1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/nat_server.h"
#include <memory>
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/nat_socket_factory.h"
#include "rtc_base/socket_adapters.h"
namespace rtc {
RouteCmp::RouteCmp(NAT* nat) : symmetric(nat->IsSymmetric()) {}
size_t RouteCmp::operator()(const SocketAddressPair& r) const {
size_t h = r.source().Hash();
if (symmetric)
h ^= r.destination().Hash();
return h;
}
bool RouteCmp::operator()(const SocketAddressPair& r1,
const SocketAddressPair& r2) const {
if (r1.source() < r2.source())
return true;
if (r2.source() < r1.source())
return false;
if (symmetric && (r1.destination() < r2.destination()))
return true;
if (symmetric && (r2.destination() < r1.destination()))
return false;
return false;
}
AddrCmp::AddrCmp(NAT* nat)
: use_ip(nat->FiltersIP()), use_port(nat->FiltersPort()) {}
size_t AddrCmp::operator()(const SocketAddress& a) const {
size_t h = 0;
if (use_ip)
h ^= HashIP(a.ipaddr());
if (use_port)
h ^= a.port() | (a.port() << 16);
return h;
}
bool AddrCmp::operator()(const SocketAddress& a1,
const SocketAddress& a2) const {
if (use_ip && (a1.ipaddr() < a2.ipaddr()))
return true;
if (use_ip && (a2.ipaddr() < a1.ipaddr()))
return false;
if (use_port && (a1.port() < a2.port()))
return true;
if (use_port && (a2.port() < a1.port()))
return false;
return false;
}
// Proxy socket that will capture the external destination address intended for
// a TCP connection to the NAT server.
class NATProxyServerSocket : public AsyncProxyServerSocket {
public:
NATProxyServerSocket(Socket* socket)
: AsyncProxyServerSocket(socket, kNATEncodedIPv6AddressSize) {
BufferInput(true);
}
void SendConnectResult(int err, const SocketAddress& addr) override {
char code = err ? 1 : 0;
BufferedReadAdapter::DirectSend(&code, sizeof(char));
}
protected:
void ProcessInput(char* data, size_t* len) override {
if (*len < 2) {
return;
}
int family = data[1];
RTC_DCHECK(family == AF_INET || family == AF_INET6);
if ((family == AF_INET && *len < kNATEncodedIPv4AddressSize) ||
(family == AF_INET6 && *len < kNATEncodedIPv6AddressSize)) {
return;
}
SocketAddress dest_addr;
size_t address_length = UnpackAddressFromNAT(data, *len, &dest_addr);
*len -= address_length;
if (*len > 0) {
memmove(data, data + address_length, *len);
}
bool remainder = (*len > 0);
BufferInput(false);
SignalConnectRequest(this, dest_addr);
if (remainder) {
SignalReadEvent(this);
}
}
};
class NATProxyServer : public ProxyServer {
public:
NATProxyServer(SocketFactory* int_factory,
const SocketAddress& int_addr,
SocketFactory* ext_factory,
const SocketAddress& ext_ip)
: ProxyServer(int_factory, int_addr, ext_factory, ext_ip) {}
protected:
AsyncProxyServerSocket* WrapSocket(Socket* socket) override {
return new NATProxyServerSocket(socket);
}
};
NATServer::NATServer(NATType type,
SocketFactory* internal,
const SocketAddress& internal_udp_addr,
const SocketAddress& internal_tcp_addr,
SocketFactory* external,
const SocketAddress& external_ip)
: external_(external), external_ip_(external_ip.ipaddr(), 0) {
nat_ = NAT::Create(type);
udp_server_socket_ = AsyncUDPSocket::Create(internal, internal_udp_addr);
udp_server_socket_->SignalReadPacket.connect(this,
&NATServer::OnInternalUDPPacket);
tcp_proxy_server_ =
new NATProxyServer(internal, internal_tcp_addr, external, external_ip);
int_map_ = new InternalMap(RouteCmp(nat_));
ext_map_ = new ExternalMap();
}
NATServer::~NATServer() {
for (InternalMap::iterator iter = int_map_->begin(); iter != int_map_->end();
iter++)
delete iter->second;
delete nat_;
delete udp_server_socket_;
delete tcp_proxy_server_;
delete int_map_;
delete ext_map_;
}
void NATServer::OnInternalUDPPacket(AsyncPacketSocket* socket,
const char* buf,
size_t size,
const SocketAddress& addr,
const int64_t& /* packet_time_us */) {
// Read the intended destination from the wire.
