1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/************************** mersenne.cpp **********************************
* Author: Agner Fog
* Date created: 2001
* Last modified: 2008-11-16
* Project: randomc.h
* Platform: Any C++
* Description:
* Random Number generator of type 'Mersenne Twister'
*
* This random number generator is described in the article by
* M. Matsumoto & T. Nishimura, in:
* ACM Transactions on Modeling and Computer Simulation,
* vol. 8, no. 1, 1998, pp. 3-30.
* Details on the initialization scheme can be found at
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
*
* Further documentation:
* The file ran-instructions.pdf contains further documentation and
* instructions.
*
* Copyright 2001-2008 by Agner Fog.
* GNU General Public License http://www.gnu.org/licenses/gpl.html
*******************************************************************************/
#include "randomc.h"
void CRandomMersenne::Init0(int seed) {
// Seed generator
const uint32_t factor = 1812433253UL;
mt[0]= seed;
for (mti=1; mti < MERS_N; mti++) {
mt[mti] = (factor * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
}
}
void CRandomMersenne::RandomInit(int seed) {
// Initialize and seed
Init0(seed);
// Randomize some more
for (int i = 0; i < 37; i++) BRandom();
}
void CRandomMersenne::RandomInitByArray(int const seeds[], int NumSeeds) {
// Seed by more than 32 bits
int i, j, k;
// Initialize
Init0(19650218);
if (NumSeeds <= 0) return;
// Randomize mt[] using whole seeds[] array
i = 1; j = 0;
k = (MERS_N > NumSeeds ? MERS_N : NumSeeds);
for (; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + (uint32_t)seeds[j] + j;
i++; j++;
if (i >= MERS_N) {mt[0] = mt[MERS_N-1]; i=1;}
if (j >= NumSeeds) j=0;}
for (k = MERS_N-1; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i;
if (++i >= MERS_N) {mt[0] = mt[MERS_N-1]; i=1;}}
mt[0] = 0x80000000UL; // MSB is 1; assuring non-zero initial array
// Randomize some more
mti = 0;
for (int i = 0; i <= MERS_N; i++) BRandom();
}
uint32_t CRandomMersenne::BRandom() {
// Generate 32 random bits
uint32_t y;
if (mti >= MERS_N) {
// Generate MERS_N words at one time
const uint32_t LOWER_MASK = (1LU << MERS_R) - 1; // Lower MERS_R bits
const uint32_t UPPER_MASK = 0xFFFFFFFF << MERS_R; // Upper (32 - MERS_R) bits
static const uint32_t mag01[2] = {0, MERS_A};
int kk;
for (kk=0; kk < MERS_N-MERS_M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
mt[kk] = mt[kk+MERS_M] ^ (y >> 1) ^ mag01[y & 1];}
for (; kk < MERS_N-1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
mt[kk] = mt[kk+(MERS_M-MERS_N)] ^ (y >> 1) ^ mag01[y & 1];}
y = (mt[MERS_N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[MERS_N-1] = mt[MERS_M-1] ^ (y >> 1) ^ mag01[y & 1];
mti = 0;
}
y = mt[mti++];
// Tempering (May be omitted):
y ^= y >> MERS_U;
y ^= (y << MERS_S) & MERS_B;
y ^= (y << MERS_T) & MERS_C;
y ^= y >> MERS_L;
return y;
}
double CRandomMersenne::Random() {
// Output random float number in the interval 0 <= x < 1
// Multiply by 2^(-32)
return (double)BRandom() * (1./(65536.*65536.));
}
int CRandomMersenne::IRandom(int min, int max) {
// Output random integer in the interval min <= x <= max
// Relative error on frequencies < 2^-32
if (max <= min) {
if (max == min) return min; else return 0x80000000;
}
// Multiply interval with random and truncate
int r = int((double)(uint32_t)(max - min + 1) * Random() + min);
if (r > max) r = max;
return r;
}
int CRandomMersenne::IRandomX(int min, int max) {
// Output random integer in the interval min <= x <= max
// Each output value has exactly the same probability.
// This is obtained by rejecting certain bit values so that the number
// of possible bit values is divisible by the interval length
if (max <= min) {
if (max == min) return min; else return 0x80000000;
}
#ifdef INT64_SUPPORTED
// 64 bit integers available. Use multiply and shift method
uint32_t interval; // Length of interval
uint64_t longran; // Random bits * interval
uint32_t iran; // Longran / 2^32
uint32_t remainder; // Longran % 2^32
interval = uint32_t(max - min + 1);
if (interval != LastInterval) {
// Interval length has changed. Must calculate rejection limit
// Reject when remainder >= 2^32 / interval * interval
// RLimit will be 0 if interval is a power of 2. No rejection then
RLimit = uint32_t(((uint64_t)1 << 32) / interval) * interval - 1;
LastInterval = interval;
}
do { // Rejection loop
longran = (uint64_t)BRandom() * interval;
iran = (uint32_t)(longran >> 32);
remainder = (uint32_t)longran;
} while (remainder > RLimit);
// Convert back to signed and return result
return (int32_t)iran + min;
#else
// 64 bit integers not available. Use modulo method
uint32_t interval; // Length of interval
uint32_t bran; // Random bits
uint32_t iran; // bran / interval
uint32_t remainder; // bran % interval
interval = uint32_t(max - min + 1);
if (interval != LastInterval) {
// Interval length has changed. Must calculate rejection limit
// Reject when iran = 2^32 / interval
// We can't make 2^32 so we use 2^32-1 and correct afterwards
RLimit = (uint32_t)0xFFFFFFFF / interval;
if ((uint32_t)0xFFFFFFFF % interval == interval - 1) RLimit++;
}
do { // Rejection loop
bran = BRandom();
iran = bran / interval;
remainder = bran % interval;
} while (iran >= RLimit);
// Convert back to signed and return result
return (int32_t)remainder + min;
#endif
}
|