File: SparkTree.hs

package info (click to toggle)
threadscope 0.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 460 kB
  • sloc: haskell: 4,579; makefile: 7
file content (257 lines) | stat: -rw-r--r-- 10,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
module Events.SparkTree (
  SparkTree,
  sparkTreeMaxDepth,
  emptySparkTree,
  eventsToSparkDurations,
  mkSparkTree,
  sparkProfile,
  ) where

import qualified Events.SparkStats as SparkStats

import qualified GHC.RTS.Events as GHCEvents
import GHC.RTS.Events (Timestamp)

import Control.Exception (assert)
import Text.Printf
-- import Debug.Trace

-- | Sparks change state. Each state transition process has a duration.
-- SparkDuration is a condensed description of such a process,
-- containing a start time of the duration interval,
-- spark stats that record the spark transition rate
-- and the absolute number of sparks in the spark pool within the duration.
data SparkDuration =
  SparkDuration { startT :: {-#UNPACK#-}!Timestamp,
                  deltaC :: {-#UNPACK#-}!SparkStats.SparkStats }
  deriving Show

-- | Calculates durations and maximal rendered values from the event log.
-- Warning: cannot be applied to a suffix of the log (assumes start at time 0).
eventsToSparkDurations :: [GHCEvents.Event] -> (Double, [SparkDuration])
eventsToSparkDurations es =
  let aux _startTime _startCounters [] = (0, [])
      aux startTime startCounters (event : events) =
        case GHCEvents.spec event of
          GHCEvents.SparkCounters crt dud ovf cnv fiz gcd rem ->
            let endTime = GHCEvents.time event
                endCounters = (crt, dud, ovf, cnv, fiz, gcd, rem)
                delta = SparkStats.create startCounters endCounters
                newMaxSparkPool = SparkStats.maxPool delta
                sd = SparkDuration { startT = startTime,
                                     deltaC = delta }
                (oldMaxSparkPool, l) =
                  aux endTime endCounters events
            in ( max oldMaxSparkPool newMaxSparkPool,
                sd : l)
          _otherEvent -> aux startTime startCounters events
  in aux 0 (0,0,0,0,0,0,0) es


-- | We map the spark transition durations (intervals) onto a binary
-- search tree, so that we can easily find the durations
-- that correspond to a particular view of the timeline.
-- Additionally, each node of the tree contains a summary
-- of the information below it, so that we can render views at various
-- levels of resolution. For example, if a tree node would represent
-- less than one pixel on the display, there is no point is descending
-- the tree further.
data SparkTree
  = SparkTree
      {-#UNPACK#-}!Timestamp  -- ^ start time of span represented by the tree
      {-#UNPACK#-}!Timestamp  -- ^ end time of the span represented by the tree
      SparkNode
  deriving Show

data SparkNode
  = SparkSplit
      {-#UNPACK#-}!Timestamp  -- ^ time used to split the span into two parts
      SparkNode
        -- ^ the LHS split; all data lies completely between start and split
      SparkNode
        -- ^ the RHS split; all data lies completely between split and end
      {-#UNPACK#-}!SparkStats.SparkStats
        -- ^ aggregate of the spark stats within the span
  | SparkTreeLeaf
      {-#UNPACK#-}!SparkStats.SparkStats
        -- ^ the spark stats for the base duration
  | SparkTreeEmpty
      -- ^ represents a span that no data referts to, e.g., after the last GC
  deriving Show

sparkTreeMaxDepth :: SparkTree -> Int
sparkTreeMaxDepth (SparkTree _ _ t) = sparkNodeMaxDepth t

sparkNodeMaxDepth :: SparkNode -> Int
sparkNodeMaxDepth (SparkSplit _ lhs rhs _)
  = 1 + sparkNodeMaxDepth lhs `max` sparkNodeMaxDepth rhs
sparkNodeMaxDepth _ = 1

emptySparkTree :: SparkTree
emptySparkTree = SparkTree 0 0 SparkTreeEmpty

-- | Create spark tree from spark durations.
-- Note that the last event may be not a spark event, in which case
-- there is no data about sparks for the last time interval
-- (the subtree for the interval will have SparkTreeEmpty node).
mkSparkTree :: [SparkDuration]  -- ^ spark durations calculated from events
            -> Timestamp        -- ^ end time of last event in the list
            -> SparkTree
mkSparkTree es endTime =
  SparkTree s e $
  -- trace (show tree) $
  tree
    where
      tree = splitSparks es endTime
      (s, e) = if null es then (0, 0) else (startT (head es), endTime)

-- | Construct spark tree, by recursively splitting time intervals..
-- We only split at spark transition duration boundaries;
-- we never split a duration into multiple pieces.
-- Therefore, the binary tree is only roughly split by time,
-- the actual split depends on the distribution of sample points below it.
splitSparks :: [SparkDuration] -> Timestamp -> SparkNode
splitSparks [] !_endTime =
  SparkTreeEmpty

splitSparks [e] !_endTime =
  SparkTreeLeaf (deltaC e)

splitSparks es !endTime
  | null rhs
  = splitSparks es lhs_end
  | null lhs
  = error $
    printf "splitSparks: null lhs: len = %d, startTime = %d, endTime = %d\n"
      (length es) startTime endTime
    ++ '\n' : show es
  | otherwise
  = -- trace (printf "len = %d, startTime = %d, endTime = %d\n" (length es) startTime endTime) $
    assert (length lhs + length rhs == length es) $
    SparkSplit (startT $ head rhs)
               ltree
               rtree
               (SparkStats.aggregate (subDelta rtree ++ subDelta ltree))
  where
    -- | Integer division, rounding up.
    divUp :: Timestamp -> Timestamp -> Timestamp
    divUp n k = (n + k - 1) `div` k
    startTime = startT $ head es
    splitTime = startTime + (endTime - startTime) `divUp` 2