SocketAddress dest_addr;
size_t length = UnpackAddressFromNAT(buf, size, &dest_addr);
// Find the translation for these addresses (allocating one if necessary).
SocketAddressPair route(addr, dest_addr);
InternalMap::iterator iter = int_map_->find(route);
if (iter == int_map_->end()) {
Translate(route);
iter = int_map_->find(route);
}
RTC_DCHECK(iter != int_map_->end());
// Allow the destination to send packets back to the source.
iter->second->AllowlistInsert(dest_addr);
// Send the packet to its intended destination.
rtc::PacketOptions options;
iter->second->socket->SendTo(buf + length, size - length, dest_addr, options);
}
void NATServer::OnExternalUDPPacket(AsyncPacketSocket* socket,
const char* buf,
size_t size,
const SocketAddress& remote_addr,
const int64_t& /* packet_time_us */) {
SocketAddress local_addr = socket->GetLocalAddress();
// Find the translation for this addresses.
ExternalMap::iterator iter = ext_map_->find(local_addr);
RTC_DCHECK(iter != ext_map_->end());
// Allow the NAT to reject this packet.
if (ShouldFilterOut(iter->second, remote_addr)) {
RTC_LOG(LS_INFO) << "Packet from " << remote_addr.ToSensitiveString()
<< " was filtered out by the NAT.";
return;
}
// Forward this packet to the internal address.
// First prepend the address in a quasi-STUN format.
std::unique_ptr<char[]> real_buf(new char[size + kNATEncodedIPv6AddressSize]);
size_t addrlength = PackAddressForNAT(
real_buf.get(), size + kNATEncodedIPv6AddressSize, remote_addr);
// Copy the data part after the address.
rtc::PacketOptions options;
memcpy(real_buf.get() + addrlength, buf, size);
udp_server_socket_->SendTo(real_buf.get(), size + addrlength,
iter->second->route.source(), options);
}
void NATServer::Translate(const SocketAddressPair& route) {
AsyncUDPSocket* socket = AsyncUDPSocket::Create(external_, external_ip_);
if (!socket) {
RTC_LOG(LS_ERROR) << "Couldn't find a free port!";
return;
}
TransEntry* entry = new TransEntry(route, socket, nat_);
(*int_map_)[route] = entry;
(*ext_map_)[socket->GetLocalAddress()] = entry;
socket->SignalReadPacket.connect(this, &NATServer::OnExternalUDPPacket);
}
bool NATServer::ShouldFilterOut(TransEntry* entry,
const SocketAddress& ext_addr) {
return entry->AllowlistContains(ext_addr);
}
NATServer::TransEntry::TransEntry(const SocketAddressPair& r,
AsyncUDPSocket* s,
NAT* nat)
: route(r), socket(s) {
allowlist = new AddressSet(AddrCmp(nat));
}
NATServer::TransEntry::~TransEntry() {
delete allowlist;
delete socket;
}
void NATServer::TransEntry::AllowlistInsert(const SocketAddress& addr) {
webrtc::MutexLock lock(&mutex_);
allowlist->insert(addr);
}
bool NATServer::TransEntry::AllowlistContains(const SocketAddress& ext_addr) {
webrtc::MutexLock lock(&mutex_);
return allowlist->find(ext_addr) == allowlist->end();
}
} // namespace rtc
|