1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import copy
import logging
import os
from dataclasses import dataclass
from typing import Dict
from . import filter_tasks
from .config import GraphConfig, load_graph_config
from .graph import Graph
from .morph import morph
from .optimize.base import optimize_task_graph
from .parameters import parameters_loader
from .task import Task
from .taskgraph import TaskGraph
from .transforms.base import TransformConfig, TransformSequence
from .util.python_path import find_object
from .util.verify import verifications
from .util.yaml import load_yaml
logger = logging.getLogger(__name__)
class KindNotFound(Exception):
"""
Raised when trying to load kind from a directory without a kind.yml.
"""
@dataclass(frozen=True)
class Kind:
name: str
path: str
config: Dict
graph_config: GraphConfig
def _get_loader(self):
try:
loader = self.config["loader"]
except KeyError:
loader = "taskgraph.loader.default:loader"
return find_object(loader)
def load_tasks(self, parameters, loaded_tasks, write_artifacts):
loader = self._get_loader()
config = copy.deepcopy(self.config)
kind_dependencies = config.get("kind-dependencies", [])
kind_dependencies_tasks = {
task.label: task for task in loaded_tasks if task.kind in kind_dependencies
}
inputs = loader(self.name, self.path, config, parameters, loaded_tasks)
transforms = TransformSequence()
for xform_path in config["transforms"]:
if ":" not in xform_path:
xform_path = f"{xform_path}:transforms"
transform = find_object(xform_path)
transforms.add(transform)
# perform the transformations on the loaded inputs
trans_config = TransformConfig(
self.name,
self.path,
config,
parameters,
kind_dependencies_tasks,
self.graph_config,
write_artifacts=write_artifacts,
)
tasks = [
Task(
self.name,
label=task_dict["label"],
description=task_dict["description"],
attributes=task_dict["attributes"],
task=task_dict["task"],
optimization=task_dict.get("optimization"),
dependencies=task_dict.get("dependencies"),
soft_dependencies=task_dict.get("soft-dependencies"),
if_dependencies=task_dict.get("if-dependencies"),
)
for task_dict in transforms(trans_config, inputs)
]
return tasks
@classmethod
def load(cls, root_dir, graph_config, kind_name):
path = os.path.join(root_dir, "kinds", kind_name)
kind_yml = os.path.join(path, "kind.yml")
if not os.path.exists(kind_yml):
raise KindNotFound(kind_yml)
logger.debug(f"loading kind `{kind_name}` from `{path}`")
config = load_yaml(kind_yml)
return cls(kind_name, path, config, graph_config)
class TaskGraphGenerator:
"""
The central controller for taskgraph. This handles all phases of graph
generation. The task is generated from all of the kinds defined in
subdirectories of the generator's root directory.
Access to the results of this generation, as well as intermediate values at
various phases of generation, is available via properties. This encourages
the provision of all generation inputs at instance construction time.
"""
# Task-graph generation is implemented as a Python generator that yields
# each "phase" of generation. This allows some mach subcommands to short-
# circuit generation of the entire graph by never completing the generator.
def __init__(
self,
root_dir,
parameters,
decision_task_id="DECISION-TASK",
write_artifacts=False,
):
"""
@param root_dir: root directory containing the Taskgraph config.yml file
@param parameters: parameters for this task-graph generation, or callable
taking a `GraphConfig` and returning parameters
@type parameters: Union[Parameters, Callable[[GraphConfig], Parameters]]
"""
if root_dir is None:
root_dir = "taskcluster"
self.root_dir = root_dir
self._parameters = parameters
self._decision_task_id = decision_task_id
self._write_artifacts = write_artifacts
# start the generator
self._run = self._run()
self._run_results = {}
@property
def parameters(self):
"""
The properties used for this graph.
@type: Properties
"""
return self._run_until("parameters")
@property
def full_task_set(self):
"""
The full task set: all tasks defined by any kind (a graph without edges)
@type: TaskGraph
"""
return self._run_until("full_task_set")
@property
def full_task_graph(self):
"""
The full task graph: the full task set, with edges representing
dependencies.
