1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetWebglInternal.h"
#include "SourceSurfaceWebgl.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/StaticPrefs_gfx.h"
#include "mozilla/gfx/AAStroke.h"
#include "mozilla/gfx/Blur.h"
#include "mozilla/gfx/DrawTargetSkia.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/gfx/HelpersSkia.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/gfx/PathSkia.h"
#include "mozilla/gfx/Swizzle.h"
#include "mozilla/layers/ImageDataSerializer.h"
#include "mozilla/layers/RemoteTextureMap.h"
#include "mozilla/widget/ScreenManager.h"
#include "skia/include/core/SkPixmap.h"
#include "nsContentUtils.h"
#include "GLContext.h"
#include "WebGLContext.h"
#include "WebGLChild.h"
#include "WebGLBuffer.h"
#include "WebGLFramebuffer.h"
#include "WebGLProgram.h"
#include "WebGLShader.h"
#include "WebGLTexture.h"
#include "WebGLVertexArray.h"
#include "gfxPlatform.h"
namespace mozilla::gfx {
// Inserts (allocates) a rectangle of the requested size into the tree.
Maybe<IntPoint> TexturePacker::Insert(const IntSize& aSize) {
// Check if the available space could possibly fit the requested size. If
// not, there is no reason to continue searching within this sub-tree.
if (mAvailable < std::min(aSize.width, aSize.height) ||
mBounds.width < aSize.width || mBounds.height < aSize.height) {
return Nothing();
}
if (mChildren) {
// If this node has children, then try to insert into each of the children
// in turn.
Maybe<IntPoint> inserted = mChildren[0].Insert(aSize);
if (!inserted) {
inserted = mChildren[1].Insert(aSize);
}
// If the insertion succeeded, adjust the available state to reflect the
// remaining space in the children.
if (inserted) {
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
if (!mAvailable) {
DiscardChildren();
}
}
return inserted;
}
// If we get here, we've encountered a leaf node. First check if its size is
// exactly the requested size. If so, mark the node as unavailable and return
// its offset.
if (mBounds.Size() == aSize) {
mAvailable = 0;
return Some(mBounds.TopLeft());
}
// The node is larger than the requested size. Choose the axis which has the
// most excess space beyond the requested size and split it so that at least
// one of the children matches the requested size for that axis.
if (mBounds.width - aSize.width > mBounds.height - aSize.height) {
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, aSize.width, mBounds.height)),
TexturePacker(IntRect(mBounds.x + aSize.width, mBounds.y,
mBounds.width - aSize.width, mBounds.height))});
} else {
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, mBounds.width, aSize.height)),
TexturePacker(IntRect(mBounds.x, mBounds.y + aSize.height,
mBounds.width, mBounds.height - aSize.height))});
}
// After splitting, try to insert into the first child, which should usually
// be big enough to accomodate the request. Adjust the available state to the
// remaining space.
Maybe<IntPoint> inserted = mChildren[0].Insert(aSize);
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
return inserted;
}
// Removes (frees) a rectangle with the given bounds from the tree.
bool TexturePacker::Remove(const IntRect& aBounds) {
if (!mChildren) {
// If there are no children, we encountered a leaf node. Non-zero available
// state means that this node was already removed previously. Also, if the
// bounds don't contain the request, and assuming the tree was previously
// split during insertion, then this node is not the node we're searching
// for.
if (mAvailable > 0 || !mBounds.Contains(aBounds)) {
return false;
}
// The bounds match exactly and it was previously inserted, so in this case
// we can just remove it.
if (mBounds == aBounds) {
mAvailable = std::min(mBounds.width, mBounds.height);
return true;
}
// We need to split this leaf node so that it can exactly match the removed
// bounds. We know the leaf node at least contains the removed bounds, but
// needs to be subdivided until it has a child node that exactly matches.
// Choose the axis to split with the largest amount of excess space. Within
// that axis, choose the larger of the space before or after the subrect as
// the split point to the new children.
if (mBounds.width - aBounds.width > mBounds.height - aBounds.height) {
int split = aBounds.x - mBounds.x > mBounds.XMost() - aBounds.XMost()
? aBounds.x
: aBounds.XMost();
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, split - mBounds.x, mBounds.height),
false),
TexturePacker(IntRect(split, mBounds.y, mBounds.XMost() - split,
mBounds.height),
false)});
} else {
int split = aBounds.y - mBounds.y > mBounds.YMost() - aBounds.YMost()
? aBounds.y
: aBounds.YMost();
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, mBounds.width, split - mBounds.y),
false),
TexturePacker(
IntRect(mBounds.x, split, mBounds.width, mBounds.YMost() - split),
false)});
}
}
// We've encountered a branch node. Determine which of the two child nodes
// would possibly contain the removed bounds. We first check which axis the
// children were split on and then whether the removed bounds on that axis
// are past the start of the second child. Proceed to recurse into that
// child node for removal.
bool next = mChildren[0].mBounds.x < mChildren[1].mBounds.x
? aBounds.x >= mChildren[1].mBounds.x
: aBounds.y >= mChildren[1].mBounds.y;
bool removed = mChildren[next ? 1 : 0].Remove(aBounds);
if (removed) {
if (mChildren[0].IsFullyAvailable() && mChildren[1].IsFullyAvailable()) {
DiscardChildren();
mAvailable = std::min(mBounds.width, mBounds.height);
} else {
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
}
}
return removed;
}
BackingTexture::BackingTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTexture>& aTexture)
: mSize(aSize), mFormat(aFormat), mTexture(aTexture) {}
SharedTexture::SharedTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTexture>& aTexture)
: BackingTexture(aSize, aFormat, aTexture),
mPacker(IntRect(IntPoint(0, 0), aSize)) {}
SharedTextureHandle::SharedTextureHandle(const IntRect& aBounds,
SharedTexture* aTexture)
: mBounds(aBounds), mTexture(aTexture) {}
already_AddRefed<SharedTextureHandle> SharedTexture::Allocate(
const IntSize& aSize) {
RefPtr<SharedTextureHandle> handle;
if (Maybe<IntPoint> origin = mPacker.Insert(aSize)) {
handle = new SharedTextureHandle(IntRect(*origin, aSize), this);
++mAllocatedHandles;
}
return handle.forget();
}
bool SharedTexture::Free(const SharedTextureHandle& aHandle) {
if (aHandle.mTexture != this) {
return false;
}
if (!mPacker.Remove(aHandle.mBounds)) {
return false;
}
--mAllocatedHandles;
return true;
}
StandaloneTexture::StandaloneTexture(const IntSize& aSize,
SurfaceFormat aFormat,
const RefPtr<WebGLTexture>& aTexture)
: BackingTexture(aSize, aFormat, aTexture) {}
DrawTargetWebgl::DrawTargetWebgl() = default;
inline void SharedContextWebgl::ClearLastTexture(bool aFullClear) {
mLastTexture = nullptr;
if (aFullClear) {
mLastClipMask = nullptr;
}
}
// Attempts to clear the snapshot state. If the snapshot is only referenced by
// this target, then it should simply be destroyed. If it is a WebGL surface in
// use by something else, then special cleanup such as reusing the texture or
// copy-on-write may be possible.
void DrawTargetWebgl::ClearSnapshot(bool aCopyOnWrite, bool aNeedHandle) {
if (!mSnapshot) {
return;
}
mSharedContext->ClearLastTexture();
RefPtr<SourceSurfaceWebgl> snapshot = mSnapshot.forget();
if (snapshot->hasOneRef()) {
return;
}
if (aCopyOnWrite) {
// WebGL snapshots must be notified that the framebuffer contents will be
// changing so that it can copy the data.
snapshot->DrawTargetWillChange(aNeedHandle);
} else {
// If not copying, then give the backing texture to the surface for reuse.
