1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
# XPCOM components in Rust
XPCOM components can be written in Rust.
## A tiny example
The following example shows a new type that implements `nsIObserver`.
First, create a new empty crate (e.g. with `cargo init --lib`), and add the
following dependencies in its `Cargo.toml` file.
```toml
[dependencies]
libc = "0.2"
nserror = { path = "../../../xpcom/rust/nserror" }
nsstring = { path = "../../../xpcom/rust/nsstring" }
xpcom = { path = "../../../xpcom/rust/xpcom" }
```
(The number of `../` occurrences will depend on the depth of the crate in the
file hierarchy.)
Next hook it into the build system according to the [build
documentation](/build/buildsystem/rust.rst).
The Rust code will need to import some basic types. `xpcom::interfaces`
contains all the usual `nsI` interfaces.
```rust
use libc::c_char;
use nserror::nsresult;
use std::sync::atomic::{AtomicBool, Ordering};
use xpcom::{interfaces::nsISupports, RefPtr};
```
The next part declares the implementation.
```rust
#[xpcom(implement(nsIObserver), atomic)]
struct MyObserver {
ran: AtomicBool,
}
```
This defines the implementation type, which will be refcounted in the specified
way and implement the listed xpidl interfaces. It will also declare a second
initializer struct `InitMyObserver` which can be used to allocate a new
`MyObserver` using the `MyObserver::allocate` method.
Next, all interface methods are declared in the `impl` block as `unsafe` methods.
```rust
impl MyObserver {
#[allow(non_snake_case)]
unsafe fn Observe(
&self,
_subject: *const nsISupports,
_topic: *const c_char,
_data: *const u16,
) -> nsresult {
self.ran.store(true, Ordering::SeqCst);
nserror::NS_OK
}
}
```
These methods always take `&self`, not `&mut self`, so we need to use interior
mutability: `AtomicBool`, `RefCell`, `Cell`, etc. This is because all XPCOM
objects are reference counted (like `Arc<T>`), so cannot provide exclusive access.
XPCOM methods are unsafe by default, but the
[xpcom_method!](https://searchfox.org/mozilla-central/source/xpcom/rust/xpcom/src/method.rs)
macro can be used to clean this up. It also takes care of null-checking and
hiding pointers behind references, lets you return a `Result` instead of an
`nsresult,` and so on.
To use this type within Rust code, do something like the following.
```rust
let observer = MyObserver::allocate(InitMyObserver {
ran: AtomicBool::new(false),
});
let rv = unsafe {
observer.Observe(x.coerce(),
cstr!("some-topic").as_ptr(),
ptr::null())
};
assert!(rv.succeeded());
```
The implementation has an (auto-generated) `allocate` method that takes in an
initialization struct, and returns a `RefPtr` to the instance.
`coerce` casts any XPCOM object to one of its base interfaces; in this case,
the base interface is `nsISupports`. In C++, this would be handled
automatically through inheritance, but Rust doesn’t have inheritance, so the
conversion must be explicit.
## Bigger examples
The following XPCOM components are written in Rust.
- [kvstore](https://searchfox.org/mozilla-central/source/toolkit/components/kvstore),
which exposes the LMDB key-value store (via the [Rkv
library](https://docs.rs/rkv)) The API is asynchronous, using `moz_task` to
schedule all I/O on a background thread, and supports getting, setting, and
iterating over keys.
- [cert_storage](https://searchfox.org/mozilla-central/source/security/manager/ssl/cert_storage),
which stores lists of [revoked intermediate certificates](https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/).
- [bookmark_sync](https://searchfox.org/mozilla-central/source/toolkit/components/places/bookmark_sync),
which [merges](https://mozilla.github.io/dogear) bookmarks from Firefox Sync
with bookmarks in the Places database.
[There's also some docs on how Rust interacts with Sync](/services/sync/rust-engines.rst)
- [webext_storage_bridge](https://searchfox.org/mozilla-central/source/toolkit/components/extensions/storage/webext_storage_bridge),
which powers the WebExtension storage.sync API. It's a self-contained example
that pulls in a crate from application-services for the heavy lifting, wraps
that up in a Rust XPCOM component, and then wraps the component in a JS
interface. There's also some boilerplate there around adding a
`components.conf` file, and a dummy C++ header that declares the component
constructor. [It has some in-depth documentation on how it hangs together](../toolkit/components/extensions/webextensions/webext-storage.rst).
|