File: quicksort.c

package info (click to toggle)
theseus 3.3.0-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 91,424 kB
  • sloc: ansic: 41,682; makefile: 267; sh: 121
file content (337 lines) | stat: -rw-r--r-- 8,263 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
    Theseus - maximum likelihood superpositioning of macromolecular structures

    Copyright (C) 2004-2015 Douglas L. Theobald

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the:

    Free Software Foundation, Inc.,
    59 Temple Place, Suite 330,
    Boston, MA  02111-1307  USA

    -/_|:|_|_\-
*/

/* -/_|:|_|_\- */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "quicksort.h"
/* 15 is pretty good -- any array segment below this gets insorted */
#ifndef CUTOFF
#  define CUTOFF 15
#endif

extern void
swapd(double *x, double *y)
{
    double          tempd;

    tempd = *x;
    *x = *y;
    *y = tempd;
}

extern void
swapc(char **x, char **y)
{
    char           *tempc;

    tempc = *x;
    *x = *y;
    *y = tempc;
}

/*
 |  void
 |  partial_quicksort (KEY_T  *array1, COARRAY_T  *array2, int lower, int upper)
 |
 |  Abstract:
 |  Sort array1[lower..upper] into a partial order
 |      leaving segments which are CUTOFF elements long
 |      unsorted internally.
 |
 |  Efficiency:
 |  I use a randomly generated pivot, which ensures maximum
 |  average efficiency. Also, you could use median of three
 |  method to choose a pivot, or just use the first item 
 |  in the array (very bad if array is almost presorted).
 |
 |  Method:
 |  Partial Quicksort with a sentinel (Robert Sedgewick)
 |
 |  !! NOTE:
 |  array1[upper+1] must hold the maximum possible key.
 */

void
partial_quicksort2 (KEY_T  *array1, COARRAY_T  *array2, int lower, int upper)
{
    int             i, j, random_index;
    KEY_T           pivot;

    if (upper - lower > CUTOFF)
    {
        swapd(&array1[lower], &array1[(upper+lower)/2]);
        swapc(&array2[lower], &array2[(upper+lower)/2]);
        i = lower;
        j = upper + 1;

        /* pivot = array1[lower]; */
        srand(time(NULL));
        random_index = (int) ( (double)(upper - lower) * (double) rand() / (double) RAND_MAX ) + lower;
        pivot = array1[random_index];

        while (1)
        {
            /*
             * ---------------------- !! NOTE ----------------------
             * ignoring NOTE above can lead to an infinite loop here
             * -----------------------------------------------------
             */
            do
                i++;
                while (LT(array1[i], pivot));
            do
                j--;
                while (GT(array1[j], pivot));

            if (j > i)
            {
                swapd(&array1[i], &array1[j]);
                swapc(&array2[i], &array2[j]);
            }
            else
                break;
        }

        swapd(&array1[lower], &array1[j]);
        swapc(&array2[lower], &array2[j]);

        partial_quicksort2 (array1, array2, lower, j - 1);
        partial_quicksort2 (array1, array2, i,     upper);
    }
}


void
partial_quicksort2d (KEY_T  *array1, KEY_T  *array2, int lower, int upper)
{
    int             i, j, random_index;
    KEY_T           pivot;

    if (upper - lower > CUTOFF)
    {
        swapd(&array1[lower], &array1[(upper+lower)/2]);
        swapd(&array2[lower], &array2[(upper+lower)/2]);
        i = lower;
        j = upper + 1;

        /* pivot = array1[lower]; */
        srand(time(NULL));
        random_index = (int) ( (double)(upper - lower) * (double) rand() / (double) RAND_MAX ) + lower;
        pivot = array1[random_index];

        while (1)
        {
            /*
             * ---------------------- !! NOTE ----------------------
             * ignoring NOTE above can lead to an infinite loop here
             * -----------------------------------------------------
             */
            do
                i++;
                while (LT(array1[i], pivot));
            do
                j--;
                while (GT(array1[j], pivot));

            if (j > i)
            {
                swapd(&array1[i], &array1[j]);
                swapd(&array2[i], &array2[j]);
            }
            else
                break;
        }

        swapd(&array1[lower], &array1[j]);
        swapd(&array2[lower], &array2[j]);

        partial_quicksort2d (array1, array2, lower, j - 1);
        partial_quicksort2d (array1, array2, i,     upper);
    }
}


void
partial_quicksort (KEY_T  *array, int lower, int upper)
{
    int             i, j, random_index;
    KEY_T           pivot;

    if (upper - lower > CUTOFF)
    {
        swapd(&array[lower], &array[(upper+lower)/2]);
        i = lower;
        j = upper + 1;