snapshot->GiveTexture(
mSharedContext->WrapSnapshot(GetSize(), GetFormat(), mTex.forget()));
}
}
DrawTargetWebgl::~DrawTargetWebgl() {
ClearSnapshot(false);
if (mSharedContext) {
// Force any Skia snapshots to copy the shmem before it deallocs.
if (mSkia) {
mSkia->DetachAllSnapshots();
}
mSharedContext->ClearLastTexture(true);
mClipMask = nullptr;
mFramebuffer = nullptr;
mTex = nullptr;
mSharedContext->mDrawTargetCount--;
}
}
SharedContextWebgl::SharedContextWebgl() = default;
SharedContextWebgl::~SharedContextWebgl() {
// Detect context loss before deletion.
if (mWebgl) {
ExitTlsScope();
mWebgl->ActiveTexture(0);
}
if (mWGRPathBuilder) {
WGR::wgr_builder_release(mWGRPathBuilder);
mWGRPathBuilder = nullptr;
}
ClearAllTextures();
UnlinkSurfaceTextures();
UnlinkGlyphCaches();
}
gl::GLContext* SharedContextWebgl::GetGLContext() {
return mWebgl ? mWebgl->GL() : nullptr;
}
void SharedContextWebgl::EnterTlsScope() {
if (mTlsScope.isSome()) {
return;
}
if (gl::GLContext* gl = GetGLContext()) {
mTlsScope = Some(gl->mUseTLSIsCurrent);
gl::GLContext::InvalidateCurrentContext();
gl->mUseTLSIsCurrent = true;
}
}
void SharedContextWebgl::ExitTlsScope() {
if (mTlsScope.isNothing()) {
return;
}
if (gl::GLContext* gl = GetGLContext()) {
gl->mUseTLSIsCurrent = mTlsScope.value();
}
mTlsScope = Nothing();
}
// Remove any SourceSurface user data associated with this TextureHandle.
inline void SharedContextWebgl::UnlinkSurfaceTexture(
const RefPtr<TextureHandle>& aHandle) {
if (RefPtr<SourceSurface> surface = aHandle->GetSurface()) {
// Ensure any WebGL snapshot textures get unlinked.
if (surface->GetType() == SurfaceType::WEBGL) {
static_cast<SourceSurfaceWebgl*>(surface.get())->OnUnlinkTexture(this);
}
surface->RemoveUserData(aHandle->IsShadow() ? &mShadowTextureKey
: &mTextureHandleKey);
}
}
// Unlinks TextureHandles from any SourceSurface user data.
void SharedContextWebgl::UnlinkSurfaceTextures() {
for (RefPtr<TextureHandle> handle = mTextureHandles.getFirst(); handle;
handle = handle->getNext()) {
UnlinkSurfaceTexture(handle);
}
}
// Unlinks GlyphCaches from any ScaledFont user data.
void SharedContextWebgl::UnlinkGlyphCaches() {
GlyphCache* cache = mGlyphCaches.getFirst();
while (cache) {
ScaledFont* font = cache->GetFont();
// Access the next cache before removing the user data, as it might destroy
// the cache.
cache = cache->getNext();
font->RemoveUserData(&mGlyphCacheKey);
}
}
void SharedContextWebgl::OnMemoryPressure() { mShouldClearCaches = true; }
void SharedContextWebgl::ClearCaches() {
OnMemoryPressure();
ClearCachesIfNecessary();
}
// Clear out the entire list of texture handles from any source.
void SharedContextWebgl::ClearAllTextures() {
while (!mTextureHandles.isEmpty()) {
PruneTextureHandle(mTextureHandles.popLast());
--mNumTextureHandles;
}
}
// Scan through the shared texture pages looking for any that are empty and
// delete them.
void SharedContextWebgl::ClearEmptyTextureMemory() {
for (auto pos = mSharedTextures.begin(); pos != mSharedTextures.end();) {
if (!(*pos)->HasAllocatedHandles()) {
RefPtr<SharedTexture> shared = *pos;
size_t usedBytes = shared->UsedBytes();
mEmptyTextureMemory -= usedBytes;
mTotalTextureMemory -= usedBytes;
pos = mSharedTextures.erase(pos);
} else {
++pos;
}
}
}
// If there is a request to clear out the caches because of memory pressure,
// then first clear out all the texture handles in the texture cache. If there
// are still empty texture pages being kept around, then clear those too.
void SharedContextWebgl::ClearCachesIfNecessary() {
if (!mShouldClearCaches.exchange(false)) {
return;
}
mZeroBuffer = nullptr;
ClearAllTextures();
if (mEmptyTextureMemory) {
ClearEmptyTextureMemory();
}
ClearLastTexture();
}
// Try to initialize a new WebGL context. Verifies that the requested size does
// not exceed the available texture limits and that shader creation succeeded.
bool DrawTargetWebgl::Init(const IntSize& size, const SurfaceFormat format,
const RefPtr<SharedContextWebgl>& aSharedContext) {
MOZ_ASSERT(format == SurfaceFormat::B8G8R8A8 ||
format == SurfaceFormat::B8G8R8X8);
mSize = size;
mFormat = format;
if (!aSharedContext || aSharedContext->IsContextLost() ||
aSharedContext->mDrawTargetCount >=
StaticPrefs::gfx_canvas_accelerated_max_draw_target_count()) {
return false;
}
mSharedContext = aSharedContext;
mSharedContext->mDrawTargetCount++;
if (size_t(std::max(size.width, size.height)) >
mSharedContext->mMaxTextureSize) {
return false;
}
if (!CreateFramebuffer()) {
return false;
}
size_t byteSize = layers::ImageDataSerializer::ComputeRGBBufferSize(
mSize, SurfaceFormat::B8G8R8A8);
if (byteSize == 0) {
return false;
}
size_t shmemSize = mozilla::ipc::SharedMemory::PageAlignedSize(byteSize);
if (NS_WARN_IF(shmemSize > UINT32_MAX)) {
MOZ_ASSERT_UNREACHABLE("Buffer too big?");
return false;
}
auto shmem = MakeRefPtr<mozilla::ipc::SharedMemoryBasic>();
if (NS_WARN_IF(!shmem->Create(shmemSize)) ||
NS_WARN_IF(!shmem->Map(shmemSize))) {
return false;
}
mShmem = std::move(shmem);
mShmemSize = shmemSize;
mSkia = new DrawTargetSkia;
auto stride = layers::ImageDataSerializer::ComputeRGBStride(
SurfaceFormat::B8G8R8A8, size.width);
if (!mSkia->Init(reinterpret_cast<uint8_t*>(mShmem->memory()), size, stride,
SurfaceFormat::B8G8R8A8, true)) {
return false;
}
// Allocate an unclipped copy of the DT pointing to its data.
uint8_t* dtData = nullptr;
IntSize dtSize;
int32_t dtStride = 0;
SurfaceFormat dtFormat = SurfaceFormat::UNKNOWN;
if (!mSkia->LockBits(&dtData, &dtSize, &dtStride, &dtFormat)) {
return false;
}
mSkiaNoClip = new DrawTargetSkia;
if (!mSkiaNoClip->Init(dtData, dtSize, dtStride, dtFormat, true)) {
mSkia->ReleaseBits(dtData);
return false;
}
mSkia->ReleaseBits(dtData);
SetPermitSubpixelAA(IsOpaque(format));
return true;
}
// If a non-recoverable error occurred that would stop the canvas from initing.
static Atomic<bool> sContextInitError(false);
already_AddRefed<SharedContextWebgl> SharedContextWebgl::Create() {
// If context initialization would fail, don't even try to create a context.
