1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  
     | 
    
      #![warn(rust_2018_idioms)]
#![cfg(feature = "sync")]
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as maybe_tokio_test;
#[cfg(not(target_arch = "wasm32"))]
use tokio::test as maybe_tokio_test;
use tokio::sync::Mutex;
use tokio_test::task::spawn;
use tokio_test::{assert_pending, assert_ready};
use std::sync::Arc;
#[test]
fn straight_execution() {
    let l = Arc::new(Mutex::new(100));
    {
        let mut t = spawn(l.clone().lock_owned());
        let mut g = assert_ready!(t.poll());
        assert_eq!(&*g, &100);
        *g = 99;
    }
    {
        let mut t = spawn(l.clone().lock_owned());
        let mut g = assert_ready!(t.poll());
        assert_eq!(&*g, &99);
        *g = 98;
    }
    {
        let mut t = spawn(l.lock_owned());
        let g = assert_ready!(t.poll());
        assert_eq!(&*g, &98);
    }
}
#[test]
fn readiness() {
    let l = Arc::new(Mutex::new(100));
    let mut t1 = spawn(l.clone().lock_owned());
    let mut t2 = spawn(l.lock_owned());
    let g = assert_ready!(t1.poll());
    // We can't now acquire the lease since it's already held in g
    assert_pending!(t2.poll());
    // But once g unlocks, we can acquire it
    drop(g);
    assert!(t2.is_woken());
    assert_ready!(t2.poll());
}
/// Ensure a mutex is unlocked if a future holding the lock
/// is aborted prematurely.
#[tokio::test]
#[cfg(feature = "full")]
async fn aborted_future_1() {
    use std::time::Duration;
    use tokio::time::{interval, timeout};
    let m1: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
    {
        let m2 = m1.clone();
        // Try to lock mutex in a future that is aborted prematurely
        timeout(Duration::from_millis(1u64), async move {
            let iv = interval(Duration::from_millis(1000));
            tokio::pin!(iv);
            m2.lock_owned().await;
            iv.as_mut().tick().await;
            iv.as_mut().tick().await;
        })
        .await
        .unwrap_err();
    }
    // This should succeed as there is no lock left for the mutex.
    timeout(Duration::from_millis(1u64), async move {
        m1.lock_owned().await;
    })
    .await
    .expect("Mutex is locked");
}
/// This test is similar to `aborted_future_1` but this time the
/// aborted future is waiting for the lock.
#[tokio::test]
#[cfg(feature = "full")]
async fn aborted_future_2() {
    use std::time::Duration;
    use tokio::time::timeout;
    let m1: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
    {
        // Lock mutex
        let _lock = m1.clone().lock_owned().await;
        {
            let m2 = m1.clone();
            // Try to lock mutex in a future that is aborted prematurely
            timeout(Duration::from_millis(1u64), async move {
                m2.lock_owned().await;
            })
            .await
            .unwrap_err();
        }
    }
    // This should succeed as there is no lock left for the mutex.
    timeout(Duration::from_millis(1u64), async move {
        m1.lock_owned().await;
    })
    .await
    .expect("Mutex is locked");
}
#[test]
fn try_lock_owned() {
    let m: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
    {
        let g1 = m.clone().try_lock_owned();
        assert!(g1.is_ok());
        let g2 = m.clone().try_lock_owned();
        assert!(!g2.is_ok());
    }
    let g3 = m.try_lock_owned();
    assert!(g3.is_ok());
}
#[maybe_tokio_test]
async fn debug_format() {
    let s = "debug";
    let m = Arc::new(Mutex::new(s.to_string()));
    assert_eq!(format!("{:?}", s), format!("{:?}", m.lock_owned().await));
}
 
     |