n)
{
if ( (n > 1) && (n < DIM(kPrecomputedFactorial) ) ) {
return log(kPrecomputedFactorial[n-1]);
}
return s_LnGamma((double)n);
}
/*
Romberg numerical integrator
Reference:
Francis Scheid (1968)
Schaum's Outline Series
Numerical Analysis, p. 115
McGraw-Hill Book Company, New York
*/
/** Make a parametrized function appear to have only one variable */
#define F(x) ((*f)((x), fargs))
/** Maximum number of diagonals in the Romberg array */
#define MAX_DIAGS 20
double BLAST_RombergIntegrate(double (*f) (double,void*), void* fargs, double p, double q, double eps, int epsit, int itmin)
{
double romb[MAX_DIAGS]; /* present list of Romberg values */
double h; /* mesh-size */
int i, j, k, npts;
long n; /* 4^(error order in romb[i]) */
int epsit_cnt = 0, epsck;
double y;
double x;
double sum;
/* itmin = min. no. of iterations to perform */
itmin = MAX(1, itmin);
itmin = MIN(itmin, MAX_DIAGS-1);
/* epsit = min. no. of consecutive iterations that must satisfy epsilon */
epsit = MAX(epsit, 1); /* default = 1 */
epsit = MIN(epsit, 3); /* if > 3, the problem needs more prior analysis */
epsck = itmin - epsit;
npts = 1;
h = q - p;
x = F(p);
if (fabs(x) == DBL_MAX)
return x;
y = F(q);
if (fabs(y) == DBL_MAX)
return y;
romb[0] = 0.5 * h * (x + y); /* trapezoidal rule */
for (i = 1; i < MAX_DIAGS; ++i, npts *= 2, h *= 0.5) {
sum = 0.; /* sum of ordinates for
x = p+0.5*h, p+1.5*h, ..., q-0.5*h */
for (k = 0, x = p+0.5*h; k < npts; k++, x += h) {
y = F(x);
if (fabs(y) == DBL_MAX)
return y;
sum += y;
}
romb[i] = 0.5 * (romb[i-1] + h*sum); /* new trapezoidal estimate */
/* Update Romberg array with new column */
for (n = 4, j = i-1; j >= 0; n *= 4, --j)
romb[j] = (n*romb[j+1] - romb[j]) / (n-1);
if (i > epsck) {
if (fabs(romb[1] - romb[0]) > eps * fabs(romb[0])) {
epsit_cnt = 0;
continue;
}
++epsit_cnt;
if (i >= itmin && epsit_cnt >= epsit)
return romb[0];
}
}
return DBL_MAX;
}
int BLAST_Gcd(int a, int b)
{
int c;
b = fabs(b);
if (b > a)
c=a, a=b, b=c;
while (b != 0) {
c = a%b;
a = b;
b = c;
}
return a;
}
int
BLAST_Gdb3(int* a, int* b, int* c)
{
int g;
if (*b == 0)
g = BLAST_Gcd(*a, *c);
else
g = BLAST_Gcd(*a, BLAST_Gcd(*b, *c));
if (g > 1) {
*a /= g;
*b /= g;
*c /= g;
}
return g;
}
long BLAST_Nint(double x)
{
x += (x >= 0. ? 0.5 : -0.5);
return (long)x;
}
double BLAST_Powi(double x, int n)
{
double y;
if (n == 0)
return 1.;
if (x == 0.) {
if (n < 0) {
return DBL_MAX;
}
return 0.;
}
if (n < 0) {
x = 1./x;
n = -n;
}
y = 1.;
while (n > 0) {
if (n & 1)
y *= x;
n /= 2;
x *= x;
}
return y;
}
double BLAST_LnFactorial (double x) {
if( x <= 0.0)
return 0.0;
else
return s_LnGamma(x + 1.0);
}
/*
* ===========================================================================
*
* $Log: ncbi_math.c,v $
* Revision 1.16 2005/04/27 19:06:25 coulouri
* remove incorrect optimization
*
* Revision 1.15 2005/03/10 16:10:58 papadopo
* doxygen fixes
*
* Revision 1.14 2005/03/08 18:28:55 papadopo
* do not use a const int to declare the dimension of an array
*
* Revision 1.13 2005/03/08 17:42:29 papadopo
* add doxygen comments, refactor several functions
*
* Revision 1.12 2005/03/07 18:46:05 camacho
* Removed dead code
*
* Revision 1.11 2004/11/18 21:26:15 dondosha
* Added BLAST_Gdb3, needed for greedy alignment; removed extern from function signatures; renamed static functions according to C++ toolkit guidelines
*
* Revision 1.10 2004/11/02 17:56:48 camacho
* Add DOXYGEN_SKIP_PROCESSING to guard rcsid string
*
* Revision 1.9 2004/06/08 17:30:07 dondosha
* Compiler warnings fixes
*
* Revision 1.8 2004/05/19 14:52:03 camacho
* 1. Added doxygen tags to enable doxygen processing of algo/blast/core
* 2. Standardized copyright, CVS $Id string, $Log and rcsid formatting and i
* location
* 3. Added use of @todo doxygen keyword
*
* Revision 1.7 2003/12/05 16:03:57 camacho
* Remove compiler warnings
*
* Revision 1.6 2003/09/26 20:39:32 dondosha
* Rearranged code so it compiles
*
* Revision 1.5 2003/09/26 19:01:59 madden
* Prefix ncbimath functions with BLAST_
*
* Revision 1.4 2003/09/10 21:36:29 dondosha
* Removed Nlm_ prefix from math functions definitions
*
* Revision 1.3 2003/08/25 22:32:51 dondosha
* Added #ifndef for definition of DBL_EPSILON
*
* Revision 1.2 2003/08/11 15:02:00 dondosha
* Added algo/blast/core to all #included headers
*
* Revision 1.1 2003/08/02 16:31:48 camacho
* Moved ncbimath.c -> ncbi_math.c
*
* Revision 1.1 2003/08/01 21:03:46 madden
* Cleaned up version of file for C++ toolkit
*
* ===========================================================================
*/
|