1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
|
var TypedArrayUtils = {};
/**
* In-place quicksort for typed arrays (e.g. for Float32Array)
* provides fast sorting
* useful e.g. for a custom shader and/or BufferGeometry
*
* @author Roman Bolzern <roman.bolzern@fhnw.ch>, 2013
* @author I4DS http://www.fhnw.ch/i4ds, 2013
* @license MIT License <http://www.opensource.org/licenses/mit-license.php>
*
* Complexity: http://bigocheatsheet.com/ see Quicksort
*
* Example:
* points: [x, y, z, x, y, z, x, y, z, ...]
* eleSize: 3 //because of (x, y, z)
* orderElement: 0 //order according to x
*/
TypedArrayUtils.quicksortIP = function ( arr, eleSize, orderElement ) {
var stack = [];
var sp = - 1;
var left = 0;
var right = arr.length / eleSize - 1;
var tmp = 0.0, x = 0, y = 0;
var swapF = function ( a, b ) {
a *= eleSize; b *= eleSize;
for ( y = 0; y < eleSize; y ++ ) {
tmp = arr[ a + y ];
arr[ a + y ] = arr[ b + y ];
arr[ b + y ] = tmp;
}
};
var i, j, swap = new Float32Array( eleSize ), temp = new Float32Array( eleSize );
while ( true ) {
if ( right - left <= 25 ) {
for ( j = left + 1; j <= right; j ++ ) {
for ( x = 0; x < eleSize; x ++ ) {
swap[ x ] = arr[ j * eleSize + x ];
}
i = j - 1;
while ( i >= left && arr[ i * eleSize + orderElement ] > swap[ orderElement ] ) {
for ( x = 0; x < eleSize; x ++ ) {
arr[ ( i + 1 ) * eleSize + x ] = arr[ i * eleSize + x ];
}
i --;
}
for ( x = 0; x < eleSize; x ++ ) {
arr[ ( i + 1 ) * eleSize + x ] = swap[ x ];
}
}
if ( sp == - 1 ) break;
right = stack[ sp -- ]; //?
left = stack[ sp -- ];
} else {
var median = ( left + right ) >> 1;
i = left + 1;
j = right;
swapF( median, i );
if ( arr[ left * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
swapF( left, right );
}
if ( arr[ i * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
swapF( i, right );
}
if ( arr[ left * eleSize + orderElement ] > arr[ i * eleSize + orderElement ] ) {
swapF( left, i );
}
for ( x = 0; x < eleSize; x ++ ) {
temp[ x ] = arr[ i * eleSize + x ];
}
while ( true ) {
do i ++; while ( arr[ i * eleSize + orderElement ] < temp[ orderElement ] );
do j --; while ( arr[ j * eleSize + orderElement ] > temp[ orderElement ] );
if ( j < i ) break;
swapF( i, j );
}
for ( x = 0; x < eleSize; x ++ ) {
arr[ ( left + 1 ) * eleSize + x ] = arr[ j * eleSize + x ];
arr[ j * eleSize + x ] = temp[ x ];
}
if ( right - i + 1 >= j - left ) {
stack[ ++ sp ] = i;
stack[ ++ sp ] = right;
right = j - 1;
} else {
stack[ ++ sp ] = left;
stack[ ++ sp ] = j - 1;
left = i;
}
}
}
return arr;
};
/**
* k-d Tree for typed arrays (e.g. for Float32Array), in-place
* provides fast nearest neighbour search
* useful e.g. for a custom shader and/or BufferGeometry, saves tons of memory
* has no insert and remove, only buildup and neares neighbour search
*
* Based on https://github.com/ubilabs/kd-tree-javascript by Ubilabs
*
* @author Roman Bolzern <roman.bolzern@fhnw.ch>, 2013
* @author I4DS http://www.fhnw.ch/i4ds, 2013
* @license MIT License <http://www.opensource.org/licenses/mit-license.php>
*
* Requires typed array quicksort
*
* Example:
* points: [x, y, z, x, y, z, x, y, z, ...]
