1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
<!doctype html>
<html>
<head>
<title>
Test Sub-Sample Accurate Scheduling for ABSN
</title>
<script src="/resources/testharness.js"></script>
<script src="/resources/testharnessreport.js"></script>
<script src="/webaudio/resources/audit-util.js"></script>
<script src="/webaudio/resources/audit.js"></script>
</head>
<body>
<script>
// Power of two so there's no roundoff converting from integer frames to
// time.
let sampleRate = 32768;
let audit = Audit.createTaskRunner();
audit.define('sub-sample accurate start', (task, should) => {
// There are two channels, one for each source. Only need to render
// quanta for this test.
let context = new OfflineAudioContext(
{numberOfChannels: 2, length: 8192, sampleRate: sampleRate});
let merger = new ChannelMergerNode(
context, {numberOfInputs: context.destination.channelCount});
merger.connect(context.destination);
// Use a simple linear ramp for the sources with integer steps starting
// at 1 to make it easy to verify and test that have sub-sample accurate
// start. Ramp starts at 1 so we can easily tell when the source
// starts.
let rampBuffer = new AudioBuffer(
{length: context.length, sampleRate: context.sampleRate});
let r = rampBuffer.getChannelData(0);
for (let k = 0; k < r.length; ++k) {
r[k] = k + 1;
}
const src0 = new AudioBufferSourceNode(context, {buffer: rampBuffer});
const src1 = new AudioBufferSourceNode(context, {buffer: rampBuffer});
// Frame where sources should start. This is pretty arbitrary, but one
// should be close to an integer and the other should be close to the
// next integer. We do this to catch the case where rounding of the
// start frame is being done. Rounding is incorrect.
const startFrame = 33;
const startFrame0 = startFrame + 0.1;
const startFrame1 = startFrame + 0.9;
src0.connect(merger, 0, 0);
src1.connect(merger, 0, 1);
src0.start(startFrame0 / context.sampleRate);
src1.start(startFrame1 / context.sampleRate);
context.startRendering()
.then(audioBuffer => {
const output0 = audioBuffer.getChannelData(0);
const output1 = audioBuffer.getChannelData(1);
// Compute the expected output by interpolating the ramp buffer of
// the sources if they started at the given frame.
const ramp = rampBuffer.getChannelData(0);
const expected0 = interpolateRamp(ramp, startFrame0);
const expected1 = interpolateRamp(ramp, startFrame1);
// Verify output0 has the correct values
// For information only
should(startFrame0, 'src0 start frame').beEqualTo(startFrame0);
// Output must be zero before the source start frame, and it must
// be interpolated correctly after the start frame. The
// absoluteThreshold below is currently set for Chrome which does
// linear interpolation. This needs to be updated eventually if
// other browsers do not user interpolation.
should(
output0.slice(0, startFrame + 1), `output0[0:${startFrame}]`)
.beConstantValueOf(0);
should(
output0.slice(startFrame + 1, expected0.length),
`output0[${startFrame + 1}:${expected0.length - 1}]`)
.beCloseToArray(
expected0.slice(startFrame + 1), {absoluteThreshold: 0});
// Verify output1 has the correct values. Same approach as for
// output0.
should(startFrame1, 'src1 start frame').beEqualTo(startFrame1);
should(
output1.slice(0, startFrame + 1), `output1[0:${startFrame}]`)
.beConstantValueOf(0);
should(
output1.slice(startFrame + 1, expected1.length),
`output1[${startFrame + 1}:${expected1.length - 1}]`)
.beCloseToArray(
expected1.slice(startFrame + 1), {absoluteThreshold: 0});
})
.then(() => task.done());
});
audit.define('sub-sample accurate stop', (task, should) => {
// There are threes channesl, one for each source. Only need to render
// quanta for this test.
let context = new OfflineAudioContext(
{numberOfChannels: 3, length: 128, sampleRate: sampleRate});
let merger = new ChannelMergerNode(
context, {numberOfInputs: context.destination.channelCount});
merger.connect(context.destination);
// The source can be as simple constant for this test.
let buffer = new AudioBuffer(
{length: context.length, sampleRate: context.sampleRate});
buffer.getChannelData(0).fill(1);
const src0 = new AudioBufferSourceNode(context, {buffer: buffer});
const src1 = new AudioBufferSourceNode(context, {buffer: buffer});
const src2 = new AudioBufferSourceNode(context, {buffer: buffer});
// Frame where sources should start. This is pretty arbitrary, but one
// should be an integer, one should be close to an integer and the other
// should be close to the next integer. This is to catch the case where
// rounding is used for the end frame. Rounding is incorrect.
const endFrame = 33;
const endFrame1 = endFrame + 0.1;
const endFrame2 = endFrame + 0.9;
src0.connect(merger, 0, 0);
src1.connect(merger, 0, 1);
src2.connect(merger, 0, 2);
src0.start(0);
src1.start(0);
src2.start(0);
src0.stop(endFrame / context.sampleRate);
src1.stop(endFrame1 / context.sampleRate);
src2.stop(endFrame2 / context.sampleRate);
context.startRendering()
.then(audioBuffer => {
let actual0 = audioBuffer.getChannelData(0);
let actual1 = audioBuffer.getChannelData(1);
let actual2 = audioBuffer.getChannelData(2);
// Just verify that we stopped at the right time.
