1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<base href="../../../" />
<script src="list.js"></script>
<script src="page.js"></script>
<link type="text/css" rel="stylesheet" href="page.css" />
</head>
<body>
<h1>[name]</h1>
<p class="desc">
Implementation of a [link:http://en.wikipedia.org/wiki/Quaternion quaternion].
This is used for [link:https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation rotating things]
without encountering the dreaded
[link:http://en.wikipedia.org/wiki/Gimbal_lock gimbal lock] issue, amongst other
advantages.
</p>
<h2>Example</h2>
<code>
var quaternion = new THREE.Quaternion();
quaternion.setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), Math.PI / 2 );
var vector = new THREE.Vector3( 1, 0, 0 );
vector.applyQuaternion( quaternion );
</code>
<h2>Constructor</h2>
<h3>[name]( [param:Float x], [param:Float y], [param:Float z], [param:Float w] )</h3>
<p>
[page:Float x] - x coordinate<br />
[page:Float y] - y coordinate<br />
[page:Float z] - z coordinate<br />
[page:Float w] - w coordinate
</p>
<h2>Properties</h2>
<h3>[property:Boolean isQuaternion]</h3>
<p>
Used to check whether this or derived classes are Quaternions. Default is *true*.<br /><br />
You should not change this, as it is used internally for optimisation.
</p>
<h3>[property:Float x]</h3>
<h3>[property:Float y]</h3>
<h3>[property:Float z]</h3>
<h3>[property:Float w]</h3>
<h2>Methods</h2>
<h3>[method:Float angleTo]( [param:Quaternion q] )</h3>
<p>
Returns the angle between this quaternion and quaternion [page:Quaternion q] in radians.
</p>
<h3>[method:Quaternion clone]()</h3>
<p>
Creates a new Quaternion with identical [page:.x x], [page:.y y],
[page:.z z] and [page:.w w] properties to this one.
</p>
<h3>[method:Quaternion conjugate]()</h3>
<p>
Returns the rotational conjugate of this quaternion. The conjugate of a quaternion
represents the same rotation in the opposite direction about the rotational axis.
</p>
<h3>[method:Quaternion copy]( [param:Quaternion q] )</h3>
<p>
Copies the [page:.x x], [page:.y y], [page:.z z] and [page:.w w] properties
of [page:Quaternion q] into this quaternion.
</p>
<h3>[method:Boolean equals]( [param:Quaternion v] )</h3>
<p>
[page:Quaternion v] - Quaternion that this quaternion will be compared to.<br /><br />
Compares the [page:.x x], [page:.y y], [page:.z z] and [page:.w w] properties of
[page:Quaternion v] to the equivalent properties of this quaternion to determine if they
represent the same rotation.
</p>
<h3>[method:Float dot]( [param:Quaternion v] )</h3>
<p>
Calculates the [link:https://en.wikipedia.org/wiki/Dot_product dot product] of
quaternions [page:Quaternion v] and this one.
</p>
<h3>[method:Quaternion fromArray]( [param:Array array], [param:Integer offset] )</h3>
<p>
[page:Array array] - array of format (x, y, z, w) used to construct the quaternion.<br />
[page:Integer offset] - (optional) an offset into the array.<br /><br />
Sets this quaternion's [page:.x x], [page:.y y], [page:.z z] and [page:.w w] properties
from an array.
</p>
<h3>[method:Quaternion inverse]()</h3>
<p>
Inverts this quaternion - calculates the [page:.conjugate conjugate]. The quaternion is assumed to have unit length.
</p>
<h3>[method:Float length]()</h3>
<p>Computes the [link:https://en.wikipedia.org/wiki/Euclidean_distance Euclidean length]
(straight-line length) of this quaternion, considered as a 4 dimensional vector.</p>
<h3>[method:Float lengthSq]()</h3>
<p>
Computes the [link:https://en.wikipedia.org/wiki/Euclidean_distance Euclidean length]
(straight-line length) of this quaternion, considered as a 4 dimensional
vector. This can be useful if you are comparing the lengths of two quaternions,
as this is a slightly more efficient calculation than [page:.length length]().
</p>
<h3>[method:Quaternion normalize]()</h3>
<p>
[link:https://en.wikipedia.org/wiki/Normalized_vector Normalizes] this quaternion - that is,
calculated the quaternion that performs the same rotation as this one, but has [page:.length length]
equal to *1*.
</p>
<h3>[method:Quaternion multiply]( [param:Quaternion q] )</h3>
<p>Multiplies this quaternion by [page:Quaternion q].</p>
<h3>[method:Quaternion multiplyQuaternions]( [param:Quaternion a], [param:Quaternion b] )</h3>
<p>
Sets this quaternion to [page:Quaternion a] x [page:Quaternion b].<br />
Adapted from the method outlined [link:http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm here].
</p>
<h3>[method:Quaternion premultiply]( [param:Quaternion q] )</h3>
<p>Pre-multiplies this quaternion by [page:Quaternion q].</p>
<h3>[method:Quaternion rotateTowards]( [param:Quaternion q], [param:Float step] )</h3>
<p>
[page:Quaternion q] - The target quaternion.<br />
[page:float step] - The angular step in radians.<br /><br />
Rotates this quaternion by a given angular step to the defined quaternion *q*.