if (sContextInitError) {
return nullptr;
}
RefPtr<SharedContextWebgl> sharedContext = new SharedContextWebgl;
if (!sharedContext->Initialize()) {
return nullptr;
}
return sharedContext.forget();
}
bool SharedContextWebgl::Initialize() {
WebGLContextOptions options = {};
options.alpha = true;
options.depth = false;
options.stencil = false;
options.antialias = false;
options.preserveDrawingBuffer = true;
options.failIfMajorPerformanceCaveat = false;
const bool resistFingerprinting = nsContentUtils::ShouldResistFingerprinting(
"Fallback", RFPTarget::WebGLRenderCapability);
const auto initDesc = webgl::InitContextDesc{
.isWebgl2 = true,
.resistFingerprinting = resistFingerprinting,
.principalKey = 0,
.size = {1, 1},
.options = options,
};
webgl::InitContextResult initResult;
mWebgl = WebGLContext::Create(nullptr, initDesc, &initResult);
if (!mWebgl) {
// There was a non-recoverable error when trying to create a host context.
sContextInitError = true;
mWebgl = nullptr;
return false;
}
if (mWebgl->IsContextLost()) {
mWebgl = nullptr;
return false;
}
mMaxTextureSize = initResult.limits.maxTex2dSize;
if (kIsMacOS) {
mRasterizationTruncates = initResult.vendor == gl::GLVendor::ATI;
}
CachePrefs();
if (!CreateShaders()) {
// There was a non-recoverable error when trying to init shaders.
sContextInitError = true;
mWebgl = nullptr;
return false;
}
mWGRPathBuilder = WGR::wgr_new_builder();
return true;
}
inline void SharedContextWebgl::BlendFunc(GLenum aSrcFactor,
GLenum aDstFactor) {
mWebgl->BlendFuncSeparate({}, aSrcFactor, aDstFactor, aSrcFactor, aDstFactor);
}
void SharedContextWebgl::SetBlendState(CompositionOp aOp,
const Maybe<DeviceColor>& aColor) {
if (aOp == mLastCompositionOp && mLastBlendColor == aColor) {
return;
}
mLastCompositionOp = aOp;
mLastBlendColor = aColor;
// AA is not supported for all composition ops, so switching blend modes may
// cause a toggle in AA state. Certain ops such as OP_SOURCE require output
// alpha that is blended separately from AA coverage. This would require two
// stage blending which can incur a substantial performance penalty, so to
// work around this currently we just disable AA for those ops.
// Map the composition op to a WebGL blend mode, if possible.
bool enabled = true;
switch (aOp) {
case CompositionOp::OP_OVER:
if (aColor) {
// If a color is supplied, then we blend subpixel text.
mWebgl->BlendColor(aColor->b, aColor->g, aColor->r, 1.0f);
BlendFunc(LOCAL_GL_CONSTANT_COLOR, LOCAL_GL_ONE_MINUS_SRC_COLOR);
} else {
BlendFunc(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
}
break;
case CompositionOp::OP_ADD:
BlendFunc(LOCAL_GL_ONE, LOCAL_GL_ONE);
break;
case CompositionOp::OP_ATOP:
BlendFunc(LOCAL_GL_DST_ALPHA, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
break;
case CompositionOp::OP_SOURCE:
if (aColor) {
// If a color is supplied, then we assume there is clipping or AA. This
// requires that we still use an over blend func with the clip/AA alpha,
// while filling the interior with the unaltered color. Normally this
// would require dual source blending, but we can emulate it with only
// a blend color.
mWebgl->BlendColor(aColor->b, aColor->g, aColor->r, aColor->a);
BlendFunc(LOCAL_GL_CONSTANT_COLOR, LOCAL_GL_ONE_MINUS_SRC_COLOR);
} else {
enabled = false;
}
break;
case CompositionOp::OP_CLEAR:
// Assume the source is an alpha mask for clearing. Be careful to blend in
// the correct alpha if the target is opaque.
mWebgl->BlendFuncSeparate(
{}, LOCAL_GL_ZERO, LOCAL_GL_ONE_MINUS_SRC_ALPHA,
IsOpaque(mCurrentTarget->GetFormat()) ? LOCAL_GL_ONE : LOCAL_GL_ZERO,
LOCAL_GL_ONE_MINUS_SRC_ALPHA);
break;
default:
enabled = false;
break;
}
mWebgl->SetEnabled(LOCAL_GL_BLEND, {}, enabled);
}
// Ensure the WebGL framebuffer is set to the current target.
bool SharedContextWebgl::SetTarget(DrawTargetWebgl* aDT) {
if (!mWebgl || mWebgl->IsContextLost()) {
return false;
}
if (aDT != mCurrentTarget) {
mCurrentTarget = aDT;
if (aDT) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, aDT->mFramebuffer);
mViewportSize = aDT->GetSize();
mWebgl->Viewport(0, 0, mViewportSize.width, mViewportSize.height);
}
}
return true;
}
// Replace the current clip rect with a new potentially-AA'd clip rect.
void SharedContextWebgl::SetClipRect(const Rect& aClipRect) {
// Only invalidate the clip rect if it actually changes.
if (!mClipAARect.IsEqualEdges(aClipRect)) {
mClipAARect = aClipRect;
// Store the integer-aligned bounds.
mClipRect = RoundedOut(aClipRect);
}
}
bool SharedContextWebgl::SetClipMask(const RefPtr<WebGLTexture>& aTex) {
if (mLastClipMask != aTex) {
if (!mWebgl) {
return false;
}
mWebgl->ActiveTexture(1);
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, aTex);
mWebgl->ActiveTexture(0);
mLastClipMask = aTex;
}
return true;
}
bool SharedContextWebgl::SetNoClipMask() {
if (mNoClipMask) {
return SetClipMask(mNoClipMask);
}
if (!mWebgl) {
return false;
}
mNoClipMask = mWebgl->CreateTexture();
if (!mNoClipMask) {
return false;
}
mWebgl->ActiveTexture(1);
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, mNoClipMask);
static const auto solidMask =
std::array<const uint8_t, 4>{0xFF, 0xFF, 0xFF, 0xFF};
mWebgl->TexImage(0, LOCAL_GL_RGBA8, {0, 0, 0},
{LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE},
{LOCAL_GL_TEXTURE_2D,
{1, 1, 1},
gfxAlphaType::NonPremult,
Some(Span{solidMask})});
InitTexParameters(mNoClipMask, false);
mWebgl->ActiveTexture(0);
mLastClipMask = mNoClipMask;
return true;
}
inline bool DrawTargetWebgl::ClipStack::operator==(
const DrawTargetWebgl::ClipStack& aOther) const {
// Verify the transform and bounds match.
if (!mTransform.FuzzyEquals(aOther.mTransform) ||
!mRect.IsEqualInterior(aOther.mRect)) {
return false;
}
// Verify the paths match.
if (!mPath) {
return !aOther.mPath;
}
if (!aOther.mPath ||
mPath->GetBackendType() != aOther.mPath->GetBackendType()) {
return false;
}
if (mPath->GetBackendType() != BackendType::SKIA) {
return mPath == aOther.mPath;
}
return static_cast<const PathSkia*>(mPath.get())->GetPath() ==
static_cast<const PathSkia*>(aOther.mPath.get())->GetPath();
}
// If the clip region can't be approximated by a simple clip rect, then we need
// to generate a clip mask that can represent the clip region per-pixel. We
// render to the Skia target temporarily, transparent outside the clip region,
// opaque inside, and upload this to a texture that can be used by the shaders.
bool DrawTargetWebgl::GenerateComplexClipMask() {
if (!mClipChanged || (mClipMask && mCachedClipStack == mClipStack)) {
mClipChanged = false;
// If the clip mask was already generated, use the cached mask and bounds.
mSharedContext->SetClipMask(mClipMask);
mSharedContext->SetClipRect(mClipBounds);
return true;
}
if (!mWebglValid) {
// If the Skia target is currently being used, then we can't render the mask
// in it.
return false;
}
RefPtr<WebGLContext> webgl = mSharedContext->mWebgl;
if (!webgl) {
return false;
}
bool init = false;
if (!mClipMask) {
mClipMask = webgl->CreateTexture();
if (!mClipMask) {
return false;
}
init = true;
}
// Try to get the bounds of the clip to limit the size of the mask.
if (Maybe<IntRect> clip = mSkia->GetDeviceClipRect(true)) {
mClipBounds = *clip;
} else {
// If we can't get bounds, then just use the entire viewport.
mClipBounds = GetRect();
}
mClipAARect = Rect(mClipBounds);
// If initializing the clip mask, then allocate the entire texture to ensure
// all pixels get filled with an empty mask regardless. Otherwise, restrict
// uploading to only the clip region.
