1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<base href="../../../" />
<script src="list.js"></script>
<script src="page.js"></script>
<link type="text/css" rel="stylesheet" href="page.css" />
</head>
<body>
<h1>[name]</h1>
<p class="desc">
A class representing a 4x4 [link:https://en.wikipedia.org/wiki/Matrix_(mathematics) matrix].<br /><br />
The most common use of a 4x4 matrix in 3D computer graphics is as a
[link:https://en.wikipedia.org/wiki/Transformation_matrix Transformation Matrix].
For an introduction to transformation matrices as used in WebGL, check out
[link:http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices this tutorial].<br /><br />
This allows a [page:Vector3] representing a point in 3D space to undergo transformations
such as translation, rotation, shear, scale, reflection, orthogonal or perspective projection
and so on, by being multiplied by the matrix. This is known as <em>applying</em>
the matrix to the vector.<br /><br />
Every [page:Object3D] has three associated Matrix4s:
<ul>
<li>
[page:Object3D.matrix]: This stores the local transform of the object. This is the object's transformation relative to its parent.
</li>
<li>
[page:Object3D.matrixWorld]: The global or world transform of the object. If the object has no parent, then this is identical to the local transform stored in [page:Object3D.matrix matrix].
</li>
<li>
[page:Object3D.modelViewMatrix]: This represents the object's transformation relative to the camera's coordinate system.
An object's modelViewMatrix is the object's matrixWorld pre-multiplied by the camera's matrixWorldInverse.
</li>
</ul>
[page:Camera Cameras] have two additional Matrix4s:
<ul>
<li>
[page:Camera.matrixWorldInverse]: The view matrix - the inverse of the Camera's [page:Object3D.matrixWorld matrixWorld].
</li>
<li>
[page:Camera.projectionMatrix]: Represents the information how to project the scene to clip space.
</li>
</ul>
Note: [page:Object3D.normalMatrix] is not a Matrix4, but a [page:Matrix3].
</p>
<h2>A Note on Row-Major and Column-Major Ordering</h2>
<p>
The [page:set]() method takes arguments in [link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order row-major]
order, while internally they are stored in the [page:.elements elements] array in column-major order.<br /><br />
This means that calling
<code>
var m = new THREE.Matrix4();
m.set( 11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34,
41, 42, 43, 44 );
</code>
will result in the [page:.elements elements] array containing:
<code>
m.elements = [ 11, 21, 31, 41,
12, 22, 32, 42,
13, 23, 33, 43,
14, 24, 34, 44 ];
</code>
and internally all calculations are performed using column-major ordering. However, as the actual ordering
makes no difference mathematically and most people are used to thinking about matrices in row-major order,
the three.js documentation shows matrices in row-major order. Just bear in mind that if you are reading the source
code, you'll have to take the [link:https://en.wikipedia.org/wiki/Transpose transpose] of any matrices outlined here to make sense of the calculations.
</p>
<h2>Constructor</h2>
<h3>[name]()</h3>
<p>
Creates and initializes the [name] to the 4x4
[link:https://en.wikipedia.org/wiki/Identity_matrix identity matrix].
</p>
<h2>Properties</h2>
<h3>[property:Array elements]</h3>
<p>
A [link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order column-major]
list of matrix values.
</p>
<h3>[property:Boolean isMatrix4]</h3>
<p>
Used to check whether this or derived classes are Matrix4s. Default is *true*.<br /><br />
You should not change this, as it used internally for optimisation.
</p>
<h2>Methods</h2>
<h3>[method:Array applyToBufferAttribute]( [param:BufferAttribute attribute] )</h3>
<p>
[page:BufferAttribute attribute] - An attribute of floats that represent 3D vectors.<br /><br />
Multiplies (applies) this matrix to every 3D vector in the [page:BufferAttribute attribute].
</p>
<h3>[method:Matrix4 clone]()</h3>
<p>Creates a new Matrix4 with identical [page:.elements elements] to this one.</p>
<h3>[method:this compose]( [param:Vector3 position], [param:Quaternion quaternion], [param:Vector3 scale] )</h3>
<p>
Sets this matrix to the transformation composed of [page:Vector3 position],
[page:Quaternion quaternion] and [page:Vector3 scale]. Internally this calls
[page:.makeRotationFromQuaternion makeRotationFromQuaternion]( [page:Quaternion quaternion] )
followed by [page:.scale scale]( [page:Vector3 scale] ), then finally
[page:.setPosition setPosition]( [page:Vector3 position] ).
</p>
<h3>[method:this copy]( [param:Matrix4 m] )</h3>
<p>Copies the [page:.elements elements] of matrix [page:Matrix4 m] into this matrix.</p>
<h3>[method:this copyPosition]( [param:Matrix4 m] )</h3>
<p>
Copies the translation component of the supplied matrix [page:Matrix4 m] into this
matrix's translation component.
</p>
<h3>[method:null decompose]( [param:Vector3 position], [param:Quaternion quaternion], [param:Vector3 scale] )</h3>
<p>
Decomposes this matrix into it's [page:Vector3 position], [page:Quaternion quaternion] and
[page:Vector3 scale] components.