// This is case where the end frame is an integer. Since the first
// output ends on an exact frame, the output must be zero at that
// frame number. We print the end frame for information only; it
// makes interpretation of the rest easier.
should(endFrame - 1, 'src0 end frame')
.beEqualTo(endFrame - 1);
should(actual0[endFrame - 1], `output0[${endFrame - 1}]`)
.notBeEqualTo(0);
should(actual0.slice(endFrame),
`output0[${endFrame}:]`)
.beConstantValueOf(0);
// The case where the end frame is just a little above an integer.
// The output must not be zero just before the end and must be zero
// after.
should(endFrame1, 'src1 end frame')
.beEqualTo(endFrame1);
should(actual1[endFrame], `output1[${endFrame}]`)
.notBeEqualTo(0);
should(actual1.slice(endFrame + 1),
`output1[${endFrame + 1}:]`)
.beConstantValueOf(0);
// The case where the end frame is just a little below an integer.
// The output must not be zero just before the end and must be zero
// after.
should(endFrame2, 'src2 end frame')
.beEqualTo(endFrame2);
should(actual2[endFrame], `output2[${endFrame}]`)
.notBeEqualTo(0);
should(actual2.slice(endFrame + 1),
`output2[${endFrame + 1}:]`)
.beConstantValueOf(0);
})
.then(() => task.done());
});
audit.define('sub-sample-grain', (task, should) => {
let context = new OfflineAudioContext(
{numberOfChannels: 2, length: 128, sampleRate: sampleRate});
let merger = new ChannelMergerNode(
context, {numberOfInputs: context.destination.channelCount});
merger.connect(context.destination);
// The source can be as simple constant for this test.
let buffer = new AudioBuffer(
{length: context.length, sampleRate: context.sampleRate});
buffer.getChannelData(0).fill(1);
let src0 = new AudioBufferSourceNode(context, {buffer: buffer});
let src1 = new AudioBufferSourceNode(context, {buffer: buffer});
src0.connect(merger, 0, 0);
src1.connect(merger, 0, 1);
// Start a short grain.
const src0StartGrain = 3.1;
const src0EndGrain = 37.2;
src0.start(
src0StartGrain / context.sampleRate, 0,
(src0EndGrain - src0StartGrain) / context.sampleRate);
const src1StartGrain = 5.8;
const src1EndGrain = 43.9;
src1.start(
src1StartGrain / context.sampleRate, 0,
(src1EndGrain - src1StartGrain) / context.sampleRate);
context.startRendering()
.then(audioBuffer => {
let output0 = audioBuffer.getChannelData(0);
let output1 = audioBuffer.getChannelData(1);
let expected = new Float32Array(context.length);
// Compute the expected output for output0 and verify the actual
// output matches.
expected.fill(1);
for (let k = 0; k <= Math.floor(src0StartGrain); ++k) {
expected[k] = 0;
}
for (let k = Math.ceil(src0EndGrain); k < expected.length; ++k) {
expected[k] = 0;
}
verifyGrain(should, output0, {
startGrain: src0StartGrain,
endGrain: src0EndGrain,
sourceName: 'src0',
outputName: 'output0'
});
verifyGrain(should, output1, {
startGrain: src1StartGrain,
endGrain: src1EndGrain,
sourceName: 'src1',
outputName: 'output1'
});
})
.then(() => task.done());
});
audit.define(
'sub-sample accurate start with playbackRate', (task, should) => {
// There are two channels, one for each source. Only need to render
// quanta for this test.
let context = new OfflineAudioContext(
{numberOfChannels: 2, length: 8192, sampleRate: sampleRate});
let merger = new ChannelMergerNode(
context, {numberOfInputs: context.destination.channelCount});
merger.connect(context.destination);
// Use a simple linear ramp for the sources with integer steps
// starting at 1 to make it easy to verify and test that have
// sub-sample accurate start. Ramp starts at 1 so we can easily
// tell when the source starts.
