1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<base href="../../../" />
<script src="list.js"></script>
<script src="page.js"></script>
<link type="text/css" rel="stylesheet" href="page.css" />
</head>
<body>
[page:Material] →
<h1>[name]</h1>
<p class="desc">
A material rendered with custom shaders. A shader is a small program written in
[link:https://www.khronos.org/files/opengles_shading_language.pdf GLSL] that runs on the GPU.
You may want to use a custom shader if you need to:
<ul>
<li>implement an effect not included with any of the built-in [page:Material materials]</li>
<li>combine many objects into a single [page:Geometry] or [page:BufferGeometry] in order to improve performance</li>
</ul>
There are the following notes to bear in mind when using a *ShaderMaterial*:
<ul>
<li>
A *ShaderMaterial* will only be rendered properly by [page:WebGLRenderer],
since the GLSL code in the [link:https://en.wikipedia.org/wiki/Shader#Vertex_shaders vertexShader]
and [link:https://en.wikipedia.org/wiki/Shader#Pixel_shaders fragmentShader] properties must
be compiled and run on the GPU using WebGL.
</li>
<li>
As of THREE r72, directly assigning attributes in a ShaderMaterial is no longer supported.
A [page:BufferGeometry] instance (instead of a [page:Geometry] instance) must be used instead,
using [page:BufferAttribute] instances to define custom attributes.
</li>
<li>
As of THREE r77, [page:WebGLRenderTarget] or [page:WebGLRenderTargetCube] instances
are no longer supposed to be used as uniforms. Their [page:Texture texture] property
must be used instead.
</li>
<li>
Built in attributes and uniforms are passed to the shaders along with your code.
If you don't want the [page:WebGLProgram] to add anything to your shader code, you can use
[page:RawShaderMaterial] instead of this class.
</li>
<li>
You can use the directive #pragma unroll_loop in order to unroll a *for* loop in GLSL by the shader preprocessor.
The directive has to be placed right above the loop. The loop formatting has to correspond to a defined standard.
<ul>
<li>
The loop has to be [link:https://en.wikipedia.org/wiki/Normalized_loop normalized].
</li>
<li>
The loop variable has to be *i*.
</li>
<li>
The loop has to use a certain whitespace formatting.
</li>
</ul>
<code>
#pragma unroll_loop
for ( int i = 0; i < 10; i ++ ) {
// ...
}
</code>
</li>
</ul>
</p>
<h2>Examples</h2>
<p>
[example:webgl_animation_cloth webgl / animation / cloth ]<br />
[example:webgl_buffergeometry_custom_attributes_particles webgl / buffergeometry / custom / attributes / particles]<br />
[example:webgl_buffergeometry_selective_draw webgl / buffergeometry / selective / draw]<br />
[example:webgl_custom_attributes webgl / custom / attributes]<br />
[example:webgl_custom_attributes_lines webgl / custom / attributes / lines]<br />
[example:webgl_custom_attributes_points webgl / custom / attributes / points]<br />
[example:webgl_custom_attributes_points2 webgl / custom / attributes / points2]<br />
[example:webgl_custom_attributes_points3 webgl / custom / attributes / points3]<br />
[example:webgl_depth_texture webgl / depth / texture]<br />
[example:webgl_gpgpu_birds webgl / gpgpu / birds]<br />
[example:webgl_gpgpu_protoplanet webgl / gpgpu / protoplanet]<br />
[example:webgl_gpgpu_water webgl / gpgpu / water]<br />
[example:webgl_hdr webgl / hdr]<br />
[example:webgl_interactive_points webgl / interactive / points]<br />
[example:webgl_kinect webgl / kinect]<br />
[example:webgl_lights_hemisphere webgl / lights / hemisphere]<br />
[example:webgl_marchingcubes webgl / marchingcubes]<br />
[example:webgl_materials_bumpmap_skin webgl / materials / bumpmap / skin]<br />
[example:webgl_materials_envmaps webgl / materials / envmaps]<br />
[example:webgl_materials_lightmap webgl / materials / lightmap]<br />
[example:webgl_materials_parallaxmap webgl / materials / parallaxmap]<br />
[example:webgl_materials_shaders_fresnel webgl / materials / shaders / fresnel]<br />
[example:webgl_materials_skin webgl / materials / skin]<br />
[example:webgl_materials_wireframe webgl / materials / wireframe]<br />
[example:webgl_modifier_tessellation webgl / modifier / tessellation]<br />
[example:webgl_nearestneighbour webgl / nearestneighbour]<br />
[example:webgl_postprocessing_dof2 webgl / postprocessing / dof2]<br />
[example:webgl_postprocessing_godrays webgl / postprocessing / godrays]
</p>
<code>
var material = new THREE.ShaderMaterial( {
uniforms: {
time: { value: 1.0 },
resolution: { value: new THREE.Vector2() }
},
vertexShader: document.getElementById( 'vertexShader' ).textContent,
fragmentShader: document.getElementById( 'fragmentShader' ).textContent
} );
</code>
<h2>Vertex shaders and fragment shaders</h2>
<div>
<p>You can specify two different types of shaders for each material:</p>
<ul>
<li>
The vertex shader runs first; it receives *attributes*, calculates / manipulates
the position of each individual vertex, and passes additional data (*varying*s) to the fragment shader.