@type: TaskGraph
"""
return self._run_until("full_task_graph")
@property
def target_task_set(self):
"""
The set of targeted tasks (a graph without edges)
@type: TaskGraph
"""
return self._run_until("target_task_set")
@property
def target_task_graph(self):
"""
The set of targeted tasks and all of their dependencies
@type: TaskGraph
"""
return self._run_until("target_task_graph")
@property
def optimized_task_graph(self):
"""
The set of targeted tasks and all of their dependencies; tasks that
have been optimized out are either omitted or replaced with a Task
instance containing only a task_id.
@type: TaskGraph
"""
return self._run_until("optimized_task_graph")
@property
def label_to_taskid(self):
"""
A dictionary mapping task label to assigned taskId. This property helps
in interpreting `optimized_task_graph`.
@type: dictionary
"""
return self._run_until("label_to_taskid")
@property
def morphed_task_graph(self):
"""
The optimized task graph, with any subsequent morphs applied. This graph
will have the same meaning as the optimized task graph, but be in a form
more palatable to TaskCluster.
@type: TaskGraph
"""
return self._run_until("morphed_task_graph")
@property
def graph_config(self):
"""
The configuration for this graph.
@type: TaskGraph
"""
return self._run_until("graph_config")
def _load_kinds(self, graph_config, target_kinds=None):
if target_kinds:
# docker-image is an implicit dependency that never appears in
# kind-dependencies.
queue = target_kinds + ["docker-image"]
seen_kinds = set()
while queue:
kind_name = queue.pop()
if kind_name in seen_kinds:
continue
seen_kinds.add(kind_name)
kind = Kind.load(self.root_dir, graph_config, kind_name)
yield kind
queue.extend(kind.config.get("kind-dependencies", []))
else:
for kind_name in os.listdir(os.path.join(self.root_dir, "kinds")):
try:
yield Kind.load(self.root_dir, graph_config, kind_name)
except KindNotFound:
continue
def _run(self):
logger.info("Loading graph configuration.")
graph_config = load_graph_config(self.root_dir)
yield ("graph_config", graph_config)
graph_config.register()
# Initial verifications that don't depend on any generation state.
verifications("initial")
if callable(self._parameters):
parameters = self._parameters(graph_config)
else:
parameters = self._parameters
logger.info(f"Using {parameters}")
logger.debug(f"Dumping parameters:\n{repr(parameters)}")
filters = parameters.get("filters", [])
# Always add legacy target tasks method until we deprecate that API.
if "target_tasks_method" not in filters:
filters.insert(0, "target_tasks_method")
filters = [filter_tasks.filter_task_functions[f] for f in filters]
yield self.verify("parameters", parameters)
logger.info("Loading kinds")
# put the kinds into a graph and sort topologically so that kinds are loaded
# in post-order
target_kinds = sorted(parameters.get("target-kinds", []))
if target_kinds:
logger.info(
"Limiting kinds to following kinds and dependencies: {}".format(
", ".join(target_kinds)
)
)
kinds = {
kind.name: kind for kind in self._load_kinds(graph_config, target_kinds)
}
verifications("kinds", kinds)
edges = set()
for kind in kinds.values():
for dep in kind.config.get("kind-dependencies", []):
edges.add((kind.name, dep, "kind-dependency"))
kind_graph = Graph(set(kinds), edges)
if target_kinds:
kind_graph = kind_graph.transitive_closure(
set(target_kinds) | {"docker-image"}
)
logger.info("Generating full task set")
all_tasks = {}
for kind_name in kind_graph.visit_postorder():
logger.debug(f"Loading tasks for kind {kind_name}")
kind = kinds[kind_name]
try:
new_tasks = kind.load_tasks(
parameters,
list(all_tasks.values()),
self._write_artifacts,
)
except Exception:
logger.exception(f"Error loading tasks for kind {kind_name}:")
raise
for task in new_tasks:
if task.label in all_tasks:
raise Exception("duplicate tasks with label " + task.label)
all_tasks[task.label] = task
logger.info(f"Generated {len(new_tasks)} tasks for kind {kind_name}")