    (lhs, lhs_end, rhs) = splitSparkList es [] splitTime 0

    ltree = splitSparks lhs lhs_end
    rtree = splitSparks rhs endTime

    subDelta (SparkSplit _ _ _ delta) = [delta]
    subDelta (SparkTreeLeaf delta)    = [delta]
    subDelta SparkTreeEmpty           = []


splitSparkList :: [SparkDuration]
               -> [SparkDuration]
               -> Timestamp
               -> Timestamp
               -> ([SparkDuration], Timestamp, [SparkDuration])
splitSparkList [] acc !_tsplit !tmax
  = (reverse acc, tmax, [])
splitSparkList [e] acc !_tsplit !tmax
  -- Just one event left: put it on the right. This ensures that we
  -- have at least one event on each side of the split.
  = (reverse acc, tmax, [e])
splitSparkList (e:es) acc !tsplit !tmax
  | startT e <= tsplit  -- pick all durations that start at or before the split
  = splitSparkList es (e:acc) tsplit (max tmax (startT e))
  | otherwise
  = (reverse acc, tmax, e:es)


-- | For each timeslice, give the spark stats calculated for that interval.
-- The spark stats are Approximated from the aggregated data
-- at the level of the spark tree covering intervals of the size
-- similar to the timeslice size.
sparkProfile :: Timestamp -> Timestamp -> Timestamp -> SparkTree
             -> [SparkStats.SparkStats]
sparkProfile slice start0 end0 t
  = {- trace (show flat) $ -} chopped

  where
   -- do an extra slice at both ends
   start = if start0 < slice then start0 else start0 - slice
   end   = end0 + slice

   flat = flatten start t []
   -- TODO: redefine chop so that it's obvious this error will not happen
   -- e.g., catch pathological cases, like a tree with only SparkTreeEmpty
   -- inside and/or make it tail-recursive instead of
   -- taking the 'previous' argument
   chopped0 = chop (error "Fatal error in sparkProfile.") [] start flat

   chopped | start0 < slice = SparkStats.initial : chopped0
           | otherwise      = chopped0

   flatten :: Timestamp -> SparkTree -> [SparkTree] -> [SparkTree]
   flatten _start (SparkTree _s _e SparkTreeEmpty) rest = rest
   flatten start t@(SparkTree s e (SparkSplit split l r _)) rest
     | e   <= start   = rest
     | end <= s       = rest
     | start >= split = flatten start (SparkTree split e r) rest
     | end   <= split = flatten start (SparkTree s split l) rest
     | e - s > slice  = flatten start (SparkTree s split l) $
                        flatten start (SparkTree split e r) rest
     -- A rule of thumb: if a node is narrower than slice, don't drill down,
     -- even if the node sits astride slice boundaries and so the readings
     -- for each of the two neigbouring slices will not be accurate
     -- (but for the pair as a whole, they will be). Smooths the curve down
     -- even more than averaging over the timeslice already does.
     | otherwise      = t : rest
   flatten _start t@(SparkTree _s _e (SparkTreeLeaf _)) rest
     = t : rest

   chop :: SparkStats.SparkStats -> [SparkStats.SparkStats]
           -> Timestamp -> [SparkTree] -> [SparkStats.SparkStats]
   chop _previous sofar start1 _ts
     | start1 >= end
     = case sofar of
       _ : _ -> [SparkStats.aggregate sofar]
       [] -> []
   chop _previous sofar _start1 []  -- data too short for the redrawn area
     | null sofar  -- no data at all in the redrawn area
     = []
     | otherwise
     = [SparkStats.aggregate sofar]
   chop previous sofar start1 (t : ts)
     | e <= start1  -- skipping data left of the slice
     = case sofar of
       _ : _ -> error "chop"
       [] -> chop previous sofar start1 ts
     | s >= start1 + slice  -- postponing data right of the slice
     = let (c, p) = SparkStats.agEx sofar previous
       in c : chop p [] (start1 + slice) (t : ts)
     | e > start1 + slice
     = let (c, p) = SparkStats.agEx (created_in_this_slice t ++ sofar) previous
       in c : chop p [] (start1 + slice) (t : ts)
     | otherwise
     = chop previous (created_in_this_slice t ++ sofar) start1 ts
     where
       (s, e) | SparkTree s e _ <- t  = (s, e)

       -- The common part of the slice and the duration.
       mi = min (start1 + slice) e
       ma = max start1 s
       common = if mi < ma then 0 else mi - ma
       -- Instead of drilling down the tree (unless it's a leaf),
       -- we approximate by taking a proportion of the aggregate value,
       -- depending on how much of the spark duration corresponding
       -- to the tree node is covered by our timeslice.
       proportion = if e > s
                    then fromIntegral common / fromIntegral (e - s)
                    else assert (e == s && common == 0) $ 0

       -- Spark transitions in the tree are in units spark/duration.
       -- Here the numbers are rescaled so that the units are spark/ms.
       created_in_this_slice (SparkTree _ _ node) = case node of
         SparkTreeLeaf delta    -> [SparkStats.rescale proportion delta]
         SparkTreeEmpty         -> []
         SparkSplit _ _ _ delta -> [SparkStats.rescale proportion delta]