RefPtr<DrawTargetSkia> dt = new DrawTargetSkia;
if (!dt->Init(mClipBounds.Size(), SurfaceFormat::A8)) {
return false;
}
// Set the clip region and fill the entire inside of it
// with opaque white.
mCachedClipStack.clear();
for (auto& clipStack : mClipStack) {
// Record the current state of the clip stack for this mask.
mCachedClipStack.push_back(clipStack);
dt->SetTransform(
Matrix(clipStack.mTransform).PostTranslate(-mClipBounds.TopLeft()));
if (clipStack.mPath) {
dt->PushClip(clipStack.mPath);
} else {
dt->PushClipRect(clipStack.mRect);
}
}
dt->SetTransform(Matrix::Translation(-mClipBounds.TopLeft()));
dt->FillRect(Rect(mClipBounds), ColorPattern(DeviceColor(1, 1, 1, 1)));
// Bind the clip mask for uploading.
webgl->ActiveTexture(1);
webgl->BindTexture(LOCAL_GL_TEXTURE_2D, mClipMask);
if (init) {
mSharedContext->InitTexParameters(mClipMask, false);
}
RefPtr<DataSourceSurface> data;
if (RefPtr<SourceSurface> snapshot = dt->Snapshot()) {
data = snapshot->GetDataSurface();
}
// Finally, upload the texture data and initialize texture storage if
// necessary.
if (init && mClipBounds.Size() != mSize) {
mSharedContext->UploadSurface(nullptr, SurfaceFormat::A8, GetRect(),
IntPoint(), true, true);
init = false;
}
mSharedContext->UploadSurface(data, SurfaceFormat::A8,
IntRect(IntPoint(), mClipBounds.Size()),
mClipBounds.TopLeft(), init);
webgl->ActiveTexture(0);
// We already bound the texture, so notify the shared context that the clip
// mask changed to it.
mSharedContext->mLastClipMask = mClipMask;
mSharedContext->SetClipRect(mClipBounds);
// We uploaded a surface, just as if we missed the texture cache, so account
// for that here.
mProfile.OnCacheMiss();
return !!data;
}
bool DrawTargetWebgl::SetSimpleClipRect() {
// Determine whether the clipping rectangle is simple enough to accelerate.
// Check if there is a device space clip rectangle available from the Skia
// target.
if (Maybe<IntRect> clip = mSkia->GetDeviceClipRect(false)) {
// If the clip is empty, leave the final integer clip rectangle empty to
// trivially discard the draw request.
// If the clip rect is larger than the viewport, just set it to the
// viewport.
if (!clip->IsEmpty() && clip->Contains(GetRect())) {
clip = Some(GetRect());
}
mSharedContext->SetClipRect(*clip);
mSharedContext->SetNoClipMask();
return true;
}
// There was no pixel-aligned clip rect available, so check the clip stack to
// see if there is an AA'd axis-aligned rectangle clip.
Rect rect(GetRect());
for (auto& clipStack : mClipStack) {
// If clip is a path or it has a non-axis-aligned transform, then it is
// complex.
if (clipStack.mPath ||
!clipStack.mTransform.PreservesAxisAlignedRectangles()) {
return false;
}
// Transform the rect and intersect it with the current clip.
rect =
clipStack.mTransform.TransformBounds(clipStack.mRect).Intersect(rect);
}
mSharedContext->SetClipRect(rect);
mSharedContext->SetNoClipMask();
return true;
}
// Installs the Skia clip rectangle, if applicable, onto the shared WebGL
// context as well as sets the WebGL framebuffer to the current target.
bool DrawTargetWebgl::PrepareContext(bool aClipped) {
if (!aClipped) {
// If no clipping requested, just set the clip rect to the viewport.
mSharedContext->SetClipRect(GetRect());
mSharedContext->SetNoClipMask();
// Ensure the clip gets reset if clipping is later requested for the target.
mRefreshClipState = true;
} else if (mRefreshClipState || !mSharedContext->IsCurrentTarget(this)) {
// Try to use a simple clip rect if possible. Otherwise, fall back to
// generating a clip mask texture that can represent complex clip regions.
if (!SetSimpleClipRect() && !GenerateComplexClipMask()) {
return false;
}
mClipChanged = false;
mRefreshClipState = false;
}
return mSharedContext->SetTarget(this);
}
bool SharedContextWebgl::IsContextLost() const {
return !mWebgl || mWebgl->IsContextLost();
}
// Signal to CanvasRenderingContext2D when the WebGL context is lost.
bool DrawTargetWebgl::IsValid() const {
return mSharedContext && !mSharedContext->IsContextLost();
}
bool DrawTargetWebgl::CanCreate(const IntSize& aSize, SurfaceFormat aFormat) {
if (!gfxVars::UseAcceleratedCanvas2D()) {
return false;
}
if (!Factory::AllowedSurfaceSize(aSize)) {
return false;
}
// The interpretation of the min-size and max-size follows from the old
// SkiaGL prefs. First just ensure that the context is not unreasonably
// small.
static const int32_t kMinDimension = 16;
if (std::min(aSize.width, aSize.height) < kMinDimension) {
return false;
}
int32_t minSize = StaticPrefs::gfx_canvas_accelerated_min_size();
if (aSize.width * aSize.height < minSize * minSize) {
return false;
}
// Maximum pref allows 3 different options:
// 0 means unlimited size,
// > 0 means use value as an absolute threshold,
// < 0 means use the number of screen pixels as a threshold.
int32_t maxSize = StaticPrefs::gfx_canvas_accelerated_max_size();
if (maxSize > 0) {
if (std::max(aSize.width, aSize.height) > maxSize) {
return false;
}
} else if (maxSize < 0) {
// Default to historical mobile screen size of 980x480, like FishIEtank.
// In addition, allow acceleration up to this size even if the screen is
// smaller. A lot content expects this size to work well. See Bug 999841
static const int32_t kScreenPixels = 980 * 480;
if (RefPtr<widget::Screen> screen =
widget::ScreenManager::GetSingleton().GetPrimaryScreen()) {
LayoutDeviceIntSize screenSize = screen->GetRect().Size();
if (aSize.width * aSize.height >
std::max(screenSize.width * screenSize.height, kScreenPixels)) {
return false;
}
}
}
return true;
}
already_AddRefed<DrawTargetWebgl> DrawTargetWebgl::Create(
const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<SharedContextWebgl>& aSharedContext) {
// Validate the size and format.
if (!CanCreate(aSize, aFormat)) {
return nullptr;
}
RefPtr<DrawTargetWebgl> dt = new DrawTargetWebgl;
if (!dt->Init(aSize, aFormat, aSharedContext) || !dt->IsValid()) {
return nullptr;
}
return dt.forget();
}
void* DrawTargetWebgl::GetNativeSurface(NativeSurfaceType aType) {
switch (aType) {
case NativeSurfaceType::WEBGL_CONTEXT:
// If the context is lost, then don't attempt to access it.
if (mSharedContext->IsContextLost()) {
return nullptr;
}
if (!mWebglValid) {
FlushFromSkia();
}
return mSharedContext->mWebgl.get();
default:
return nullptr;
}
}
// Wrap a WebGL texture holding a snapshot with a texture handle. Note that
// while the texture is still in use as the backing texture of a framebuffer,
// it's texture memory is not currently tracked with other texture handles.