full_task_set = TaskGraph(all_tasks, Graph(set(all_tasks), set()))
yield self.verify("full_task_set", full_task_set, graph_config, parameters)
logger.info("Generating full task graph")
edges = set()
for t in full_task_set:
for depname, dep in t.dependencies.items():
if dep not in all_tasks.keys():
raise Exception(
f"Task '{t.label}' lists a dependency that does not exist: '{dep}'"
)
edges.add((t.label, dep, depname))
full_task_graph = TaskGraph(all_tasks, Graph(full_task_set.graph.nodes, edges))
logger.info(
"Full task graph contains %d tasks and %d dependencies"
% (len(full_task_set.graph.nodes), len(edges))
)
yield self.verify("full_task_graph", full_task_graph, graph_config, parameters)
logger.info("Generating target task set")
target_task_set = TaskGraph(
dict(all_tasks), Graph(set(all_tasks.keys()), set())
)
for fltr in filters:
old_len = len(target_task_set.graph.nodes)
target_tasks = set(fltr(target_task_set, parameters, graph_config))
target_task_set = TaskGraph(
{l: all_tasks[l] for l in target_tasks}, Graph(target_tasks, set())
)
logger.info(
"Filter %s pruned %d tasks (%d remain)"
% (fltr.__name__, old_len - len(target_tasks), len(target_tasks))
)
yield self.verify("target_task_set", target_task_set, graph_config, parameters)
logger.info("Generating target task graph")
# include all tasks with `always_target` set
if parameters["enable_always_target"]:
always_target_tasks = {
t.label
for t in full_task_graph.tasks.values()
if t.attributes.get("always_target")
if parameters["enable_always_target"] is True
or t.kind in parameters["enable_always_target"]
}
else:
always_target_tasks = set()
logger.info(
"Adding %d tasks with `always_target` attribute"
% (len(always_target_tasks) - len(always_target_tasks & target_tasks))
)
requested_tasks = target_tasks | always_target_tasks
target_graph = full_task_graph.graph.transitive_closure(requested_tasks)
target_task_graph = TaskGraph(
{l: all_tasks[l] for l in target_graph.nodes}, target_graph
)
yield self.verify(
"target_task_graph", target_task_graph, graph_config, parameters
)
logger.info("Generating optimized task graph")
existing_tasks = parameters.get("existing_tasks")
do_not_optimize = set(parameters.get("do_not_optimize", []))
if not parameters.get("optimize_target_tasks", True):
do_not_optimize = set(target_task_set.graph.nodes).union(do_not_optimize)
# this is used for testing experimental optimization strategies
strategies = os.environ.get(
"TASKGRAPH_OPTIMIZE_STRATEGIES", parameters.get("optimize_strategies")
)
if strategies:
strategies = find_object(strategies)
optimized_task_graph, label_to_taskid = optimize_task_graph(
target_task_graph,
requested_tasks,
parameters,
do_not_optimize,
self._decision_task_id,
existing_tasks=existing_tasks,
strategy_override=strategies,
)
yield self.verify(
"optimized_task_graph", optimized_task_graph, graph_config, parameters
)
morphed_task_graph, label_to_taskid = morph(
optimized_task_graph, label_to_taskid, parameters, graph_config
)
yield "label_to_taskid", label_to_taskid
yield self.verify(
"morphed_task_graph", morphed_task_graph, graph_config, parameters
)
def _run_until(self, name):
while name not in self._run_results:
try:
k, v = next(self._run)
except StopIteration:
raise AttributeError(f"No such run result {name}")
self._run_results[k] = v
return self._run_results[name]
def verify(self, name, obj, *args, **kwargs):
verifications(name, obj, *args, **kwargs)
return name, obj
def load_tasks_for_kind(parameters, kind, root_dir=None):
"""
Get all the tasks of a given kind.
This function is designed to be called from outside of taskgraph.
"""
# make parameters read-write
parameters = dict(parameters)
parameters["target-kinds"] = [kind]
parameters = parameters_loader(spec=None, strict=False, overrides=parameters)
tgg = TaskGraphGenerator(root_dir=root_dir, parameters=parameters)
return {
task.task["metadata"]["name"]: task
for task in tgg.full_task_set
if task.kind == kind
}
|