</li>
<li>
The fragment ( or pixel ) shader runs second; it sets the color of each individual "fragment"
(pixel) rendered to the screen.
</li>
</ul>
<p>There are three types of variables in shaders: uniforms, attributes, and varyings:</p>
<ul>
<li>
*Uniforms* are variables that have the same value for all vertices - lighting, fog,
and shadow maps are examples of data that would be stored in uniforms.
Uniforms can be accessed by both the vertex shader and the fragment shader.
</li>
<li>
*Attributes* are variables associated with each vertex---for instance, the vertex position,
face normal, and vertex color are all examples of data that would be stored in attributes.
Attributes can <em>only</em> be accessed within the vertex shader.
</li>
<li>
*Varyings* are variables that are passed from the vertex shader to the fragment shader.
For each fragment, the value of each varying will be smoothly interpolated from the values of adjacent vertices.
</li>
</ul>
<p>
Note that <em>within</em> the shader itself, uniforms and attributes act like constants;
you can only modify their values by passing different values to the buffers from your JavaScript code.
</p>
</div>
<h2>Built-in attributes and uniforms</h2>
<div>
<p>
The [page:WebGLRenderer] provides many attributes and uniforms to shaders by default;
definitions of these variables are prepended to your *fragmentShader* and *vertexShader*
code by the [page:WebGLProgram] when the shader is compiled; you don't need to declare them yourself.
See [page:WebGLProgram] for details of these variables.
</p>
<p>
Some of these uniforms or attributes (e.g. those pertaining lighting, fog, etc.)
require properties to be set on the material in order for [page:WebGLRenderer] to copy
the appropriate values to the GPU - make sure to set these flags if you want to use these
features in your own shader.
</p>
<p>
If you don't want [page:WebGLProgram] to add anything to your shader code, you can use
[page:RawShaderMaterial] instead of this class.
</p>
</div>
<h2>Custom attributes and uniforms</h2>
<div>
<p>
Both custom attributes and uniforms must be declared in your GLSL shader code
(within *vertexShader* and/or *fragmentShader*). Custom uniforms must be defined in <em>both</em>
the *uniforms* property of your *ShaderMaterial*, whereas any custom attributes must be
defined via [page:BufferAttribute] instances. Note that *varying*s only need to
be declared within the shader code (not within the material).
</p>
<p>
To declare a custom attribute, please reference the [page:BufferGeometry] page for an overview,
and the [page:BufferAttribute] page for a detailed look at the *BufferAttribute* API.
</p>
<p>
When creating your attributes, each typed array that you create to hold your
attribute's data must be a multiple of your data type's size. For example, if your
attribute is a [page:Vector3 THREE.Vector3] type, and you have 3000 vertices in your
[page:BufferGeometry], your typed array value must be created with a length of 3000 * 3,
or 9000 (one value per-component). A table of each data type's size is shown below for reference:
</p>
<table>
<caption><a id="attribute-sizes">Attribute sizes</a></caption>
<thead>
<tr>
<th>GLSL type</th>
<th>JavaScript type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>[page:Number]</td>
<td>1</td>
</tr>
<tr>
<td>vec2</td>
<td>[page:Vector2 THREE.Vector2]</td>
<td>2</td>
</tr>
<tr>
<td>vec3</td>
<td>[page:Vector3 THREE.Vector3]</td>
<td>3</td>
</tr>
<tr>
<td>vec3</td>
<td>[page:Color THREE.Color]</td>
<td>3</td>
</tr>
<tr>
<td>vec4</td>
<td>[page:Vector4 THREE.Vector4]</td>
<td>4</td>
</tr>
</tbody>
</table>
<p>
Note that attribute buffers are <em>not</em> refreshed automatically when their values change. To update custom attributes,
set the *needsUpdate* flag to true on the [page:BufferAttribute] of the geometry (see [page:BufferGeometry]
for further details).
</p>
<p>
To declare a custom [page:Uniform], use the *uniforms* property:
<code>
uniforms: {
time: { value: 1.0 },
resolution: { value: new THREE.Vector2() }
}
</code>
</p>
<p>
You're recommended to update custom [page:Uniform] values depending on [page:Object3D object] and [page:Camera camera]
in [page:Object3D.onBeforeRender] because [page:Material] can be shared among [page:Mesh meshes], [page:Matrix4 matrixWorld]
of [page:Scene] and [page:Camera] are updated in [page:WebGLRenderer.render], and some effects(ex:VREffect) render a [page:Scene scene]
with private their own [page:Camera cameras].
</p>
</div>
<h2>Constructor</h2>
<h3>[name]( [param:Object parameters] )</h3>
<p>
[page:Object parameters] - (optional) an object with one or more properties defining the material's appearance.
Any property of the material (including any property inherited from [page:Material]) can be passed in here.
</p>
<h2>Properties</h2>
<p>See the base [page:Material] class for common properties.</p>
<h3>[property:Boolean clipping]</h3>
<p>
Defines whether this material supports clipping; true to let the renderer pass the clippingPlanes uniform. Default is false.