</p>
<h3>[method:Float determinant]()</h3>
<p>
Computes and returns the
[link:https://en.wikipedia.org/wiki/Determinant determinant] of this matrix.<br /><br />
Based on the method outlined [link:http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm here].
</p>
<h3>[method:Boolean equals]( [param:Matrix4 m] )</h3>
<p>Return true if this matrix and [page:Matrix4 m] are equal.</p>
<h3>[method:this extractBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )</h3>
<p>
Extracts the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] of this
matrix into the three axis vectors provided. If this matrix is:
<code>
a, b, c, d,
e, f, g, h,
i, j, k, l,
m, n, o, p
</code>
then the [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] will be set to:
<code>
xAxis = (a, e, i)
yAxis = (b, f, j)
zAxis = (c, g, k)
</code>
</p>
<h3>[method:this extractRotation]( [param:Matrix4 m] )</h3>
<p>
Extracts the rotation component of the supplied matrix [page:Matrix4 m] into this matrix's
rotation component.
</p>
<h3>[method:this fromArray]( [param:Array array], [param:Integer offset] )</h3>
<p>
[page:Array array] - the array to read the elements from.<br />
[page:Integer offset] - ( optional ) offset into the array. Default is 0.<br /><br />
Sets the elements of this matrix based on an [page:Array array] in
[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order column-major] format.
</p>
<h3>[method:this getInverse]( [param:Matrix4 m], [param:Boolean throwOnDegenerate] )</h3>
<p>
[page:Matrix4 m] - the matrix to take the inverse of.<br />
[page:Boolean throwOnDegenerate] - (optional) If true, throw an error if the matrix is degenerate (not invertible).<br /><br />
Set this matrix to the [link:https://en.wikipedia.org/wiki/Invertible_matrix inverse] of the passed matrix [page:Matrix4 m],
using the method outlined [link:http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm here].
If [page:Boolean throwOnDegenerate] is not set and the matrix is not invertible, set this to the 4x4 identity matrix.
</p>
<h3>[method:Float getMaxScaleOnAxis]()</h3>
<p>Gets the maximum scale value of the 3 axes.</p>
<h3>[method:this identity]()</h3>
<p>Resets this matrix to the [link:https://en.wikipedia.org/wiki/Identity_matrix identity matrix].</p>
<h3>[method:this lookAt]( [param:Vector3 eye], [param:Vector3 center], [param:Vector3 up], )</h3>
<p>
Constructs a rotation matrix, looking from [page:Vector3 eye] towards [page:Vector3 center]
oriented by the [page:Vector3 up] vector.
</p>
<h3>[method:this makeRotationAxis]( [param:Vector3 axis], [param:Float theta] )</h3>
<p>
[page:Vector3 axis] — Rotation axis, should be normalized.<br />
[page:Float theta] — Rotation angle in radians.<br /><br />
Sets this matrix as rotation transform around [page:Vector3 axis] by [page:Float theta] radians.<br />
This is a somewhat controversial but mathematically sound alternative to rotating via [page:Quaternions].
See the discussion [link:https://www.gamedev.net/articles/programming/math-and-physics/do-we-really-need-quaternions-r1199 here].
</p>
<h3>[method:this makeBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )</h3>
<p>
Set this to the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] matrix consisting
of the three provided basis vectors:
<code>
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
</code>
</p>
<h3>[method:this makePerspective]( [param:Float left], [param:Float right], [param:Float top], [param:Float bottom], [param:Float near], [param:Float far] )</h3>
<p>
Creates a [link:https://en.wikipedia.org/wiki/3D_projection#Perspective_projection perspective projection] matrix.
This is used internally by [page:PerspectiveCamera.updateProjectionMatrix]()
</p>
<h3>[method:this makeOrthographic]( [param:Float left], [param:Float right], [param:Float top], [param:Float bottom], [param:Float near], [param:Float far] )</h3>
<p>
Creates an [link:https://en.wikipedia.org/wiki/Orthographic_projection orthographic projection] matrix.
This is used internally by [page:OrthographicCamera.updateProjectionMatrix]().
</p>
<h3>[method:this makeRotationFromEuler]( [param:Euler euler] )</h3>
<p>
Sets the rotation component (the upper left 3x3 matrix) of this matrix to the rotation specified by the given [page:Euler Euler Angle].
The rest of the matrix is set to the identity. Depending on the [page:Euler.order order] of the [page:Euler euler], there are six possible outcomes.
See [link:https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix this page] for a complete list.
</p>
<h3>[method:this makeRotationFromQuaternion]( [param:Quaternion q] )</h3>
<p>
Sets the rotation component of this matrix to the rotation specified by [page:Quaternion q], as outlined
[link:https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion here].
