File: ncbi_math.c

package info (click to toggle)
theseus 3.3.0-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 91,424 kB
  • sloc: ansic: 41,682; makefile: 267; sh: 121
file content (579 lines) | stat: -rw-r--r-- 15,787 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2015 Douglas L. Theobald

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the:

    Free Software Foundation, Inc.,
    59 Temple Place, Suite 330,
    Boston, MA  02111-1307  USA

    -/_|:|_|_\-
*/

/* $Id: ncbi_math.c,v 1.16 2005/04/27 19:06:25 coulouri Exp $
 * ===========================================================================
 *
 *                            PUBLIC DOMAIN NOTICE
 *               National Center for Biotechnology Information
 *
 *  This software/database is a "United States Government Work" under the
 *  terms of the United States Copyright Act.  It was written as part of
 *  the author's official duties as a United States Government employee and
 *  thus cannot be copyrighted.  This software/database is freely available
 *  to the public for use. The National Library of Medicine and the U.S.
 *  Government have not placed any restriction on its use or reproduction.
 *
 *  Although all reasonable efforts have been taken to ensure the accuracy
 *  and reliability of the software and data, the NLM and the U.S.
 *  Government do not and cannot warrant the performance or results that
 *  may be obtained by using this software or data. The NLM and the U.S.
 *  Government disclaim all warranties, express or implied, including
 *  warranties of performance, merchantability or fitness for any particular
 *  purpose.
 *
 *  Please cite the author in any work or product based on this material.
 *
 * ===========================================================================
 */
#include <math.h>
#include <float.h>
#include "ncbi_math.h"

#ifndef DIM
/** dimension of an array. */
#define DIM(A) (sizeof(A)/sizeof((A)[0]))
#endif

#ifndef MIN
/** returns smaller of a and b. */
#define MIN(a,b)    ((a)>(b)?(b):(a))
#endif

#ifndef MAX
/** returns larger of a and b. */
#define MAX(a,b)    ((a)>=(b)?(a):(b))
#endif

double BLAST_Expm1(double    x)
{
  double    absx = fabs(x);

  if (absx > .33)
    return exp(x) - 1.;

  if (absx < 1.e-16)
    return x;

  return x * (1. + x *
             (1./2. + x * 
             (1./6. + x *
             (1./24. + x * 
             (1./120. + x *
             (1./720. + x * 
             (1./5040. + x *
             (1./40320. + x * 
             (1./362880. + x *
             (1./3628800. + x * 
             (1./39916800. + x *
             (1./479001600. + 
              x/6227020800.))))))))))));
}

/** size of the next series term that indicates convergence
    in the log and polygamma functions */
#ifndef DBL_EPSILON
#define DBL_EPSILON 2.2204460492503131e-16
#endif

double BLAST_Log1p(double x)
{
   int   i;
   double   sum, y;

   if (fabs(x) >= 0.2)
      return log(x+1.);

   /* Limit the loop to 500 terms. */
   for (i=0, sum=0., y=x; i<500 ; ) {
      sum += y/++i;
      if (fabs(y) < DBL_EPSILON)
         break;
      y *= x;
      sum -= y/++i;
      if (y < DBL_EPSILON)
         break;
      y *= x;
   }
   return sum;
}

/** evaluate a specified-order derivative of ln(f(x))
 * @param order The order of derivative to evaluate (0...LOGDERIV_ORDER_MAX).
 *              Derivative order 0 just computes ln(f(x))
 * @param u A list of numerical values of f(x) and its derivatives, all at
 *          the same point x, to be used within the computations 
 * @return 'order'-th derivative of ln(f(x)) or DBL_MAX if 
 *          order is out of range or u[0] is zero
 */
static double 
s_LogDerivative(int order, double* u)
{
  int    i;
  double  y[LOGDERIV_ORDER_MAX+1];
  double  value, tmp;

  if (order < 0 || order > LOGDERIV_ORDER_MAX) {
    return DBL_MAX;
  }

  if (order > 0 && u[0] == 0.) {
    return DBL_MAX;
  }
  for (i = 1; i <= order; i++)
    y[i] = u[i] / u[0];

  switch (order) {
  case 0:
    if (u[0] > 0.)
      value = log(u[0]);
    else {
      return DBL_MAX;
    }
    break;
  case 1:
    value = y[1];
    break;
  case 2:
    value = y[2] - y[1] * y[1];
    break;
  case 3:
    value = y[3] - 3. * y[2] * y[1] + 2. * y[1] * y[1] * y[1];
    break;
  case 4:
    value = y[4] - 4. * y[3] * y[1] - 3. * y[2] * y[2]
      + 12. * y[2] * (tmp = y[1] * y[1]);
    value -= 6. * tmp * tmp;
    break;
  default:
    return DBL_MAX;
  }
  return value;
}