// Once it is finally orphaned and used as a texture handle, it must be added
// to the resource usage totals.
already_AddRefed<TextureHandle> SharedContextWebgl::WrapSnapshot(
const IntSize& aSize, SurfaceFormat aFormat, RefPtr<WebGLTexture> aTex) {
// Ensure there is enough space for the texture.
size_t usedBytes = BackingTexture::UsedBytes(aFormat, aSize);
PruneTextureMemory(usedBytes, false);
// Allocate a handle for the texture
RefPtr<StandaloneTexture> handle =
new StandaloneTexture(aSize, aFormat, aTex.forget());
mStandaloneTextures.push_back(handle);
mTextureHandles.insertFront(handle);
mTotalTextureMemory += usedBytes;
mUsedTextureMemory += usedBytes;
++mNumTextureHandles;
return handle.forget();
}
void SharedContextWebgl::SetTexFilter(WebGLTexture* aTex, bool aFilter) {
mWebgl->TexParameter_base(
LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER,
FloatOrInt(aFilter ? LOCAL_GL_LINEAR : LOCAL_GL_NEAREST));
mWebgl->TexParameter_base(
LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER,
FloatOrInt(aFilter ? LOCAL_GL_LINEAR : LOCAL_GL_NEAREST));
}
void SharedContextWebgl::InitTexParameters(WebGLTexture* aTex, bool aFilter) {
mWebgl->TexParameter_base(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S,
FloatOrInt(LOCAL_GL_CLAMP_TO_EDGE));
mWebgl->TexParameter_base(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T,
FloatOrInt(LOCAL_GL_CLAMP_TO_EDGE));
SetTexFilter(aTex, aFilter);
}
// Copy the contents of the WebGL framebuffer into a WebGL texture.
already_AddRefed<TextureHandle> SharedContextWebgl::CopySnapshot(
const IntRect& aRect, TextureHandle* aHandle) {
if (!mWebgl || mWebgl->IsContextLost()) {
return nullptr;
}
// If the target is going away, then we can just directly reuse the
// framebuffer texture since it will never change.
RefPtr<WebGLTexture> tex = mWebgl->CreateTexture();
if (!tex) {
return nullptr;
}
// If copying from a non-DT source, we have to bind a scratch framebuffer for
// reading.
if (aHandle) {
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = aHandle->GetBackingTexture()->GetWebGLTexture();
mWebgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
}
// Create a texture to hold the copy
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, tex);
mWebgl->TexStorage(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_RGBA8,
{uint32_t(aRect.width), uint32_t(aRect.height), 1});
InitTexParameters(tex);
// Copy the framebuffer into the texture
mWebgl->CopyTexImage(LOCAL_GL_TEXTURE_2D, 0, 0, {0, 0, 0}, {aRect.x, aRect.y},
{uint32_t(aRect.width), uint32_t(aRect.height)});
ClearLastTexture();
SurfaceFormat format =
aHandle ? aHandle->GetFormat() : mCurrentTarget->GetFormat();
already_AddRefed<TextureHandle> result =
WrapSnapshot(aRect.Size(), format, tex.forget());
// Restore the actual framebuffer after reading is done.
if (aHandle && mCurrentTarget) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
}
return result;
}
inline DrawTargetWebgl::AutoRestoreContext::AutoRestoreContext(
DrawTargetWebgl* aTarget)
: mTarget(aTarget),
mClipAARect(aTarget->mSharedContext->mClipAARect),
mLastClipMask(aTarget->mSharedContext->mLastClipMask) {}
inline DrawTargetWebgl::AutoRestoreContext::~AutoRestoreContext() {
mTarget->mSharedContext->SetClipRect(mClipAARect);
if (mLastClipMask) {
mTarget->mSharedContext->SetClipMask(mLastClipMask);
}
mTarget->mRefreshClipState = true;
}
// Utility method to install the target before copying a snapshot.
already_AddRefed<TextureHandle> DrawTargetWebgl::CopySnapshot(
const IntRect& aRect) {
AutoRestoreContext restore(this);
if (!PrepareContext(false)) {
return nullptr;
}
return mSharedContext->CopySnapshot(aRect);
}
bool DrawTargetWebgl::HasDataSnapshot() const {
return (mSkiaValid && !mSkiaLayer) || (mSnapshot && mSnapshot->HasReadData());
}
bool DrawTargetWebgl::PrepareSkia() {
if (!mSkiaValid) {
ReadIntoSkia();
} else if (mSkiaLayer) {
FlattenSkia();
}
return mSkiaValid;
}
bool DrawTargetWebgl::EnsureDataSnapshot() {
return HasDataSnapshot() || PrepareSkia();
}
void DrawTargetWebgl::PrepareShmem() { PrepareSkia(); }
// Borrow a snapshot that may be used by another thread for composition. Only
// Skia snapshots are safe to pass around.
already_AddRefed<SourceSurface> DrawTargetWebgl::GetDataSnapshot() {
PrepareSkia();
return mSkia->Snapshot(mFormat);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::Snapshot() {
// If already using the Skia fallback, then just snapshot that.
if (mSkiaValid) {
return GetDataSnapshot();
}
// There's no valid Skia snapshot, so we need to get one from the WebGL
// context.
if (!mSnapshot) {
// Create a copy-on-write reference to this target.
mSnapshot = new SourceSurfaceWebgl(this);
}
return do_AddRef(mSnapshot);
}
// If we need to provide a snapshot for another DrawTargetWebgl that shares the
// same WebGL context, then it is safe to directly return a snapshot. Otherwise,
// we may be exporting to another thread and require a data snapshot.
already_AddRefed<SourceSurface> DrawTargetWebgl::GetOptimizedSnapshot(
DrawTarget* aTarget) {
if (aTarget && aTarget->GetBackendType() == BackendType::WEBGL &&
static_cast<DrawTargetWebgl*>(aTarget)->mSharedContext ==
mSharedContext) {
return Snapshot();
}
return GetDataSnapshot();
}
// Read from the WebGL context into a buffer. This handles both swizzling BGRA
// to RGBA and flipping the image.
bool SharedContextWebgl::ReadInto(uint8_t* aDstData, int32_t aDstStride,
SurfaceFormat aFormat, const IntRect& aBounds,
TextureHandle* aHandle) {
MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
aFormat == SurfaceFormat::B8G8R8X8);
// If reading into a new texture, we have to bind it to a scratch framebuffer
// for reading.
if (aHandle) {
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = aHandle->GetBackingTexture()->GetWebGLTexture();
mWebgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
} else if (mCurrentTarget && mCurrentTarget->mIsClear) {
// If reading from a target that is still clear, then avoid the readback by
// just clearing the data.
SkPixmap(MakeSkiaImageInfo(aBounds.Size(), aFormat), aDstData, aDstStride)
.erase(IsOpaque(aFormat) ? SK_ColorBLACK : SK_ColorTRANSPARENT);
return true;
}
webgl::ReadPixelsDesc desc;
desc.srcOffset = *ivec2::From(aBounds);
desc.size = *uvec2::FromSize(aBounds);
desc.packState.rowLength = aDstStride / 4;
Range<uint8_t> range = {aDstData, size_t(aDstStride) * aBounds.height};
mWebgl->ReadPixelsInto(desc, range);
// Restore the actual framebuffer after reading is done.
if (aHandle && mCurrentTarget) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
}
return true;
}
already_AddRefed<DataSourceSurface> SharedContextWebgl::ReadSnapshot(
TextureHandle* aHandle) {
// Allocate a data surface, map it, and read from the WebGL context into the
// surface.
