1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
module GUI.SummaryView (
SummaryView,
summaryViewNew,
summaryViewSetEvents,
summaryViewSetInterval,
) where
import GHC.RTS.Events
import GUI.Types
import Graphics.UI.Gtk
import qualified Graphics.UI.Gtk.ModelView.TreeView.Compat as Compat
import Control.Exception (assert)
import Control.Monad
import Data.Array
import qualified Data.IntMap as IM
import Data.IORef
import Data.List as L
import Data.Maybe
import Data.Word (Word64)
import Numeric (showFFloat)
import Text.Printf
------------------------------------------------------------------------------
type Events = Array Int Event
data SummaryView = SummaryView {
-- we cache the stats for the whole interval
cacheEventsStats :: !(IORef (Maybe (Events, SummaryStats, Bool)))
-- widgets for time stuff
, labelTimeTotal :: Label
, labelTimeMutator :: Label
, labelTimeGC :: Label
, labelTimeProductivity :: Label
-- widgets for heap stuff
, labelHeapMaxSize
, labelHeapMaxResidency
, labelHeapAllocTotal
, labelHeapAllocRate
, labelHeapMaxSlop :: (Label, Label, Label, Label)
, tableHeap :: Widget
-- widgets for GC stuff
, labelGcCopied :: (Label, Label, Label, Label)
, labelGcParWorkBalance :: Label
, storeGcStats :: ListStore GcStatsEntry
, tableGc :: Widget
-- widgets for sparks stuff
, storeSparkStats :: ListStore (Cap, SparkCounts)
}
------------------------------------------------------------------------------
summaryViewNew :: Builder -> IO SummaryView
summaryViewNew builder = do
cacheEventsStats <- newIORef Nothing
let getWidget cast = builderGetObject builder cast
getLabel = getWidget castToLabel
getHeapLabels w1 w2 w3 w4 = liftM4 (,,,) (getLabel w1) (getLabel w2)
(getLabel w3) (getLabel w4)
labelTimeTotal <- getWidget castToLabel "labelTimeTotal"
labelTimeMutator <- getWidget castToLabel "labelTimeMutator"
labelTimeGC <- getWidget castToLabel "labelTimeGC"
labelTimeProductivity <- getWidget castToLabel "labelTimeProductivity"
labelHeapMaxSize <- getHeapLabels "labelHeapMaxSize" "labelHeapMaxSizeUnit"
"labelHeapMaxSizeBytes" "labelHeapMaxSizeUnit1"
labelHeapMaxResidency <- getHeapLabels "labelHeapMaxResidency" "labelHeapMaxResidencyUnit"
"labelHeapMaxResidencyBytes" "labelHeapMaxResidencyUnit1"
labelHeapAllocTotal <- getHeapLabels "labelHeapAllocTotal" "labelHeapAllocTotalUnit"
"labelHeapAllocTotalBytes" "labelHeapAllocTotalUnit1"
labelHeapAllocRate <- getHeapLabels "labelHeapAllocRate" "labelHeapAllocRateUnit"
"labelHeapAllocRateBytes" "labelHeapAllocRateUnit1"
labelHeapMaxSlop <- getHeapLabels "labelHeapMaxSlop" "labelHeapMaxSlopUnit"
"labelHeapMaxSlopBytes" "labelHeapMaxSlopUnit1"
tableHeap <- getWidget castToWidget "tableHeap"
labelGcCopied <- getHeapLabels "labelGcCopied" "labelGcCopiedUnit"
"labelGcCopiedBytes" "labelGcCopiedUnit1"
labelGcParWorkBalance <- getWidget castToLabel "labelGcParWorkBalance"
storeGcStats <- listStoreNew []
tableGc <- getWidget castToWidget "tableGC"
storeSparkStats <- listStoreNew []
let summaryView = SummaryView{..}
treeviewGcStats <- getWidget castToTreeView "treeviewGcStats"
Compat.treeViewSetModel treeviewGcStats (Just storeGcStats)
let addGcColumn = addColumn treeviewGcStats storeGcStats
addGcColumn "Generation" $ \(GcStatsEntry gen _ _ _ _ _) ->
[ cellText := if gen == -1 then "GC Total" else "Gen " ++ show gen ]
addGcColumn "Collections" $ \(GcStatsEntry _ colls _ _ _ _) ->
[ cellText := show colls ]
addGcColumn "Par collections" $ \(GcStatsEntry _ _ pcolls _ _ _) ->
[ cellText := show pcolls ]
addGcColumn "Elapsed time" $ \(GcStatsEntry _ _ _ time _ _) ->
[ cellText := (printf "%5.2fs" (timeToSecondsDbl time) :: String) ]
addGcColumn "Avg pause" $ \(GcStatsEntry _ _ _ _ avgpause _) ->