* metric: function(a, b){ return Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2) + Math.pow(a[2] - b[2], 2); } //Manhatten distance
* eleSize: 3 //because of (x, y, z)
*
* Further information (including mathematical properties)
* http://en.wikipedia.org/wiki/Binary_tree
* http://en.wikipedia.org/wiki/K-d_tree
*
* If you want to further minimize memory usage, remove Node.depth and replace in search algorithm with a traversal to root node (see comments at TypedArrayUtils.Kdtree.prototype.Node)
*/
TypedArrayUtils.Kdtree = function ( points, metric, eleSize ) {
var self = this;
var maxDepth = 0;
var getPointSet = function ( points, pos ) {
return points.subarray( pos * eleSize, pos * eleSize + eleSize );
};
function buildTree( points, depth, parent, pos ) {
var dim = depth % eleSize,
median,
node,
plength = points.length / eleSize;
if ( depth > maxDepth ) maxDepth = depth;
if ( plength === 0 ) return null;
if ( plength === 1 ) {
return new self.Node( getPointSet( points, 0 ), depth, parent, pos );
}
TypedArrayUtils.quicksortIP( points, eleSize, dim );
median = Math.floor( plength / 2 );
node = new self.Node( getPointSet( points, median ), depth, parent, median + pos );
node.left = buildTree( points.subarray( 0, median * eleSize ), depth + 1, node, pos );
node.right = buildTree( points.subarray( ( median + 1 ) * eleSize, points.length ), depth + 1, node, pos + median + 1 );
return node;
}
this.root = buildTree( points, 0, null, 0 );
this.getMaxDepth = function () {
return maxDepth;
};
this.nearest = function ( point, maxNodes, maxDistance ) {
/* point: array of size eleSize
maxNodes: max amount of nodes to return
maxDistance: maximum distance to point result nodes should have
condition (not implemented): function to test node before it's added to the result list, e.g. test for view frustum
*/
var i,
result,
bestNodes;
bestNodes = new TypedArrayUtils.Kdtree.BinaryHeap(
function ( e ) {
return - e[ 1 ];
}
);
function nearestSearch( node ) {
var bestChild,
dimension = node.depth % eleSize,
ownDistance = metric( point, node.obj ),
linearDistance = 0,
otherChild,
i,
linearPoint = [];
function saveNode( node, distance ) {
bestNodes.push( [ node, distance ] );
if ( bestNodes.size() > maxNodes ) {
bestNodes.pop();
}
}
for ( i = 0; i < eleSize; i += 1 ) {
if ( i === node.depth % eleSize ) {
linearPoint[ i ] = point[ i ];
} else {
linearPoint[ i ] = node.obj[ i ];
}
}
linearDistance = metric( linearPoint, node.obj );
// if it's a leaf
if ( node.right === null && node.left === null ) {
if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
saveNode( node, ownDistance );
}
return;
}
if ( node.right === null ) {
bestChild = node.left;
} else if ( node.left === null ) {
bestChild = node.right;
} else {
if ( point[ dimension ] < node.obj[ dimension ] ) {
bestChild = node.left;
} else {
bestChild = node.right;
}
}
// recursive search
nearestSearch( bestChild );
if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
saveNode( node, ownDistance );
}
// if there's still room or the current distance is nearer than the best distance
if ( bestNodes.size() < maxNodes || Math.abs( linearDistance ) < bestNodes.peek()[ 1 ] ) {
if ( bestChild === node.left ) {
otherChild = node.right;
} else {
otherChild = node.left;
}
if ( otherChild !== null ) {
nearestSearch( otherChild );
}
}
}
if ( maxDistance ) {
for ( i = 0; i < maxNodes; i += 1 ) {
bestNodes.push( [ null, maxDistance ] );
}
}
nearestSearch( self.root );
result = [];
for ( i = 0; i < maxNodes; i += 1 ) {
if ( bestNodes.content[ i ][ 0 ] ) {
result.push( [ bestNodes.content[ i ][ 0 ], bestNodes.content[ i ][ 1 ] ] );
}
}
return result;
};
};
/**
* If you need to free up additional memory and agree with an additional O( log n ) traversal time you can get rid of "depth" and "pos" in Node:
* Depth can be easily done by adding 1 for every parent (care: root node has depth 0, not 1)
* Pos is a bit tricky: Assuming the tree is balanced (which is the case when after we built it up), perform the following steps:
* By traversing to the root store the path e.g. in a bit pattern (01001011, 0 is left, 1 is right)
* From buildTree we know that "median = Math.floor( plength / 2 );", therefore for each bit...