/** auxiliary values for computation of derivative of ln(gamma(x)) */
static double _default_gamma_coef [] = {
         4.694580336184385e+04,
        -1.560605207784446e+05,
         2.065049568014106e+05,
        -1.388934775095388e+05,
         5.031796415085709e+04,
        -9.601592329182778e+03,
         8.785855930895250e+02,
        -3.155153906098611e+01,
         2.908143421162229e-01,
        -2.319827630494973e-04,
         1.251639670050933e-10
         };

/** Compute a specified-order derivative of ln(gamma(x))
 *  evaluated at some point x 
 *  @param x Value at which derivative will be evaluated
 *  @param order Order of derivative (0...POLYGAMMA_ORDER_MAX)
 *  @return 'order'-th derivative of ln(gamma(x)) at specified x.
 *          Accuracy is to 10 digits for x >= 1
 */
static double
s_GeneralLnGamma(double x, int order)
{
   int       i;
   double     xx, tx;
   double     y[POLYGAMMA_ORDER_MAX+1];
   double    tmp, value;
   double    *coef;
   const int      xgamma_dim = DIM(_default_gamma_coef);


   xx = x - 1.;  /* normalize from gamma(x + 1) to xx! */
   tx = xx + xgamma_dim;
   for (i = 0; i <= order; ++i) {
      tmp = tx;
      /* sum the least significant terms first */
      coef = &_default_gamma_coef[xgamma_dim];
      if (i == 0) {
         value = *--coef / tmp;
         while (coef > _default_gamma_coef)
            value += *--coef / --tmp;
      }
      else {
         value = *--coef / BLAST_Powi(tmp, i + 1);
         while (coef > _default_gamma_coef)
            value += *--coef / BLAST_Powi(--tmp, i + 1);
         tmp = BLAST_Factorial(i);
         value *= (i%2 == 0 ? tmp : -tmp);
      }
      y[i] = value;
   }
   ++y[0];
   value = s_LogDerivative(order, y);
   tmp = tx + 0.5;
   switch (order) {
   case 0:
      value += ((NCBIMATH_LNPI+NCBIMATH_LN2) / 2.)
               + (xx + 0.5) * log(tmp) - tmp;
      break;
   case 1:
      value += log(tmp) - xgamma_dim / tmp;
      break;
   case 2:
      value += (tmp + xgamma_dim) / (tmp * tmp);
      break;
   case 3:
      value -= (1. + 2.*xgamma_dim / tmp) / (tmp * tmp);
      break;
   case 4:
      value += 2. * (1. + 3.*xgamma_dim / tmp) / (tmp * tmp * tmp);
      break;
   default:
      tmp = BLAST_Factorial(order - 2) * BLAST_Powi(tmp, 1 - order)
            * (1. + (order - 1) * xgamma_dim / tmp);
      if (order % 2 == 0)
         value += tmp;
      else
         value -= tmp;
      break;
   }
   return value;
}


/** Compute, to 10-digit accuracy, a specified order
 *  derivative of ln(abs(gamma(x))).
 *  @param x value at which derivative will be evaluated
 *  @param order Order of derivative (0...POLYGAMMA_ORDER_MAX)
 *              order = 0, 1, 2, corresponds to ln(gamma), 
 *              digamma, trigamma, etc. Note that the value here
 *              is one less than that suggested by the "di" and "tri" 
 *              prefixes of digamma, trigamma, etc. In other words, 
 *              it is truly the order of the derivative.
 *   @return Computed derivative value, or DBL_MAX if order is out of range
 */
double 
s_PolyGamma(double x, int order)
{
   int      k;
   double   value, tmp;
   double   y[POLYGAMMA_ORDER_MAX+1], sx;

   if (order < 0 || order > POLYGAMMA_ORDER_MAX) {
      return DBL_MAX;
   }

   if (x >= 1.)
      return s_GeneralLnGamma(x, order);