[ cellText := (printf "%3.4fs" avgpause :: String) ]
addGcColumn "Max pause" $ \(GcStatsEntry _ _ _ _ _ maxpause) ->
[ cellText := (printf "%3.4fs" maxpause :: String) ]
treeviewSparkStats <- getWidget castToTreeView "treeviewSparkStats"
Compat.treeViewSetModel treeviewSparkStats (Just storeSparkStats)
let addSparksColumn = addColumn treeviewSparkStats storeSparkStats
addSparksColumn "HEC" $ \(hec, _) ->
[ cellText := if hec == -1 then "Total" else "HEC " ++ show hec ]
addSparksColumn "Total" $ \(_, SparkCounts total _ _ _ _ _) ->
[ cellText := show total ]
addSparksColumn "Converted" $ \(_, SparkCounts _ conv _ _ _ _) ->
[ cellText := show conv ]
addSparksColumn "Overflowed" $ \(_, SparkCounts _ _ ovf _ _ _) ->
[ cellText := show ovf ]
addSparksColumn "Dud" $ \(_, SparkCounts _ _ _ dud _ _) ->
[ cellText := show dud ]
addSparksColumn "GCed" $ \(_, SparkCounts _ _ _ _ gc _) ->
[ cellText := show gc ]
addSparksColumn "Fizzled" $ \(_, SparkCounts _ _ _ _ _ fiz) ->
[ cellText := show fiz ]
return summaryView
where
addColumn view store title mkAttrs = do
col <- treeViewColumnNew
cell <- cellRendererTextNew
treeViewColumnSetTitle col title
treeViewColumnPackStart col cell False
treeViewAppendColumn view col
cellLayoutSetAttributes col cell store mkAttrs
------------------------------------------------------------------------------
summaryViewSetEvents :: SummaryView -> Maybe (Array Int Event) -> IO ()
summaryViewSetEvents view@SummaryView{cacheEventsStats} Nothing = do
writeIORef cacheEventsStats Nothing
setSummaryStatsEmpty view
summaryViewSetEvents view@SummaryView{cacheEventsStats} (Just events) = do
let stats = summaryStats events Nothing
-- this is an almost certain indicator that there
-- are no heap events in the eventlog:
hasHeapEvents = heapMaxSize (summHeapStats stats) /= Just 0
writeIORef cacheEventsStats (Just (events, stats, hasHeapEvents))
setSummaryStats view stats hasHeapEvents
summaryViewSetInterval :: SummaryView -> Maybe Interval -> IO ()
summaryViewSetInterval view@SummaryView{cacheEventsStats} Nothing = do
cache <- readIORef cacheEventsStats
case cache of
Nothing -> return ()
Just (_, stats, hasHeap) -> setSummaryStats view stats hasHeap
summaryViewSetInterval view@SummaryView{cacheEventsStats} (Just interval) = do
cache <- readIORef cacheEventsStats
case cache of
Nothing -> return ()
Just (events, _, hasHeap) -> setSummaryStats view stats hasHeap
where stats = summaryStats events (Just interval)
------------------------------------------------------------------------------
setSummaryStats :: SummaryView -> SummaryStats -> Bool -> IO ()
setSummaryStats view SummaryStats{..} hasHeapEvents = do
setTimeStats view summTimeStats
if hasHeapEvents
then do setHeapStatsAvailable view True
setHeapStats view summHeapStats
setGcStats view summGcStats
else setHeapStatsAvailable view False
setSparkStats view summSparkStats
setTimeStats :: SummaryView -> TimeStats -> IO ()
setTimeStats SummaryView{..} TimeStats{..} =
mapM_ (\(label, text) -> set label [ labelText := text ])
[ (labelTimeTotal , showTimeWithUnit timeTotal)
, (labelTimeMutator , showTimeWithUnit timeMutator)
, (labelTimeGC , showTimeWithUnit timeGC)
, (labelTimeProductivity, showFFloat (Just 1) (timeProductivity * 100) "% of mutator vs total")
]
setHeapStats :: SummaryView -> HeapStats -> IO ()
setHeapStats SummaryView{..} HeapStats{..} = do
setHeapStatLabels labelHeapMaxSize heapMaxSize "" ""
setHeapStatLabels labelHeapMaxResidency heapMaxResidency "" ""
setHeapStatLabels labelHeapAllocTotal heapTotalAlloc "" ""
setHeapStatLabels labelHeapAllocRate heapAllocRate "/s" " per second (of mutator time)"
setHeapStatLabels labelHeapMaxSlop heapMaxSlop "" ""