</p>
<h3>[property:Object defaultAttributeValues]</h3>
<p>
When the rendered geometry doesn't include these attributes but the material does,
these default values will be passed to the shaders. This avoids errors when buffer data is missing.
<code>
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
</code>
</p>
<h3>[property:Object defines]</h3>
<p>
Defines custom constants using *#define* directives within the GLSL code for both the
vertex shader and the fragment shader; each key/value pair yields another directive:
<code>
defines: {
FOO: 15,
BAR: true
}
</code>
yields the lines
<code>
#define FOO 15
#define BAR true
</code>
in the GLSL code.
</p>
<h3>[property:Object extensions]</h3>
<p>
An object with the following properties:
<code>
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
</code>
</p>
<h3>[property:Boolean fog]</h3>
<p>
Define whether the material color is affected by global fog settings; true to pass
fog uniforms to the shader. Default is false.
</p>
<h3>[property:String fragmentShader]</h3>
<p>
Fragment shader GLSL code. This is the actual code for the shader. In the example above,
the *vertexShader* and *fragmentShader* code is extracted from the DOM; it could be passed
as a string directly or loaded via AJAX instead.
</p>
<h3>[property:String index0AttributeName]</h3>
<p>
If set, this calls [link:https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/bindAttribLocation gl.bindAttribLocation]
to bind a generic vertex index to an attribute variable.
Default is undefined.
</p>
<h3>[property:Boolean isShaderMaterial]</h3>
<p>
Used to check whether this or derived classes are shader materials. Default is *true*.<br /><br />
You should not change this, as it used internally for optimisation.
</p>
<h3>[property:Boolean lights]</h3>
<p>
Defines whether this material uses lighting; true to pass uniform data related to lighting to this shader. Default is false.
</p>
<h3>[property:Float linewidth]</h3>
<p>Controls wireframe thickness. Default is 1.<br /><br />
Due to limitations of the [link:https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf OpenGL Core Profile]
with the [page:WebGLRenderer WebGL] renderer on most platforms linewidth will
always be 1 regardless of the set value.
</p>
<h3>[property:Boolean morphTargets]</h3>
<p>
When set to true, morph target attributes are available in the vertex shader. Default is *false*.
</p>
<h3>[property:boolean morphNormals]</h3>
<p>
When set to true, morph normal attributes are available in the vertex shader. Default is *false*.
</p>
<h3>[property:WebGLProgram program]</h3>
<p>
The compiled shader program associated with this material, generated by [page:WebGLRenderer].
You should not need to access this property.
</p>
<h3>[property:Boolean flatShading]</h3>
<p>
Define whether the material is rendered with flat shading. Default is false.
</p>
<h3>[property:Boolean skinning]</h3>
<p>
Define whether the material uses skinning; true to pass skinning attributes to the shader. Default is false.
</p>
<h3>[property:Object uniforms]</h3>
<p>
An object of the form:
<code>
{ "uniform1": { value: 1.0 }, "uniform2": { value: 2 } }
</code>
specifying the uniforms to be passed to the shader code; keys are uniform names, values are definitions of the form
<code>
{ value: 1.0 }
</code>
where *value* is the value of the uniform. Names must match the name of the uniform,
as defined in the GLSL code. Note that uniforms are refreshed on every frame,
so updating the value of the uniform will immediately update the value available to the GLSL code.
</p>
<h3>[property:Number vertexColors]</h3>
<p>
Define how the vertices are colored, by defining how the *colors* attribute gets populated.
Possible values are [page:Materials THREE.NoColors], [page:Materials THREE.FaceColors] and
[page:Materials THREE.VertexColors]. Default is THREE.NoColors.
</p>
<h3>[property:String vertexShader]</h3>
<p>
Vertex shader GLSL code. This is the actual code for the shader. In the example above,
the *vertexShader* and *fragmentShader* code is extracted from the DOM; it could be passed
as a string directly or loaded via AJAX instead.
</p>
<h3>[property:Boolean wireframe]</h3>
<p>
Render geometry as wireframe (using GL_LINES instead of GL_TRIANGLES). Default is false (i.e. render as flat polygons).
</p>
<h3>[property:Float wireframeLinewidth]</h3>
<p>Controls wireframe thickness. Default is 1.<br /><br />
Due to limitations of the [link:https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf OpenGL Core Profile]
with the [page:WebGLRenderer WebGL] renderer on most platforms linewidth will
always be 1 regardless of the set value.
</p>
<h2>Methods</h2>
<p>See the base [page:Material] class for common methods.</p>
<h3>[method:ShaderMaterial clone]() [param:ShaderMaterial this]</h3>
<p>
Generates a shallow copy of this material. Note that the vertexShader and fragmentShader
are copied <em>by reference</em>, as are the definitions of the *attributes*; this means
that clones of the material will share the same compiled [page:WebGLProgram]. However, the
*uniforms* are copied <em>by value</em>, which allows you to have different sets of uniforms
for different copies of the material.
</p>
<h2>Source</h2>
<p>
[link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
</p>
</body>
</html>
|