* 0: amountOfNodesRelevantForUs = Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
* 1: amountOfNodesRelevantForUs = Math.ceil( (pamountOfNodesRelevantForUs - 1) / 2 );
* pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
* when recursion done, we still need to add all left children of target node:
* pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
* and I think you need to +1 for the current position, not sure.. depends, try it out ^^
*
* I experienced that for 200'000 nodes you can get rid of 4 MB memory each, leading to 8 MB memory saved.
*/
TypedArrayUtils.Kdtree.prototype.Node = function ( obj, depth, parent, pos ) {
this.obj = obj;
this.left = null;
this.right = null;
this.parent = parent;
this.depth = depth;
this.pos = pos;
};
/**
* Binary heap implementation
* @author http://eloquentjavascript.net/appendix2.htm
*/
TypedArrayUtils.Kdtree.BinaryHeap = function ( scoreFunction ) {
this.content = [];
this.scoreFunction = scoreFunction;
};
TypedArrayUtils.Kdtree.BinaryHeap.prototype = {
push: function ( element ) {
// Add the new element to the end of the array.
this.content.push( element );
// Allow it to bubble up.
this.bubbleUp( this.content.length - 1 );
},
pop: function () {
// Store the first element so we can return it later.
var result = this.content[ 0 ];
// Get the element at the end of the array.
var end = this.content.pop();
// If there are any elements left, put the end element at the
// start, and let it sink down.
if ( this.content.length > 0 ) {
this.content[ 0 ] = end;
this.sinkDown( 0 );
}
return result;
},
peek: function () {
return this.content[ 0 ];
},
remove: function ( node ) {
var len = this.content.length;
// To remove a value, we must search through the array to find it.
for ( var i = 0; i < len; i ++ ) {
if ( this.content[ i ] == node ) {
// When it is found, the process seen in 'pop' is repeated
// to fill up the hole.
var end = this.content.pop();
if ( i != len - 1 ) {
this.content[ i ] = end;
if ( this.scoreFunction( end ) < this.scoreFunction( node ) ) {
this.bubbleUp( i );
} else {
this.sinkDown( i );
}
}
return;
}
}
throw new Error( "Node not found." );
},
size: function () {
return this.content.length;
},
bubbleUp: function ( n ) {
// Fetch the element that has to be moved.
var element = this.content[ n ];
// When at 0, an element can not go up any further.
while ( n > 0 ) {
// Compute the parent element's index, and fetch it.
var parentN = Math.floor( ( n + 1 ) / 2 ) - 1,
parent = this.content[ parentN ];
// Swap the elements if the parent is greater.
if ( this.scoreFunction( element ) < this.scoreFunction( parent ) ) {
this.content[ parentN ] = element;
this.content[ n ] = parent;
// Update 'n' to continue at the new position.
n = parentN;
} else {
// Found a parent that is less, no need to move it further.
break;
}
}
},
sinkDown: function ( n ) {
// Look up the target element and its score.
var length = this.content.length,
element = this.content[ n ],
elemScore = this.scoreFunction( element );
while ( true ) {
// Compute the indices of the child elements.
var child2N = ( n + 1 ) * 2, child1N = child2N - 1;
// This is used to store the new position of the element, if any.
var swap = null;
// If the first child exists (is inside the array)...
if ( child1N < length ) {
// Look it up and compute its score.
var child1 = this.content[ child1N ],
child1Score = this.scoreFunction( child1 );
// If the score is less than our element's, we need to swap.
if ( child1Score < elemScore ) swap = child1N;
}
// Do the same checks for the other child.
if ( child2N < length ) {
var child2 = this.content[ child2N ],
child2Score = this.scoreFunction( child2 );
if ( child2Score < ( swap === null ? elemScore : child1Score ) ) swap = child2N;
}
// If the element needs to be moved, swap it, and continue.
if ( swap !== null ) {
this.content[ n ] = this.content[ swap ];
this.content[ swap ] = element;
n = swap;
} else {
// Otherwise, we are done.
break;
}
}
}
};
export { TypedArrayUtils };
|