setHeapStatLabels labelGcCopied heapCopiedDuringGc "" ""
where
setHeapStatLabels labels stat unitSuffix unitSuffixLong =
let texts = case stat of
Nothing -> ("N/A", "", "", "")
Just b -> ( formatBytesInUnit b u, formatUnit u ++ unitSuffix
, formatBytes b, "bytes" ++ unitSuffixLong)
where u = getByteUnit b
in setLabels labels texts
setLabels (short,shortunit,long,longunit) (short', shortunit', long', longunit') = do
mapM_ (\(label, text) -> set label [ labelText := text ])
[ (short, short'), (shortunit, shortunit')
, (long, long'), (longunit, longunit') ]
setGcStats :: SummaryView -> GcStats -> IO ()
setGcStats SummaryView{..} GcStats{..} = do
let balText = maybe "N/A"
(printf "%.2f%% (serial 0%%, perfect 100%%)")
gcParWorkBalance
set labelGcParWorkBalance [ labelText := balText ]
listStoreClear storeGcStats
mapM_ (listStoreAppend storeGcStats) (gcTotalStats:gcGenStats)
setSparkStats :: SummaryView -> SparkStats -> IO ()
setSparkStats SummaryView{..} SparkStats{..} = do
listStoreClear storeSparkStats
mapM_ (listStoreAppend storeSparkStats) ((-1,totalSparkStats):capSparkStats)
data ByteUnit = TiB | GiB | MiB | KiB | B deriving Show
byteUnitVal :: ByteUnit -> Word64
byteUnitVal TiB = 2^40
byteUnitVal GiB = 2^30
byteUnitVal MiB = 2^20
byteUnitVal KiB = 2^10
byteUnitVal B = 1
getByteUnit :: Word64 -> ByteUnit
getByteUnit b
| b >= 2^40 = TiB
| b >= 2^30 = GiB
| b >= 2^20 = MiB
| b >= 2^10 = KiB
| otherwise = B
formatBytesInUnit :: Word64 -> ByteUnit -> String
formatBytesInUnit n u =
formatFixed (fromIntegral n / fromIntegral (byteUnitVal u))
where
formatFixed x = showFFloat (Just 1) x ""
formatUnit :: ByteUnit -> String
formatUnit = show
formatBytes :: Word64 -> String
formatBytes b = ppWithCommas b
ppWithCommas :: Word64 -> String
ppWithCommas =
let spl [] = []
spl l = let (c3, cs) = L.splitAt 3 l
in c3 : spl cs
in L.reverse . L.intercalate "," . spl . L.reverse . show
setSummaryStatsEmpty :: SummaryView -> IO ()
setSummaryStatsEmpty SummaryView{..} = do
mapM_ (\label -> set label [ labelText := ""
, widgetTooltipText
:= (Nothing :: Maybe String) ]) $
[ labelTimeTotal, labelTimeMutator
, labelTimeGC, labelTimeProductivity ] ++
[ w
| (a,b,c,d) <- [ labelHeapMaxSize, labelHeapMaxResidency
, labelHeapAllocTotal, labelHeapAllocRate
, labelHeapMaxSlop, labelGcCopied ]
, w <- [ a,b,c,d] ]
listStoreClear storeGcStats
listStoreClear storeSparkStats
setHeapStatsAvailable :: SummaryView -> Bool -> IO ()
setHeapStatsAvailable SummaryView{..} available
| available = do
forM_ unavailableWidgets $ \widget ->
set widget [ widgetTooltipText := (Nothing :: Maybe String)
, widgetSensitive := True ]
| otherwise = do
forM_ allLabels $ \label -> set label [ labelText := "" ]
listStoreClear storeGcStats
forM_ unavailableLabels $ \label ->
set label [ labelText := "(unavailable)" ]
forM_ unavailableWidgets $ \widget ->
set widget [ widgetTooltipText := Just msgInfoUnavailable, widgetSensitive := False ]
where
allLabels =
[ labelTimeMutator, labelTimeGC
, labelTimeProductivity, labelGcParWorkBalance ] ++
[ w | (a,b,c,d) <- [ labelHeapMaxSize, labelHeapMaxResidency
, labelHeapAllocTotal, labelHeapAllocRate
, labelHeapMaxSlop, labelGcCopied ]
, w <- [ a,b,c,d] ]
unavailableLabels =
[ labelTimeMutator, labelTimeGC
, labelTimeProductivity, labelGcParWorkBalance
, case labelGcCopied of (w,_,_,_) -> w ] ++
[ c | (_,_,c,_) <- [ labelHeapMaxSize, labelHeapMaxResidency
, labelHeapAllocTotal, labelHeapAllocRate
, labelHeapMaxSlop ] ]
unavailableWidgets = [ toWidget labelTimeMutator, toWidget labelTimeGC
, toWidget labelTimeProductivity
, tableHeap, tableGc ]
msgInfoUnavailable = "This eventlog does not contain heap or GC information."