   if (x < 0.) {
      value = s_GeneralLnGamma(1. - x, order);
      value = ((order - 1) % 2 == 0 ? value : -value);
      if (order == 0) {
         sx = sin(NCBIMATH_PI * x);
         sx = fabs(sx);
         if ( (x < -0.1 && (ceil(x) == x || sx < 2.*DBL_EPSILON))
               || sx == 0.) {
            return DBL_MAX;
         }
         value += NCBIMATH_LNPI - log(sx);
      }
      else {
         y[0] = sin(x *= NCBIMATH_PI);
         tmp = 1.;
         for (k = 1; k <= order; k++) {
            tmp *= NCBIMATH_PI;
            y[k] = tmp * sin(x += (NCBIMATH_PI/2.));
         }
         value -= s_LogDerivative(order, y);
      }
   }
   else {
      value = s_GeneralLnGamma(1. + x, order);
      if (order == 0) {
         if (x == 0.) {
            return DBL_MAX;
         }
         value -= log(x);
      }
      else {
         tmp = BLAST_Factorial(order - 1) * BLAST_Powi(x,  -order);
         value += (order % 2 == 0 ? tmp : - tmp);
      }
   }
   return value;
}

/** Compute ln(abs(gamma(x))) to 10-digit accuracy
 *  @param x Point to evaluate ln(abs(gamma(x)))
 *  @return The function value
 */
static double 
s_LnGamma(double x)
{
   return s_PolyGamma(x, 0);
}
/** Tabulated values of the first few factorials */
static const double kPrecomputedFactorial[] = {
       1., 1., 2., 6., 24., 120., 720., 5040., 40320., 362880., 3628800.,
       39916800., 479001600., 6227020800., 87178291200., 1307674368000.,
       20922789888000., 355687428096000., 6402373705728000., 
       121645100408832000., 2432902008176640000., 51090942171709440000., 
       1124000727777607680000., 25852016738884976640000., 
       620448401733239439360000., 15511210043330985984000000.,
       403291461126605635584000000., 10888869450418352160768000000., 
       304888344611713860501504000000., 8841761993739701954543616000000., 
       265252859812191058636308480000000., 8222838654177922817725562880000000.,
       263130836933693530167218012160000000., 
       8683317618811886495518194401280000000., 
       295232799039604140847618609643520000000.
       };
       
double BLAST_Factorial(int n)
{
   if (n < 0)
      return 0.0; /* Undefined! */

   if (n < DIM(kPrecomputedFactorial))
      return kPrecomputedFactorial[n];

   return exp(s_LnGamma((double)(n + 1)));
}

double BLAST_LnGammaInt(int n)
{
   if ( (n > 1) && (n < DIM(kPrecomputedFactorial) ) ) {
      return log(kPrecomputedFactorial[n-1]);
   }

   return s_LnGamma((double)n);
}

/*
   Romberg numerical integrator
   Reference:
      Francis Scheid (1968)
      Schaum's Outline Series
      Numerical Analysis, p. 115
      McGraw-Hill Book Company, New York
*/

/** Make a parametrized function appear to have only one variable */
#define F(x)  ((*f)((x), fargs))
/** Maximum number of diagonals in the Romberg array */
#define MAX_DIAGS 20

double BLAST_RombergIntegrate(double (*f) (double,void*), void* fargs, double p, double q, double eps, int epsit, int itmin)

{
   double   romb[MAX_DIAGS];   /* present list of Romberg values */
   double   h;   /* mesh-size */
   int      i, j, k, npts;
   long   n;   /* 4^(error order in romb[i]) */
   int      epsit_cnt = 0, epsck;
   double   y;
   double   x;
   double   sum;

   /* itmin = min. no. of iterations to perform */
   itmin = MAX(1, itmin);
   itmin = MIN(itmin, MAX_DIAGS-1);

   /* epsit = min. no. of consecutive iterations that must satisfy epsilon */
   epsit = MAX(epsit, 1); /* default = 1 */
   epsit = MIN(epsit, 3); /* if > 3, the problem needs more prior analysis */

   epsck = itmin - epsit;

   npts = 1;
   h = q - p;
   x = F(p);
   if (fabs(x) == DBL_MAX)
      return x;
   y = F(q);
   if (fabs(y) == DBL_MAX)
      return y;
   romb[0] = 0.5 * h * (x + y);   /* trapezoidal rule */
   for (i = 1; i < MAX_DIAGS; ++i, npts *= 2, h *= 0.5) {
      sum = 0.;   /* sum of ordinates for 
                     x = p+0.5*h, p+1.5*h, ..., q-0.5*h */
      for (k = 0, x = p+0.5*h; k < npts; k++, x += h) {
         y = F(x);
         if (fabs(y) == DBL_MAX)
            return y;
         sum += y;
      }
      romb[i] = 0.5 * (romb[i-1] + h*sum); /* new trapezoidal estimate */