SurfaceFormat format = SurfaceFormat::UNKNOWN;
IntRect bounds;
if (aHandle) {
format = aHandle->GetFormat();
bounds = aHandle->GetBounds();
} else {
format = mCurrentTarget->GetFormat();
bounds = mCurrentTarget->GetRect();
}
RefPtr<DataSourceSurface> surface =
Factory::CreateDataSourceSurface(bounds.Size(), format);
if (!surface) {
return nullptr;
}
DataSourceSurface::ScopedMap dstMap(surface, DataSourceSurface::WRITE);
if (!dstMap.IsMapped() || !ReadInto(dstMap.GetData(), dstMap.GetStride(),
format, bounds, aHandle)) {
return nullptr;
}
return surface.forget();
}
// Utility method to install the target before reading a snapshot.
bool DrawTargetWebgl::ReadInto(uint8_t* aDstData, int32_t aDstStride) {
if (!PrepareContext(false)) {
return false;
}
return mSharedContext->ReadInto(aDstData, aDstStride, GetFormat(), GetRect());
}
// Utility method to install the target before reading a snapshot.
already_AddRefed<DataSourceSurface> DrawTargetWebgl::ReadSnapshot() {
AutoRestoreContext restore(this);
if (!PrepareContext(false)) {
return nullptr;
}
mProfile.OnReadback();
return mSharedContext->ReadSnapshot();
}
already_AddRefed<SourceSurface> DrawTargetWebgl::GetBackingSurface() {
return Snapshot();
}
void DrawTargetWebgl::DetachAllSnapshots() {
mSkia->DetachAllSnapshots();
ClearSnapshot();
}
// Prepare the framebuffer for accelerated drawing. Any cached snapshots will
// be invalidated if not detached and copied here. Ensure the WebGL
// framebuffer's contents are updated if still somehow stored in the Skia
// framebuffer.
bool DrawTargetWebgl::MarkChanged() {
if (mSnapshot) {
// Try to copy the target into a new texture if possible.
ClearSnapshot(true, true);
}
if (!mWebglValid && !FlushFromSkia()) {
return false;
}
mSkiaValid = false;
mIsClear = false;
return true;
}
void DrawTargetWebgl::MarkSkiaChanged(bool aOverwrite) {
if (aOverwrite) {
mSkiaValid = true;
mSkiaLayer = false;
} else if (!mSkiaValid) {
if (ReadIntoSkia()) {
// Signal that we've hit a complete software fallback.
mProfile.OnFallback();
}
} else if (mSkiaLayer) {
FlattenSkia();
}
mWebglValid = false;
mIsClear = false;
}
// Whether a given composition operator is associative and thus allows drawing
// into a separate layer that can be later composited back into the WebGL
// context.
static inline bool SupportsLayering(const DrawOptions& aOptions) {
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_OVER:
// Layering is only supported for the default source-over composition op.
return true;
default:
return false;
}
}
void DrawTargetWebgl::MarkSkiaChanged(const DrawOptions& aOptions) {
if (SupportsLayering(aOptions)) {
if (!mSkiaValid) {
// If the Skia context needs initialization, clear it and enable layering.
mSkiaValid = true;
if (mWebglValid) {
mProfile.OnLayer();
mSkiaLayer = true;
mSkiaLayerClear = mIsClear;
mSkia->DetachAllSnapshots();
if (mSkiaLayerClear) {
// Avoid blending later by making sure the layer background is filled
// with opaque alpha values if necessary.
mSkiaNoClip->FillRect(Rect(mSkiaNoClip->GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
mSkiaNoClip->ClearRect(Rect(mSkiaNoClip->GetRect()));
}
}
}
// The WebGL context is no longer up-to-date.
mWebglValid = false;
mIsClear = false;
} else {
// For other composition ops, just overwrite the Skia data.
MarkSkiaChanged();
}
}
bool DrawTargetWebgl::LockBits(uint8_t** aData, IntSize* aSize,
int32_t* aStride, SurfaceFormat* aFormat,
IntPoint* aOrigin) {
// Can only access pixels if there is valid, flattened Skia data.
if (mSkiaValid && !mSkiaLayer) {
MarkSkiaChanged();
return mSkia->LockBits(aData, aSize, aStride, aFormat, aOrigin);
}
return false;
}
void DrawTargetWebgl::ReleaseBits(uint8_t* aData) {
// Can only access pixels if there is valid, flattened Skia data.
if (mSkiaValid && !mSkiaLayer) {
mSkia->ReleaseBits(aData);
}
}
// Format is x, y, alpha
static const float kRectVertexData[12] = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f};
// Orphans the contents of the path vertex buffer. The beginning of the buffer
// always contains data for a simple rectangle draw to avoid needing to switch
// buffers.
void SharedContextWebgl::ResetPathVertexBuffer(bool aChanged) {
mWebgl->BindBuffer(LOCAL_GL_ARRAY_BUFFER, mPathVertexBuffer.get());
mWebgl->UninitializedBufferData_SizeOnly(
LOCAL_GL_ARRAY_BUFFER,
std::max(size_t(mPathVertexCapacity), sizeof(kRectVertexData)),
LOCAL_GL_DYNAMIC_DRAW);
mWebgl->BufferSubData(LOCAL_GL_ARRAY_BUFFER, 0, sizeof(kRectVertexData),
(const uint8_t*)kRectVertexData);
mPathVertexOffset = sizeof(kRectVertexData);
if (aChanged) {
mWGROutputBuffer.reset(
mPathVertexCapacity > 0
? new (fallible) WGR::OutputVertex[mPathVertexCapacity /
sizeof(WGR::OutputVertex)]
: nullptr);
}
}
// Attempts to create all shaders and resources to be used for drawing commands.
// Returns whether or not this succeeded.
bool SharedContextWebgl::CreateShaders() {
if (!mPathVertexArray) {
mPathVertexArray = mWebgl->CreateVertexArray();
}
if (!mPathVertexBuffer) {
mPathVertexBuffer = mWebgl->CreateBuffer();
mWebgl->BindVertexArray(mPathVertexArray.get());
ResetPathVertexBuffer();
mWebgl->EnableVertexAttribArray(0);
webgl::VertAttribPointerDesc attribDesc;
attribDesc.channels = 3;
attribDesc.type = LOCAL_GL_FLOAT;
attribDesc.normalized = false;
mWebgl->VertexAttribPointer(0, attribDesc);
}
if (!mSolidProgram) {
// AA is computed by using the basis vectors of the transform to determine
// both the scale and orientation. The scale is then used to extrude the
// rectangle outward by 1 screen-space pixel to account for the AA region.
// The distance to the rectangle edges is passed to the fragment shader in
// an interpolant, biased by 0.5 so it represents the desired coverage. The
// minimum coverage is then chosen by the fragment shader to use as an AA
// coverage value to modulate the color.