------------------------------------------------------------------------------
-- Calculating the stats we want to display
--
data SummaryStats = SummaryStats {
summTimeStats :: TimeStats,
summHeapStats :: HeapStats,
summGcStats :: GcStats,
summSparkStats :: SparkStats
}
data TimeStats = TimeStats {
timeTotal :: !Word64, -- we really should have a better type for elapsed time
timeGC :: !Word64,
timeMutator :: !Word64,
timeProductivity :: !Double
}
data HeapStats = HeapStats {
heapMaxSize :: Maybe Word64,
heapMaxResidency :: Maybe Word64,
heapMaxSlop :: Maybe Word64,
heapTotalAlloc :: Maybe Word64,
heapAllocRate :: Maybe Word64,
heapCopiedDuringGc :: Maybe Word64
}
data GcStats = GcStats {
gcNumThreads :: !Int,
gcParWorkBalance :: !(Maybe Double),
gcGenStats :: [GcStatsEntry],
gcTotalStats :: !GcStatsEntry
}
data GcStatsEntry = GcStatsEntry !Int !Int !Int !Word64 !Double !Double
data SparkStats = SparkStats {
capSparkStats :: [(Cap, SparkCounts)],
totalSparkStats :: !SparkCounts
}
data SparkCounts = SparkCounts !Word64 !Word64 !Word64 !Word64 !Word64 !Word64
-- | Take the events, and optionally some sub-range, and generate the summary
-- stats for that range.
--
-- We take a two-step approach:
-- * a single pass over the events, accumulating into an intermediate
-- 'StatsAccum' record,
-- * then look at that 'StatsAccum' record and construct the various final
-- stats that we want to present.
--
summaryStats :: Array Int Event -> Maybe Interval -> SummaryStats
summaryStats events minterval =
SummaryStats {
summHeapStats = hs,
summGcStats = gs,
summSparkStats = ss,
summTimeStats = ts
}
where
!statsAccum = accumStats events minterval
gs = gcStats statsAccum
ss = sparkStats statsAccum
ts = timeStats events minterval gs
hs = heapStats statsAccum ts
-- | Linearly accumulate the stats from the events array,
-- either the full thing or some sub-range.
accumStats :: Array Int Event -> Maybe Interval -> StatsAccum
accumStats events minterval =
foldl' accumEvent start [ events ! i | i <- range eventsRange ]
where
eventsRange = selectEventRange events minterval
-- If we're starting from time zero then we know many of the stats
-- also start at from, where as from other points it's just unknown
start | fst eventsRange == 0 = zeroStatsAccum
| otherwise = emptyStatsAccum
-- | Given the event array and a time interval, return the range of array
-- indicies containing that interval. The Nothing interval means to select
-- the whole array range.
--
selectEventRange :: Array Int Event -> Maybe Interval -> (Int, Int)
selectEventRange arr Nothing = bounds arr
selectEventRange arr (Just (start, end)) = (lbound, ubound)
where
!lbound = either snd id $ findArrayRange cmp arr start
!ubound = either fst id $ findArrayRange cmp arr end
cmp ts (Event ts' _ _) = compare ts ts'
findArrayRange :: (key -> val -> Ordering)
-> Array Int val -> key -> Either (Int,Int) Int
findArrayRange cmp arr key =
binarySearch a0 b0 key
where
(a0,b0) = bounds arr
binarySearch a b key
| a > b = Left (b,a)
| otherwise = case cmp key (arr ! mid) of
LT -> binarySearch a (mid-1) key
EQ -> Right mid
GT -> binarySearch (mid+1) b key
where mid = (a + b) `div` 2
------------------------------------------------------------------------------
-- Final step where we convert from StatsAccum to various presentation forms
timeStats :: Array Int Event -> Maybe Interval -> GcStats -> TimeStats
timeStats events minterval
GcStats { gcTotalStats = GcStatsEntry _ _ _ timeGC _ _ } =
TimeStats {..}
where
timeTotal = intervalEnd - intervalStart
timeMutator = timeTotal - timeGC
timeProductivity = timeToSecondsDbl timeMutator
/ timeToSecondsDbl timeTotal
(intervalStart, intervalEnd) =
case minterval of
Just (s,e) -> (s, e)
Nothing -> (0, evTime (events ! ub))
where
(_lb, ub) = bounds events
heapStats :: StatsAccum -> TimeStats -> HeapStats
heapStats StatsAccum{..} TimeStats{timeMutator} =
HeapStats {
heapMaxSize = dmaxMemory,
heapMaxResidency = dmaxResidency,
heapMaxSlop = dmaxSlop,
heapTotalAlloc = if totalAlloc == 0
then Nothing
else Just totalAlloc,
heapAllocRate = if timeMutator == 0 || totalAlloc == 0
then Nothing
else Just $ truncate (fromIntegral totalAlloc / timeToSecondsDbl timeMutator),
heapCopiedDuringGc = if dcopied == Just 0
then Nothing
else dcopied
}
where
totalAlloc = sum [ end - start
| (end,start) <- IM.elems dallocTable ]
gcStats :: StatsAccum -> GcStats
gcStats StatsAccum{..} =
GcStats {
gcNumThreads = nThreads,
gcParWorkBalance,
gcGenStats = [ mkGcStatsEntry gen (gcGather gen)
| gen <- gens ],
gcTotalStats = mkGcStatsEntry gcGenTot (gcGather gcGenTot)
}
where
nThreads = fromMaybe 1 dmaxParNThreads
gcParWorkBalance | nThreads <= 1
|| fromMaybe 0 dparMaxCopied <= 0 = Nothing
| otherwise =
Just $
100 * ((maybe 0 fromIntegral dparTotCopied
/ maybe 0 fromIntegral dparMaxCopied) - 1)
/ (fromIntegral nThreads - 1)
gens = [0..maxGeneration]
where
-- Does not work for generationless GCs, but works reasonably
-- for > 2 gens and perfectly for 2 gens.