let buffer = new AudioBuffer(
{length: context.length, sampleRate: context.sampleRate});
let r = buffer.getChannelData(0);
for (let k = 0; k < r.length; ++k) {
r[k] = k + 1;
}
// Two sources with different playback rates
const src0 = new AudioBufferSourceNode(
context, {buffer: buffer, playbackRate: .25});
const src1 = new AudioBufferSourceNode(
context, {buffer: buffer, playbackRate: 4});
// Frame where sources start. Pretty arbitrary but should not be an
// integer.
const startFrame = 17.8;
src0.connect(merger, 0, 0);
src1.connect(merger, 0, 1);
src0.start(startFrame / context.sampleRate);
src1.start(startFrame / context.sampleRate);
context.startRendering()
.then(audioBuffer => {
const output0 = audioBuffer.getChannelData(0);
const output1 = audioBuffer.getChannelData(1);
const frameBefore = Math.floor(startFrame);
const frameAfter = frameBefore + 1;
// Informative message so we know what the following output
// indices really mean.
should(startFrame, 'Source start frame')
.beEqualTo(startFrame);
// Verify the output
// With a startFrame of 17.8, the first output is at frame 18,
// but the actual start is at 17.8. So we would interpolate
// the output 0.2 fraction of the way between 17.8 and 18, for
// an output of 1.2 for our ramp. But the playback rate is
// 0.25, so we're really only 1/4 as far along as we think so
// the output is .2*0.25 of the way between 1 and 2 or 1.05.
const ramp0 = buffer.getChannelData(0)[0];
const ramp1 = buffer.getChannelData(0)[1];
const src0Output = ramp0 +
(ramp1 - ramp0) * (frameAfter - startFrame) *
src0.playbackRate.value;
let playbackMessage =
`With playbackRate ${src0.playbackRate.value}:`;
should(
output0[frameBefore],
`${playbackMessage} output0[${frameBefore}]`)
.beEqualTo(0);
should(
output0[frameAfter],
`${playbackMessage} output0[${frameAfter}]`)
.beCloseTo(src0Output, {threshold: 4.542e-8});
const src1Output = ramp0 +
(ramp1 - ramp0) * (frameAfter - startFrame) *
src1.playbackRate.value;
playbackMessage =
`With playbackRate ${src1.playbackRate.value}:`;
should(
output1[frameBefore],
`${playbackMessage} output1[${frameBefore}]`)
.beEqualTo(0);
should(
output1[frameAfter],
`${playbackMessage} output1[${frameAfter}]`)
.beCloseTo(src1Output, {threshold: 4.542e-8});
})
.then(() => task.done());
});
audit.run();
// Given an input ramp in |rampBuffer|, interpolate the signal assuming
// this ramp is used for an ABSN that starts at frame |startFrame|, which
// is not necessarily an integer. For simplicity we just use linear
// interpolation here. The interpolation is not part of the spec but
// this should be pretty close to whatever interpolation is being done.
function interpolateRamp(rampBuffer, startFrame) {
// |start| is the last zero sample before the ABSN actually starts.
const start = Math.floor(startFrame);
// One less than the rampBuffer because we can't linearly interpolate
// the last frame.
let result = new Float32Array(rampBuffer.length - 1);
for (let k = 0; k <= start; ++k) {
result[k] = 0;
}
// Now start linear interpolation.
let frame = startFrame;
let index = 1;
for (let k = start + 1; k < result.length; ++k) {
let s0 = rampBuffer[index];
let s1 = rampBuffer[index - 1];
let delta = frame - k;
let s = s1 - delta * (s0 - s1);
result[k] = s;
++frame;
++index;
}
return result;
}
function verifyGrain(should, output, options) {
let {startGrain, endGrain, sourceName, outputName} = options;
let expected = new Float32Array(output.length);
// Compute the expected output for output and verify the actual
// output matches.
expected.fill(1);
for (let k = 0; k <= Math.floor(startGrain); ++k) {
expected[k] = 0;
}
for (let k = Math.ceil(endGrain); k < expected.length; ++k) {
expected[k] = 0;
}
should(startGrain, `${sourceName} grain start`).beEqualTo(startGrain);
should(endGrain - startGrain, `${sourceName} grain duration`)
.beEqualTo(endGrain - startGrain);
should(endGrain, `${sourceName} grain end`).beEqualTo(endGrain);
should(output, outputName).beEqualToArray(expected);
should(
output[Math.floor(startGrain)],
`${outputName}[${Math.floor(startGrain)}]`)
.beEqualTo(0);
should(
output[1 + Math.floor(startGrain)],
`${outputName}[${1 + Math.floor(startGrain)}]`)
.notBeEqualTo(0);
should(
output[Math.floor(endGrain)],
`${outputName}[${Math.floor(endGrain)}]`)
.notBeEqualTo(0);
should(
output[1 + Math.floor(endGrain)],
`${outputName}[${1 + Math.floor(endGrain)}]`)
.beEqualTo(0);
}
</script>
</body>
</html>
|