      /* Update Romberg array with new column */
      for (n = 4, j = i-1; j >= 0; n *= 4, --j)
         romb[j] = (n*romb[j+1] - romb[j]) / (n-1);

      if (i > epsck) {
         if (fabs(romb[1] - romb[0]) > eps * fabs(romb[0])) {
            epsit_cnt = 0;
            continue;
         }
         ++epsit_cnt;
         if (i >= itmin && epsit_cnt >= epsit)
            return romb[0];
      }
   }
   return DBL_MAX;
}

int BLAST_Gcd(int a, int b)
{
   int   c;

   b = fabs(b);
   if (b > a)
      c=a, a=b, b=c;

   while (b != 0) {
      c = a%b;
      a = b;
      b = c;
   }
   return a;
}

int 
BLAST_Gdb3(int* a, int* b, int* c)
{
    int g;
    if (*b == 0) 
        g = BLAST_Gcd(*a, *c);
    else 
        g = BLAST_Gcd(*a, BLAST_Gcd(*b, *c));
    if (g > 1) {
        *a /= g;
        *b /= g;
        *c /= g;
    }
    return g;
}

long BLAST_Nint(double x)
{
   x += (x >= 0. ? 0.5 : -0.5);
   return (long)x;
}


double BLAST_Powi(double x, int n)
{
   double   y;

   if (n == 0)
      return 1.;

   if (x == 0.) {
      if (n < 0) {
         return DBL_MAX;
      }
      return 0.;
   }

   if (n < 0) {
      x = 1./x;
      n = -n;
   }

   y = 1.;
   while (n > 0) {
      if (n & 1)
         y *= x;
      n /= 2;
      x *= x;
   }
   return y;
}

double BLAST_LnFactorial (double x) {

    if( x <= 0.0)
        return 0.0;
    else
        return s_LnGamma(x + 1.0);
        
}

/*
 * ===========================================================================
 *
 * $Log: ncbi_math.c,v $
 * Revision 1.16  2005/04/27 19:06:25  coulouri
 * remove incorrect optimization
 *
 * Revision 1.15  2005/03/10 16:10:58  papadopo
 * doxygen fixes
 *
 * Revision 1.14  2005/03/08 18:28:55  papadopo
 * do not use a const int to declare the dimension of an array
 *
 * Revision 1.13  2005/03/08 17:42:29  papadopo
 * add doxygen comments, refactor several functions
 *
 * Revision 1.12  2005/03/07 18:46:05  camacho
 * Removed dead code
 *
 * Revision 1.11  2004/11/18 21:26:15  dondosha
 * Added BLAST_Gdb3, needed for greedy alignment; removed extern from function signatures; renamed static functions according to C++ toolkit guidelines
 *
 * Revision 1.10  2004/11/02 17:56:48  camacho
 * Add DOXYGEN_SKIP_PROCESSING to guard rcsid string
 *
 * Revision 1.9  2004/06/08 17:30:07  dondosha
 * Compiler warnings fixes
 *
 * Revision 1.8  2004/05/19 14:52:03  camacho
 * 1. Added doxygen tags to enable doxygen processing of algo/blast/core
 * 2. Standardized copyright, CVS $Id string, $Log and rcsid formatting and i
 *    location
 * 3. Added use of @todo doxygen keyword
 *
 * Revision 1.7  2003/12/05 16:03:57  camacho
 * Remove compiler warnings
 *
 * Revision 1.6  2003/09/26 20:39:32  dondosha
 * Rearranged code so it compiles
 *
 * Revision 1.5  2003/09/26 19:01:59  madden
 * Prefix ncbimath functions with BLAST_
 *
 * Revision 1.4  2003/09/10 21:36:29  dondosha
 * Removed Nlm_ prefix from math functions definitions
 *
 * Revision 1.3  2003/08/25 22:32:51  dondosha
 * Added #ifndef for definition of DBL_EPSILON
 *
 * Revision 1.2  2003/08/11 15:02:00  dondosha
 * Added algo/blast/core to all #included headers
 *
 * Revision 1.1  2003/08/02 16:31:48  camacho
 * Moved ncbimath.c -> ncbi_math.c
 *
 * Revision 1.1  2003/08/01 21:03:46  madden
 * Cleaned up version of file for C++ toolkit
 *
 * ===========================================================================
 */