maxGeneration = maximum $ 1
: [ maxGen
| RtsGC { gcGenStat } <- IM.elems dGCTable
, not (IM.null gcGenStat)
, let (maxGen, _) = IM.findMax gcGenStat ]
gcGather :: Gen -> GenStat
gcGather gen = gcSum gen $ map gcGenStat $ IM.elems dGCTable
-- TODO: Consider per-HEC display of GC stats and then use
-- the values summed over all generations at key gcGenTot at each cap.
gcSum :: Gen -> [IM.IntMap GenStat] -> GenStat
gcSum gen l =
GenStat (sumPr gcAll) (sumPr gcPar)
(gcElapsed mainGen) (gcMaxPause mainGen)
where
l_genGC = map (IM.findWithDefault emptyGenStat gen) l
sumPr proj = sum $ map proj l_genGC
_maxPr proj = L.maximum $ map proj l_genGC
_minPr proj = L.minimum $ filter (> 0) $ map proj l_genGC
-- This would be the most balanced way of aggregating gcElapsed,
-- if only the event times were accurate.
_avgPr proj = let vs = filter (> 0) $ map proj l_genGC
in sum vs `div` fromIntegral (length vs)
-- But since the times include scheduling noise,
-- we only use the times from the main cap for each GC
-- and so get readings almost identical to +RTS -s.
mainGen = IM.findWithDefault emptyGenStat gen mainStat
mainStat = gcGenStat (fromMaybe (defaultGC 0) dGCMain)
mkGcStatsEntry :: Gen -> GenStat -> GcStatsEntry
mkGcStatsEntry gen GenStat{..} =
GcStatsEntry gen gcAll gcPar gcElapsedS gcAvgPauseS gcMaxPauseS
where
gcElapsedS = gcElapsed
gcMaxPauseS = timeToSecondsDbl gcMaxPause
gcAvgPauseS
| gcAll == 0 = 0
| otherwise = timeToSeconds $
fromIntegral gcElapsed / fromIntegral gcAll
sparkStats :: StatsAccum -> SparkStats
sparkStats StatsAccum{dsparkTable} =
SparkStats {
capSparkStats =
[ (cap, mkSparkStats sparkCounts)
| (cap, sparkCounts) <- capsSparkCounts ],
totalSparkStats =
mkSparkStats $
foldl' (binopSparks (+)) zeroSparks
[ sparkCounts | (_cap, sparkCounts) <- capsSparkCounts ]
}
where
capsSparkCounts =
[ (cap, sparkCounts)
| (cap, (countsEnd, countsStart)) <- IM.assocs dsparkTable
, let sparkCounts = binopSparks (-) countsEnd countsStart ]
mkSparkStats RtsSpark {sparkCreated, sparkDud, sparkOverflowed,
sparkConverted, sparkFizzled, sparkGCd} =
-- in our final presentation we show the total created,
-- and the breakdown of that into outcomes:
SparkCounts (sparkCreated + sparkDud + sparkOverflowed)
sparkConverted sparkOverflowed
sparkDud sparkGCd sparkFizzled
------------------------------------------------------------------------------
showTimeWithUnit :: Integral a => a -> String
showTimeWithUnit t =
showFFloat (Just 3) t'' unit
where
(t'', unit) =
case timeToSecondsDbl t of
t' | t' < 1e-6 -> (t' / 1e-9, "ns")
| t' < 1e-3 -> (t' / 1e-6, "μs")
| t' < 1 -> (t' / 1e-3, "ms")
| otherwise -> (t', "s")
timeToSecondsDbl :: Integral a => a -> Double
timeToSecondsDbl t = timeToSeconds $ fromIntegral t
timeToSeconds :: Double -> Double
timeToSeconds t = t / tIME_RESOLUTION
where tIME_RESOLUTION = 1000000
------------------------------------------------------------------------------
-- The single-pass stats accumulation stuff
--
-- | Data collected and computed gradually while events are scanned.
data StatsAccum = StatsAccum
{ dallocTable :: !(IM.IntMap (Word64, Word64)) -- indexed by caps
, dcopied :: !(Maybe Word64)
, dmaxResidency :: !(Maybe Word64)
, dmaxSlop :: !(Maybe Word64)
, dmaxMemory :: !(Maybe Word64)
--, dmaxFrag :: Maybe Word64 -- not important enough
, dGCTable :: !(IM.IntMap RtsGC) -- indexed by caps
-- Here we store the official +RTS -s timings of GCs,
-- that is times aggregated from the main caps of all GCs.
-- For now only gcElapsed and gcMaxPause are needed, so the rest
-- of the fields stays at default values.