auto vsSource =
"attribute vec3 a_vertex;\n"
"uniform vec2 u_transform[3];\n"
"uniform vec2 u_viewport;\n"
"uniform vec4 u_clipbounds;\n"
"uniform float u_aa;\n"
"varying vec2 v_cliptc;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 scale = vec2(dot(u_transform[0], u_transform[0]),\n"
" dot(u_transform[1], u_transform[1]));\n"
" vec2 invScale = u_aa * inversesqrt(scale + 1.0e-6);\n"
" scale *= invScale;\n"
" vec2 extrude = a_vertex.xy +\n"
" invScale * (2.0 * a_vertex.xy - 1.0);\n"
" vec2 vertex = u_transform[0] * extrude.x +\n"
" u_transform[1] * extrude.y +\n"
" u_transform[2];\n"
" gl_Position = vec4(vertex * 2.0 / u_viewport - 1.0, 0.0, 1.0);\n"
" v_cliptc = vertex / u_viewport;\n"
" v_clipdist = vec4(vertex - u_clipbounds.xy,\n"
" u_clipbounds.zw - vertex);\n"
" float noAA = 1.0 - u_aa;\n"
" v_dist = vec4(extrude, 1.0 - extrude) * scale.xyxy + 0.5 + noAA;\n"
" v_alpha = min(a_vertex.z,\n"
" min(scale.x, 1.0) * min(scale.y, 1.0) + noAA);\n"
"}\n";
auto fsSource =
"precision mediump float;\n"
"uniform vec4 u_color;\n"
"uniform sampler2D u_clipmask;\n"
"varying highp vec2 v_cliptc;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" float clip = texture2D(u_clipmask, v_cliptc).r;\n"
" vec4 dist = min(v_dist, v_clipdist);\n"
" dist.xy = min(dist.xy, dist.zw);\n"
" float aa = clamp(min(dist.x, dist.y), 0.0, v_alpha);\n"
" gl_FragColor = clip * aa * u_color;\n"
"}\n";
RefPtr<WebGLShader> vsId = mWebgl->CreateShader(LOCAL_GL_VERTEX_SHADER);
mWebgl->ShaderSource(*vsId, vsSource);
mWebgl->CompileShader(*vsId);
if (!mWebgl->GetCompileResult(*vsId).success) {
return false;
}
RefPtr<WebGLShader> fsId = mWebgl->CreateShader(LOCAL_GL_FRAGMENT_SHADER);
mWebgl->ShaderSource(*fsId, fsSource);
mWebgl->CompileShader(*fsId);
if (!mWebgl->GetCompileResult(*fsId).success) {
return false;
}
mSolidProgram = mWebgl->CreateProgram();
mWebgl->AttachShader(*mSolidProgram, *vsId);
mWebgl->AttachShader(*mSolidProgram, *fsId);
mWebgl->BindAttribLocation(*mSolidProgram, 0, "a_vertex");
mWebgl->LinkProgram(*mSolidProgram);
if (!mWebgl->GetLinkResult(*mSolidProgram).success) {
return false;
}
mSolidProgramViewport = GetUniformLocation(mSolidProgram, "u_viewport");
mSolidProgramAA = GetUniformLocation(mSolidProgram, "u_aa");
mSolidProgramTransform = GetUniformLocation(mSolidProgram, "u_transform");
mSolidProgramColor = GetUniformLocation(mSolidProgram, "u_color");
mSolidProgramClipMask = GetUniformLocation(mSolidProgram, "u_clipmask");
mSolidProgramClipBounds = GetUniformLocation(mSolidProgram, "u_clipbounds");
if (!mSolidProgramViewport || !mSolidProgramAA || !mSolidProgramTransform ||
!mSolidProgramColor || !mSolidProgramClipMask ||
!mSolidProgramClipBounds) {
return false;
}
mWebgl->UseProgram(mSolidProgram);
UniformData(LOCAL_GL_INT, mSolidProgramClipMask, Array<int32_t, 1>{1});
}
if (!mImageProgram) {
auto vsSource =
"attribute vec3 a_vertex;\n"
"uniform vec2 u_viewport;\n"
"uniform vec4 u_clipbounds;\n"
"uniform float u_aa;\n"
"uniform vec2 u_transform[3];\n"
"uniform vec2 u_texmatrix[3];\n"
"varying vec2 v_cliptc;\n"
"varying vec2 v_texcoord;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 scale = vec2(dot(u_transform[0], u_transform[0]),\n"
" dot(u_transform[1], u_transform[1]));\n"
" vec2 invScale = u_aa * inversesqrt(scale + 1.0e-6);\n"
" scale *= invScale;\n"
" vec2 extrude = a_vertex.xy +\n"
" invScale * (2.0 * a_vertex.xy - 1.0);\n"
" vec2 vertex = u_transform[0] * extrude.x +\n"
" u_transform[1] * extrude.y +\n"
" u_transform[2];\n"
" gl_Position = vec4(vertex * 2.0 / u_viewport - 1.0, 0.0, 1.0);\n"
" v_cliptc = vertex / u_viewport;\n"
" v_clipdist = vec4(vertex - u_clipbounds.xy,\n"
" u_clipbounds.zw - vertex);\n"
" v_texcoord = u_texmatrix[0] * extrude.x +\n"
" u_texmatrix[1] * extrude.y +\n"
" u_texmatrix[2];\n"
" float noAA = 1.0 - u_aa;\n"
" v_dist = vec4(extrude, 1.0 - extrude) * scale.xyxy + 0.5 + noAA;\n"
" v_alpha = min(a_vertex.z,\n"
" min(scale.x, 1.0) * min(scale.y, 1.0) + noAA);\n"
"}\n";
auto fsSource =
"precision mediump float;\n"
"uniform vec4 u_texbounds;\n"
"uniform vec4 u_color;\n"
"uniform float u_swizzle;\n"
"uniform sampler2D u_sampler;\n"
"uniform sampler2D u_clipmask;\n"
"varying highp vec2 v_cliptc;\n"
"varying highp vec2 v_texcoord;\n"
"varying vec4 v_clipdist;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" highp vec2 tc = clamp(v_texcoord, u_texbounds.xy,\n"
" u_texbounds.zw);\n"
" vec4 image = texture2D(u_sampler, tc);\n"
" float clip = texture2D(u_clipmask, v_cliptc).r;\n"
" vec4 dist = min(v_dist, v_clipdist);\n"
" dist.xy = min(dist.xy, dist.zw);\n"
" float aa = clamp(min(dist.x, dist.y), 0.0, v_alpha);\n"
" gl_FragColor = clip * aa * u_color *\n"
" mix(image, image.rrrr, u_swizzle);\n"
"}\n";
RefPtr<WebGLShader> vsId = mWebgl->CreateShader(LOCAL_GL_VERTEX_SHADER);
mWebgl->ShaderSource(*vsId, vsSource);
mWebgl->CompileShader(*vsId);
if (!mWebgl->GetCompileResult(*vsId).success) {
return false;
}
RefPtr<WebGLShader> fsId = mWebgl->CreateShader(LOCAL_GL_FRAGMENT_SHADER);
mWebgl->ShaderSource(*fsId, fsSource);
mWebgl->CompileShader(*fsId);
if (!mWebgl->GetCompileResult(*fsId).success) {
return false;
}
mImageProgram = mWebgl->CreateProgram();
mWebgl->AttachShader(*mImageProgram, *vsId);
mWebgl->AttachShader(*mImageProgram, *fsId);
mWebgl->BindAttribLocation(*mImageProgram, 0, "a_vertex");
mWebgl->LinkProgram(*mImageProgram);
if (!mWebgl->GetLinkResult(*mImageProgram).success) {
return false;
}
mImageProgramViewport = GetUniformLocation(mImageProgram, "u_viewport");
mImageProgramAA = GetUniformLocation(mImageProgram, "u_aa");
mImageProgramTransform = GetUniformLocation(mImageProgram, "u_transform");
mImageProgramTexMatrix = GetUniformLocation(mImageProgram, "u_texmatrix");
mImageProgramTexBounds = GetUniformLocation(mImageProgram, "u_texbounds");
mImageProgramSwizzle = GetUniformLocation(mImageProgram, "u_swizzle");
mImageProgramColor = GetUniformLocation(mImageProgram, "u_color");
mImageProgramSampler = GetUniformLocation(mImageProgram, "u_sampler");
mImageProgramClipMask = GetUniformLocation(mImageProgram, "u_clipmask");
mImageProgramClipBounds = GetUniformLocation(mImageProgram, "u_clipbounds");
if (!mImageProgramViewport || !mImageProgramAA || !mImageProgramTransform ||
!mImageProgramTexMatrix || !mImageProgramTexBounds ||
!mImageProgramSwizzle || !mImageProgramColor || !mImageProgramSampler ||
!mImageProgramClipMask || !mImageProgramClipBounds) {
return false;
}
mWebgl->UseProgram(mImageProgram);
UniformData(LOCAL_GL_INT, mImageProgramSampler, Array<int32_t, 1>{0});
UniformData(LOCAL_GL_INT, mImageProgramClipMask, Array<int32_t, 1>{1});
}
return true;
}
void SharedContextWebgl::EnableScissor(const IntRect& aRect) {
// Only update scissor state if it actually changes.