The rest of the matrix is set to the identity. So, given [page:Quaternion q] = w + xi + yj + zk, the resulting matrix will be:
<code>
1-2y²-2z² 2xy-2zw 2xz+2yw 0
2xy+2zw 1-2x²-2z² 2yz-2xw 0
2xz-2yw 2yz+2xw 1-2x²-2y² 0
0 0 0 1
</code>
</p>
<h3>[method:this makeRotationX]( [param:Float theta] )</h3>
<p>
[page:Float theta] — Rotation angle in radians.<br /><br />
Sets this matrix as a rotational transformation around the X axis by [page:Float theta] (θ) radians.
The resulting matrix will be:
<code>
1 0 0 0
0 cos(θ) -sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1
</code>
</p>
<h3>[method:this makeRotationY]( [param:Float theta] )</h3>
<p>
[page:Float theta] — Rotation angle in radians.<br /><br />
Sets this matrix as a rotational transformation around the Y axis by [page:Float theta] (θ) radians.
The resulting matrix will be:
<code>
cos(θ) 0 sin(θ) 0
0 1 0 0
-sin(θ) 0 cos(θ) 0
0 0 0 1
</code>
</p>
<h3>[method:this makeRotationZ]( [param:Float theta] )</h3>
<p>
[page:Float theta] — Rotation angle in radians.<br /><br />
Sets this matrix as a rotational transformation around the Z axis by [page:Float theta] (θ) radians.
The resulting matrix will be:
<code>
cos(θ) -sin(θ) 0 0
sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1
</code>
</p>
<h3>[method:this makeScale]( [param:Float x], [param:Float y], [param:Float z] )</h3>
<p>
[page:Float x] - the amount to scale in the X axis.<br />
[page:Float y] - the amount to scale in the Y axis.<br />
[page:Float z] - the amount to scale in the Z axis.<br /><br />
Sets this matrix as scale transform:
<code>
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
</code>
</p>
<h3>[method:this makeShear]( [param:Float x], [param:Float y], [param:Float z] )</h3>
<p>
[page:Float x] - the amount to shear in the X axis.<br />
[page:Float y] - the amount to shear in the Y axis.<br />
[page:Float z] - the amount to shear in the Z axis.<br /><br />
Sets this matrix as a shear transform:
<code>
1, y, z, 0,
x, 1, z, 0,
x, y, 1, 0,
0, 0, 0, 1
</code>
</p>
<h3>[method:this makeTranslation]( [param:Float x], [param:Float y], [param:Float z] )</h3>
<p>
[page:Float x] - the amount to translate in the X axis.<br />
[page:Float y] - the amount to translate in the Y axis.<br />
[page:Float z] - the amount to translate in the Z axis.<br /><br />
Sets this matrix as a translation transform:
<code>
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
</code>
</p>
<h3>[method:this multiply]( [param:Matrix4 m] )</h3>
<p>Post-multiplies this matrix by [page:Matrix4 m].</p>
<h3>[method:this multiplyMatrices]( [param:Matrix4 a], [param:Matrix4 b] )</h3>
<p>Sets this matrix to [page:Matrix4 a] x [page:Matrix4 b].</p>
<h3>[method:this multiplyScalar]( [param:Float s] )</h3>
<p>Multiplies every component of the matrix by a scalar value [page:Float s].</p>
<h3>[method:this premultiply]( [param:Matrix4 m] )</h3>
<p>Pre-multiplies this matrix by [page:Matrix4 m].</p>
<h3>[method:this scale]( [param:Vector3 v] )</h3>
<p>Multiplies the columns of this matrix by vector [page:Vector3 v].</p>
<h3>[method:this set]( [param:Float n11], [param:Float n12], [param:Float n13], [param:Float n14], [param:Float n21], [param:Float n22], [param:Float n23], [param:Float n24], [param:Float n31], [param:Float n32], [param:Float n33], [param:Float n34], [param:Float n41], [param:Float n42], [param:Float n43], [param:Float n44] )</h3>
<p>
Set the [page:.elements elements] of this matrix to the supplied row-major values [page:Float n11],
[page:Float n12], ... [page:Float n44].
</p>
<h3>[method:this setPosition]( [param:Vector3 v] )</h3>
<h3>[method:this setPosition]( [param:Float x], [param:Float y], [param:Float z] ) // optional API</h3>
<p>
Sets the position component for this matrix from vector [page:Vector3 v], without affecting the
rest of the matrix - i.e. if the matrix is currently:
<code>
a, b, c, d,
e, f, g, h,
i, j, k, l,
m, n, o, p
</code>
This becomes:
<code>
a, b, c, v.x,
e, f, g, v.y,
i, j, k, v.z,
m, n, o, p
</code>
</p>
<h3>[method:Array toArray]( [param:Array array], [param:Integer offset] )</h3>
<p>
[page:Array array] - (optional) array to store the resulting vector in.<br />
[page:Integer offset] - (optional) offset in the array at which to put the result.<br /><br />
Writes the elements of this matrix to an array in
[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order column-major] format.
</p>
<h3>[method:this transpose]()</h3>
<p>[link:https://en.wikipedia.org/wiki/Transpose Transposes] this matrix.</p>
<h2>Source</h2>
<p>
[link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
</p>
</body>
</html>
|