, dGCMain :: !(Maybe RtsGC)
, dparMaxCopied :: !(Maybe Word64)
, dparTotCopied :: !(Maybe Word64)
, dmaxParNThreads :: !(Maybe Int)
--, dtaskTable -- of questionable usefulness, hard to get
, dsparkTable :: !(IM.IntMap (RtsSpark, RtsSpark)) -- indexed by caps
--, dInitExitT -- TODO. At least init time can be included in the total
-- time registered in the eventlog. Can we measure this
-- as the time between some initial events?
--, dGCTime -- Is better computed after all events are scanned,
-- e.g., because the same info can be used to calculate
-- per-cap GCTime and other per-cap stats.
--, dtotalTime -- TODO: can we measure this excluding INIT or EXIT times?
}
data RtsSpark = RtsSpark
{ sparkCreated, sparkDud, sparkOverflowed
, sparkConverted, sparkFizzled, sparkGCd :: !Word64
}
zeroSparks :: RtsSpark
zeroSparks = RtsSpark 0 0 0 0 0 0
binopSparks :: (Word64 -> Word64 -> Word64) -> RtsSpark -> RtsSpark -> RtsSpark
binopSparks op (RtsSpark crt1 dud1 ovf1 cnv1 fiz1 gcd1)
(RtsSpark crt2 dud2 ovf2 cnv2 fiz2 gcd2) =
RtsSpark (crt1 `op` crt2) (dud1 `op` dud2) (ovf1 `op` ovf2)
(cnv1 `op` cnv2) (fiz1 `op` fiz2) (gcd1 `op` gcd2)
type Gen = Int
type Cap = Int
data GcMode =
ModeInit | ModeStart | ModeSync Cap | ModeGHC Cap Gen | ModeEnd | ModeIdle
deriving Eq
data RtsGC = RtsGC
{ gcMode :: !GcMode
, gcStartTime :: !Timestamp
, gcGenStat :: !(IM.IntMap GenStat) -- indexed by generations
}
-- Index at the @gcGenStat@ map at which we store the sum of stats over all
-- generations, or the single set of stats for non-genenerational GC models.
gcGenTot :: Gen
gcGenTot = -1
data GenStat = GenStat
{ -- Sum over all seqential and pararell GC invocations.
gcAll :: !Int
, -- Only parallel GCs. For GC models without stop-the-world par, always 0.
gcPar :: !Int
, gcElapsed :: !Timestamp
, gcMaxPause :: !Timestamp
}
emptyStatsAccum :: StatsAccum
emptyStatsAccum = StatsAccum
{ dallocTable = IM.empty
, dcopied = Nothing
, dmaxResidency = Nothing
, dmaxSlop = Nothing
, dmaxMemory = Nothing
, dGCTable = IM.empty
, dGCMain = Nothing
, dparMaxCopied = Nothing
, dparTotCopied = Nothing
, dmaxParNThreads = Nothing
, dsparkTable = IM.empty
}
-- | At the beginning of a program run, we know for sure several of the
-- stats start at zero:
zeroStatsAccum :: StatsAccum
zeroStatsAccum = emptyStatsAccum {
dcopied = Just 0,
dmaxResidency = Just 0,
dmaxSlop = Just 0,
dmaxMemory = Just 0,
dallocTable = -- a hack: we assume no more than 999 caps
IM.fromDistinctAscList $ zip [0..999] $ repeat (0, 0)
-- FIXME: but also, we should have a way to init to 0 for all caps.
}
defaultGC :: Timestamp -> RtsGC
defaultGC time = RtsGC
{ gcMode = ModeInit
, gcStartTime = time
, gcGenStat = IM.empty
}
emptyGenStat :: GenStat
emptyGenStat = GenStat
{ gcAll = 0
, gcPar = 0
, gcElapsed = 0
, gcMaxPause = 0
}
-- Fail only when assertions are turned on.
errorAs :: String -> a -> a
errorAs msg a = assert (error msg) a
accumEvent :: StatsAccum -> Event -> StatsAccum
accumEvent !statsAccum ev =
let -- For events that contain a counter with a running sum.
-- Eventually we'll subtract the last found
-- event from the first. Intervals beginning at time 0
-- are a special case, because morally the first event should have
-- value 0, but it may be absent, so we start with @Just (0, 0)@.
alterCounter n Nothing = Just (n, n)
alterCounter n (Just (_previous, first)) = Just (n, first)
-- For events that contain discrete increments. We assume the event
-- is emitted close to the end of the process it measures,
-- so we ignore the first found event, because most of the process
-- could have happened before the start of the current interval.