The method ensures that the final quaternion will not overshoot *q*.
</p>
<h3>[method:Quaternion slerp]( [param:Quaternion qb], [param:float t] )</h3>
<p>
[page:Quaternion qb] - The other quaternion rotation<br />
[page:float t] - interpolation factor in the closed interval [0, 1].<br /><br />
Handles the spherical linear interpolation between quaternions. [page:float t] represents the
amount of rotation between this quaternion (where [page:float t] is 0) and [page:Quaternion qb] (where
[page:float t] is 1). This quaternion is set to the result. Also see the static version of the
*slerp* below.
<code>
// rotate a mesh towards a target quaternion
mesh.quaternion.slerp( endQuaternion, 0.01 );
</code>
</p>
<h3>[method:Quaternion set]( [param:Float x], [param:Float y], [param:Float z], [param:Float w] )</h3>
<p>Sets [page:.x x], [page:.y y], [page:.z z], [page:.w w] properties of this quaternion.</p>
<h3>[method:Quaternion setFromAxisAngle]( [param:Vector3 axis], [param:Float angle] )</h3>
<p>
Sets this quaternion from rotation specified by [page:Vector3 axis] and [page:Float angle].<br />
Adapted from the method [link:http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm here].<br />
*Axis* is assumed to be normalized, *angle* is in radians.
</p>
<h3>[method:Quaternion setFromEuler]( [param:Euler euler] )</h3>
<p>Sets this quaternion from the rotation specified by [page:Euler] angle.</p>
<h3>[method:Quaternion setFromRotationMatrix]( [param:Matrix4 m] )</h3>
<p>
Sets this quaternion from rotation component of [page:Matrix4 m].<br />
Adapted from the method [link:http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm here].
</p>
<h3>[method:Quaternion setFromUnitVectors]( [param:Vector3 vFrom], [param:Vector3 vTo] )</h3>
<p>
Sets this quaternion to the rotation required to rotate direction vector [page:Vector3 vFrom] to
direction vector [page:Vector3 vTo].<br />
Adapted from the method [link:http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors here].<br />
[page:Vector3 vFrom] and [page:Vector3 vTo] are assumed to be normalized.
</p>
<h3>[method:Array toArray]( [param:Array array], [param:Integer offset] )</h3>
<p>
[page:Array array] - An optional array to store the quaternion. If not specified, a new array will be created.<br/>
[page:Integer offset] - (optional) if specified, the result will be copied
into this [page:Array].<br /><br />
Returns the numerical elements of this quaternion in an array of format [x, y, z, w].
</p>
<h2>Static Methods</h2>
<p>
Static methods (as opposed to instance methods) are designed to be called directly from the class,
rather than from a specific instance. So to use the static version of, call it like so:
<code>
THREE.Quaternion.slerp( qStart, qEnd, qTarget, t );
</code>
By contrast, to call the 'normal' or instanced slerp method, you would do the following:
<code>
//instantiate a quaternion with default values
var q = new THREE.Quaternion();
//call the instanced slerp method
q.slerp( qb, t )
</code>
</p>
<h3>[method:Quaternion slerp]( [param:Quaternion qStart], [param:Quaternion qEnd], [param:Quaternion qTarget], [param:Float t] )</h3>
<p>
[page:Quaternion qStart] - The starting quaternion (where [page:Float t] is 0)<br />
[page:Quaternion qEnd] - The ending quaternion (where [page:Float t] is 1)<br />
[page:Quaternion qTarget] - The target quaternion that gets set with the result<br />
[page:float t] - interpolation factor in the closed interval [0, 1].<br /><br />
Unlike the normal method, the static version of slerp sets a target quaternion to the result of the slerp operation.
<code>
// Code setup
var startQuaternion = new THREE.Quaternion().set( 0, 0, 0, 1 ).normalize();
var endQuaternion = new THREE.Quaternion().set( 1, 1, 1, 1 ).normalize();
var t = 0;
// Update a mesh's rotation in the loop
t = ( t + 0.01 ) % 1; // constant angular momentum
THREE.Quaternion.slerp( startQuaternion, endQuaternion, mesh.quaternion, t );
</code>
</p>
<h3>[method:null slerpFlat]( [param:Array dst], [param:Integer dstOffset], [param:Array src0], [param:Integer srcOffset0], [param:Array src1], [param:Integer srcOffset1], [param:Float t] )</h3>
<p>
[page:Array dst] - The output array.<br />
[page:Integer dstOffset] - An offset into the output array.<br />
[page:Array src0] - The source array of the starting quaternion.<br />
[page:Integer srcOffset0] - An offset into the array *src0*.<br />
[page:Array src1] - The source array of the target quatnerion.<br />
[page:Integer srcOffset1] - An offset into the array *src1*.<br />
[page:float t] - Normalized interpolation factor (between 0 and 1).<br /><br />
</p>
<p>
Like the static *slerp* method above, but operates directly on flat arrays of numbers.
</p>
<!-- Note: Do not add non-static methods to the bottom of this page. Put them above the <h2>Static Methods</h2> -->
<h2>Source</h2>
<p>
[link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
</p>
</body>
</html>
|