        /* pivot = array1[lower]; */
        srand(time(NULL));
        random_index = (int) ( (double)(upper - lower) * (double) rand() / (double) RAND_MAX ) + lower;
        pivot = array[random_index];

        while (1)
        {
            /*
             * ---------------------- !! NOTE ----------------------
             * ignoring NOTE above can lead to an infinite loop here
             * -----------------------------------------------------
             */
            do
                i++;
                while (LT(array[i], pivot));
            do
                j--;
                while (GT(array[j], pivot));

            if (j > i)
            {
                swapd(&array[i], &array[j]);
            }
            else
                break;
        }

        swapd(&array[lower], &array[j]);

        partial_quicksort (array, lower, j - 1);
        partial_quicksort (array, i,     upper);
    }
}

/*
 |  void  insort (KEY_T array1[], int len)
 |
 |  Abstract:   Sort array1[0..len-1] into increasing order.
 |
 |  Method: Optimized insertion-sort (ala Jon Bentley)
 */

void
insort2 (KEY_T *array1, COARRAY_T  *array2, int len)
{
    int             i, j;
    KEY_T           temp1;
    COARRAY_T       temp2;

    for (i = 1; i < len; ++i)
    {
        j = i;
        temp1 = array1[j];
        temp2 = array2[j];

        while ((j > 0) && GT(array1[j-1], temp1))
        {
            array1[j] = array1[j-1];
            array2[j] = array2[j-1];
            j--;
        }

        array1[j] = temp1;
        array2[j] = temp2;
    }
}

void
insort2d (KEY_T *array1, KEY_T  *array2, int len)
{
    int             i, j;
    KEY_T           temp1;
    KEY_T           temp2;

    for (i = 1; i < len; ++i)
    {
        j = i;
        temp1 = array1[j];
        temp2 = array2[j];

        while ((j > 0) && GT(array1[j-1], temp1))
        {
            array1[j] = array1[j-1];
            array2[j] = array2[j-1];
            j--;
        }

        array1[j] = temp1;
        array2[j] = temp2;
    }
}

void
insort (KEY_T *array, int len)
{
    int             i, j;
    KEY_T           temp;

    for (i = 1; i < len; ++i)
    {
        j = i;
        temp = array[j];

        while ((j > 0) && GT(array[j-1], temp))
        {
            array[j] = array[j-1];
            j--;
        }

        array[j] = temp;
    }
}

/*
 |  void  quicksort (KEY_T  array1[], int len)
 |
 |  Abstract:
 |  Sort array1[0..len-1] into increasing order.
 |
 |  Method:
 |  Use partial_quicksort() with a sentinel (ala Sedgewick)
 |  to reach a partial order, leave the unsorted segments of
 |  length <= CUTOFF to low-overhead straight insertion sort.
 |
 |  !! NOTE:
 |  array1[len] must be a "sentinel" -- the largest
 |  possible value (e.g, array1[len] = HUGE_VAL;)
 */
void
quicksort2 (KEY_T  *array1, COARRAY_T  *array2, int len)
{
    partial_quicksort2 (array1, array2, 0, len - 1);
    insort2 (array1, array2, len);
}

void
quicksort2d (KEY_T  *array1, KEY_T  *array2, int len)
{
    partial_quicksort2d (array1, array2, 0, len - 1);
    insort2d (array1, array2, len);
}

void
quicksort (KEY_T  *array, int len)
{
    partial_quicksort (array, 0, len - 1);
    insort (array, len);
}