-- This is consistent with @alterCounter@. For interval beginning
-- at time 0, we start with @Just 0@.
alterIncrement _ Nothing = Just 0
alterIncrement n (Just k) = Just (k + n)
-- For events that contain sampled values, where a max is sought.
alterMax n Nothing = Just n
alterMax n (Just k) | n > k = Just n
alterMax _ jk = jk
-- Scan events, updating summary data.
scan !sd@StatsAccum{..} Event{evTime, evSpec, evCap} =
let cap = fromMaybe (error "Error: missing cap; use 'ghc-events validate' to verify the eventlog") evCap
capGC = IM.findWithDefault (defaultGC evTime) cap dGCTable
in case evSpec of
HeapAllocated{allocBytes} ->
sd { dallocTable =
IM.alter (alterCounter allocBytes) cap dallocTable }
HeapLive{liveBytes} ->
sd { dmaxResidency = alterMax liveBytes dmaxResidency}
HeapSize{sizeBytes} ->
sd { dmaxMemory = alterMax sizeBytes dmaxMemory}
StartGC ->
assert (gcMode capGC `elem` [ModeInit, ModeEnd, ModeIdle]) $
let newGC = capGC { gcMode = ModeStart
, gcStartTime = evTime
}
-- TODO: Index with generations, not caps?
in sd { dGCTable = IM.insert cap newGC dGCTable }
GlobalSyncGC ->
-- All caps must be stopped. Those that take part in the GC
-- are in ModeInit or ModeStart, those that do not
-- are in ModeInit, ModeEnd or ModeIdle.
assert (L.all (notModeGHCEtc . gcMode) (IM.elems dGCTable)) $
sd { dGCTable = IM.mapWithKey setSync dGCTable }
where
notModeGHCEtc ModeGHC{} = False
notModeGHCEtc ModeSync{} = False
notModeGHCEtc _ = True
someInit = L.any ((== ModeInit) . gcMode) (IM.elems dGCTable)
setSync capKey dGC@RtsGC{gcGenStat}
| someInit =
-- If even one cap could possibly have started GC before
-- the start of the selected interval, skip the GC on all caps.
-- We don't verify the overwritten modes in this case.
-- TODO: we could be smarter and defer the decision to EndGC,
-- when we can deduce if the suspect caps take part in GC
-- or not at all.
dGC { gcMode = ModeInit }
| otherwise =
let totGC = IM.findWithDefault emptyGenStat gcGenTot gcGenStat
in case gcMode dGC of
-- Cap takes part in the GC (not known if seq or par).
-- Here is the moment where all caps taking place in the GC
-- are identified and we can aggregate all their data
-- at once (currently we just increment a counter for each).
-- The EndGC events can come much later for some caps and at
-- that time other caps are already inside their new GC.
ModeStart ->
dGC { gcMode = ModeSync cap
, gcGenStat =
if capKey == cap
then IM.insert gcGenTot
totGC{ gcAll = gcAll totGC + 1 }
gcGenStat
else gcGenStat
}
-- Cap is not in the GC. Mark it as idle to complete
-- the identification of caps that take part
-- in the current GC. Without overwriting the mode,
-- the cap could be processed later on as if
-- it took part in the GC, giving wrong results.
ModeEnd -> dGC { gcMode = ModeIdle }
ModeIdle -> dGC
-- Impossible.
ModeInit -> errorAs "scanEvents: GlobalSyncGC ModeInit" dGC
ModeSync{} -> errorAs "scanEvents: GlobalSyncGC ModeSync" dGC
ModeGHC{} -> -- error "scanEvents: GlobalSyncGC ModeGHC"
dGC -- workaround for #46
GCStatsGHC{..} ->
-- All caps must be stopped. Those that take part in the GC
-- are in ModeInit or ModeSync, those that do not
-- are in ModeInit or ModeIdle.
assert (L.all (notModeStartEtc . gcMode) (IM.elems dGCTable)) $
sd { dcopied = alterIncrement copied dcopied -- sum over caps
, dmaxSlop = alterMax slop dmaxSlop -- max over all caps
, dGCTable = IM.mapWithKey setParSeq dGCTable
, dparMaxCopied = alterIncrement parMaxCopied dparMaxCopied
, dparTotCopied = alterIncrement parTotCopied dparTotCopied
, dmaxParNThreads = alterMax parNThreads dmaxParNThreads
}
where
notModeStartEtc ModeStart = False
notModeStartEtc ModeGHC{} = False
notModeStartEtc ModeEnd = False
notModeStartEtc _ = True
someInit = L.any ((== ModeInit) . gcMode) (IM.elems dGCTable)
setParSeq capKey dGC@RtsGC{gcGenStat}
| someInit =
-- Just starting the selected interval, so skip the GC.
dGC
| otherwise =
let genGC = IM.findWithDefault emptyGenStat gen gcGenStat
totGC = IM.findWithDefault emptyGenStat gcGenTot gcGenStat
in case gcMode dGC of
-- Cap takes part in seq GC.
ModeSync capSync | parNThreads == 1 ->
assert (cap == capSync) $
dGC { gcMode = ModeGHC cap gen
, gcGenStat =
-- Already inserted into gcGenTot in GlobalSyncGC,
-- so only inserting into gen.
if capKey == cap
then IM.insert gen
genGC{ gcAll = gcAll genGC + 1 }
gcGenStat
else gcGenStat
}
-- Cap takes part in par GC.
ModeSync capSync ->
assert (cap == capSync) $
assert (parNThreads > 1) $
dGC { gcMode = ModeGHC cap gen
, gcGenStat =
if capKey == cap
then IM.insert gen
genGC{ gcAll = gcAll genGC + 1
, gcPar = gcPar genGC + 1
}
(IM.insert gcGenTot
-- Already incremented gcAll in SyncGC.
totGC{ gcPar = gcPar totGC + 1 }
gcGenStat)
else gcGenStat
}
-- Cap not in the current GC, leave it alone.
ModeIdle -> dGC
-- Impossible.
ModeInit -> errorAs "scanEvents: GCStatsGHC ModeInit" dGC
ModeGHC{} -> -- error "scanEvents: GCStatsGHC ModeGHC"
dGC -- workaround for #46
-- The last two cases are copied from case @GlobalSyncGC@
-- to work around low-resolution timestamps (#35).
-- Normally, these states would be impossible here, because
-- @GlobalSyncGC@ would already transition away from these
-- states. But if @GlobalSyncGC@ comes too early, the states
-- can appear here. The computed stats are usually only
-- slightly different than if @GlobalSyncGC@ made the state
-- transitions, because the timestamps of @GCStatsGHC@
-- and @GlobalSyncGC@ are normally only slightly different.
--
-- Cap takes part in the GC (not known if seq or par).
-- Here is the moment where all caps taking place in the GC
-- are identified and we can aggregate all their data
-- at once (currently we just increment a counter for each).
-- The EndGC events can come much later for some caps and at
-- that time other caps are already inside their new GC.
ModeStart ->
dGC { gcMode = ModeSync cap
, gcGenStat =
if capKey == cap
then IM.insert gcGenTot
totGC{ gcAll = gcAll totGC + 1 }
gcGenStat
else gcGenStat
}
-- Cap is not in the GC. Mark it as idle to complete
-- the identification of caps that take part
-- in the current GC. Without overwriting the mode,
-- the cap could be processed later on as if
-- it took part in the GC, giving wrong results.
ModeEnd -> dGC { gcMode = ModeIdle }
EndGC ->
assert (gcMode capGC `notElem` [ModeEnd, ModeIdle]) $
let endedGC = capGC { gcMode = ModeEnd }
duration = evTime - gcStartTime capGC
timeGC gen gstat =
let genGC =
IM.findWithDefault emptyGenStat gen (gcGenStat gstat)
newGenGC =
genGC { gcElapsed = gcElapsed genGC + duration
, gcMaxPause = max (gcMaxPause genGC) duration
}
in gstat { gcGenStat = IM.insert gen newGenGC
(gcGenStat gstat) }
timeGenTot = timeGC gcGenTot endedGC
updateMainCap mainCap _ dgm | mainCap /= cap = dgm
updateMainCap _ currentGen dgm =
-- We are at the EndGC event of the main cap of current GC.
-- The timings from this cap are the only that +RTS -s uses.
-- We will record them in the dGCMain field to be able
-- to display a look-alike of +RTS -s.
timeGC currentGen dgm
in case gcMode capGC of
-- We don't know the exact timing of this GC started before
-- the selected interval, so we skip it and clear its mode.
ModeInit -> sd { dGCTable = IM.insert cap endedGC dGCTable }
-- There is no GlobalSyncGC nor GCStatsGHC for this GC.
-- Consequently, we can't determine the main cap,
-- so skip it and and clear its mode.
ModeStart -> sd { dGCTable = IM.insert cap endedGC dGCTable }
-- There is no GCStatsGHC for this GC. Gather partial data.
ModeSync mainCap ->
let dgm = fromMaybe (defaultGC evTime) dGCMain
mainGenTot = updateMainCap mainCap gcGenTot dgm
in sd { dGCTable = IM.insert cap timeGenTot dGCTable
, dGCMain = Just mainGenTot
}
-- All is known, so we update the times.
ModeGHC mainCap gen ->
let newTime = timeGC gen timeGenTot
dgm = fromMaybe (defaultGC evTime) dGCMain
mainGenTot = updateMainCap mainCap gcGenTot dgm
newMain = updateMainCap mainCap gen mainGenTot
in sd { dGCTable = IM.insert cap newTime dGCTable
, dGCMain = Just newMain
}
ModeEnd -> errorAs "scanEvents: EndGC ModeEnd" sd
ModeIdle -> errorAs "scanEvents: EndGC ModeIdle"
$ sd { dGCTable = IM.insert cap endedGC dGCTable }
SparkCounters crt dud ovf cnv fiz gcd _rem ->
-- We are guaranteed the first spark counters event has all zeroes,
-- do we don't need to rig the counters for maximal interval.
let current = RtsSpark crt dud ovf cnv fiz gcd
in sd { dsparkTable =
IM.alter (alterCounter current) cap dsparkTable }
_ -> sd
in scan statsAccum ev
|