if (!mLastScissor.IsEqualEdges(aRect)) {
mLastScissor = aRect;
mWebgl->Scissor(aRect.x, aRect.y, aRect.width, aRect.height);
}
if (!mScissorEnabled) {
mScissorEnabled = true;
mWebgl->SetEnabled(LOCAL_GL_SCISSOR_TEST, {}, true);
}
}
void SharedContextWebgl::DisableScissor() {
if (mScissorEnabled) {
mScissorEnabled = false;
mWebgl->SetEnabled(LOCAL_GL_SCISSOR_TEST, {}, false);
}
}
inline ColorPattern DrawTargetWebgl::GetClearPattern() const {
return ColorPattern(
DeviceColor(0.0f, 0.0f, 0.0f, IsOpaque(mFormat) ? 1.0f : 0.0f));
}
// Check if the transformed rect would contain the entire viewport.
inline bool DrawTargetWebgl::RectContainsViewport(const Rect& aRect) const {
return mTransform.PreservesAxisAlignedRectangles() &&
MatrixDouble(mTransform)
.TransformBounds(
RectDouble(aRect.x, aRect.y, aRect.width, aRect.height))
.Contains(RectDouble(GetRect()));
}
// Ensure that the rect, after transform, is within reasonable precision limits
// such that when transformed and clipped in the shader it will not round bits
// from the mantissa in a way that will diverge in a noticeable way from path
// geometry calculated by the path fallback.
static inline bool RectInsidePrecisionLimits(const Rect& aRect,
const Matrix& aTransform) {
return Rect(-(1 << 20), -(1 << 20), 2 << 20, 2 << 20)
.Contains(aTransform.TransformBounds(aRect));
}
void DrawTargetWebgl::ClearRect(const Rect& aRect) {
if (mIsClear) {
// No need to clear anything if the entire framebuffer is already clear.
return;
}
bool containsViewport = RectContainsViewport(aRect);
if (containsViewport) {
// If the rect encompasses the entire viewport, just clear the viewport
// instead to avoid transform issues.
DrawRect(Rect(GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_CLEAR), Nothing(), nullptr,
false);
} else if (RectInsidePrecisionLimits(aRect, mTransform)) {
// If the rect transform won't stress precision, then just use it.
DrawRect(aRect, GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_CLEAR));
} else {
// Otherwise, using the transform in the shader may lead to inaccuracies, so
// just fall back.
MarkSkiaChanged();
mSkia->ClearRect(aRect);
}
// If the clear rectangle encompasses the entire viewport and is not clipped,
// then mark the target as entirely clear.
if (containsViewport && mSharedContext->IsCurrentTarget(this) &&
!mSharedContext->HasClipMask() &&
mSharedContext->mClipAARect.Contains(Rect(GetRect()))) {
mIsClear = true;
}
}
static inline DeviceColor PremultiplyColor(const DeviceColor& aColor,
float aAlpha = 1.0f) {
float a = aColor.a * aAlpha;
return DeviceColor(aColor.r * a, aColor.g * a, aColor.b * a, a);
}
// Attempts to create the framebuffer used for drawing and also any relevant
// non-shared resources. Returns whether or not this succeeded.
bool DrawTargetWebgl::CreateFramebuffer() {
RefPtr<WebGLContext> webgl = mSharedContext->mWebgl;
if (!mFramebuffer) {
mFramebuffer = webgl->CreateFramebuffer();
}
if (!mTex) {
mTex = webgl->CreateTexture();
webgl->BindTexture(LOCAL_GL_TEXTURE_2D, mTex);
webgl->TexStorage(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_RGBA8,
{uint32_t(mSize.width), uint32_t(mSize.height), 1});
mSharedContext->InitTexParameters(mTex);
webgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = mTex;
webgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
webgl->Viewport(0, 0, mSize.width, mSize.height);
mSharedContext->DisableScissor();
DeviceColor color = PremultiplyColor(GetClearPattern().mColor);
webgl->ClearColor(color.b, color.g, color.r, color.a);
webgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
mSharedContext->ClearTarget();
mSharedContext->ClearLastTexture();
}
return true;
}
void DrawTargetWebgl::CopySurface(SourceSurface* aSurface,
const IntRect& aSourceRect,
const IntPoint& aDestination) {
// Intersect the source and destination rectangles with the viewport bounds.
IntRect destRect =
IntRect(aDestination, aSourceRect.Size()).SafeIntersect(GetRect());
IntRect srcRect = destRect - aDestination + aSourceRect.TopLeft();
if (srcRect.IsEmpty()) {
return;
}
if (mSkiaValid) {
if (mSkiaLayer) {
if (destRect.Contains(GetRect())) {
// If the the destination would override the entire layer, discard the
// layer.
mSkiaLayer = false;
} else if (!IsOpaque(aSurface->GetFormat())) {
// If the surface is not opaque, copying it into the layer results in
// unintended blending rather than a copy to the destination.
FlattenSkia();
}
} else {
// If there is no layer, copying is safe.
MarkSkiaChanged();
}
mSkia->CopySurface(aSurface, srcRect, destRect.TopLeft());
return;
}
IntRect samplingRect;
if (!mSharedContext->IsCompatibleSurface(aSurface)) {
// If this data surface completely overwrites the framebuffer, then just
// copy it to the Skia target.
if (destRect.Contains(GetRect())) {
MarkSkiaChanged(true);
mSkia->DetachAllSnapshots();
mSkiaNoClip->CopySurface(aSurface, srcRect, destRect.TopLeft());
return;
}
// CopySurface usually only samples a surface once, so don't cache the
// entire surface as it is unlikely to be reused. Limit it to the used
// source rectangle instead.
IntRect surfaceRect = aSurface->GetRect();
if (!srcRect.IsEqualEdges(surfaceRect)) {
samplingRect = srcRect.SafeIntersect(surfaceRect);
}
}
Matrix matrix = Matrix::Translation(destRect.TopLeft() - srcRect.TopLeft());
SurfacePattern pattern(aSurface, ExtendMode::CLAMP, matrix,
SamplingFilter::POINT, samplingRect);
DrawRect(Rect(destRect), pattern, DrawOptions(1.0f, CompositionOp::OP_SOURCE),
Nothing(), nullptr, false, false);
}
void DrawTargetWebgl::PushClip(const Path* aPath) {
if (aPath && aPath->GetBackendType() == BackendType::SKIA) {
// Detect if the path is really just a rect to simplify caching.
const PathSkia* pathSkia = static_cast<const PathSkia*>(aPath);
const SkPath& skPath = pathSkia->GetPath();
SkRect rect = SkRect::MakeEmpty();
if (skPath.isRect(&rect)) {
PushClipRect(SkRectToRect(rect));
return;
}
}
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushClip(aPath);
mClipStack.push_back({GetTransform(), Rect(), aPath});
}
void DrawTargetWebgl::PushClipRect(const Rect& aRect) {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushClipRect(aRect);
mClipStack.push_back({GetTransform(), aRect, nullptr});
}
void DrawTargetWebgl::PushDeviceSpaceClipRects(const IntRect* aRects,
uint32_t aCount) {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushDeviceSpaceClipRects(aRects, aCount);
for (uint32_t i = 0; i < aCount; i++) {
mClipStack.push_back({Matrix(), Rect(aRects[i]), nullptr});
}
}
void DrawTargetWebgl::PopClip() {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PopClip();
mClipStack.pop_back();
}
bool DrawTargetWebgl::RemoveAllClips() {
if (mClipStack.empty()) {
return true;
}
if (!mSkia->RemoveAllClips()) {
return false;
}
mClipChanged = true;
mRefreshClipState = true;
mClipStack.clear();
return true;
}
void DrawTargetWebgl::CopyToFallback(DrawTarget* aDT) {
if (RefPtr<SourceSurface> snapshot = Snapshot()) {
aDT->CopySurface(snapshot, snapshot->GetRect(), gfx::IntPoint(0, 0));
}
aDT->RemoveAllClips();
for (auto& clipStack : mClipStack) {
aDT->SetTransform(clipStack.mTransform);
if (clipStack.mPath) {
aDT->PushClip(clipStack.mPath);
} else {
aDT->PushClipRect(clipStack.mRect);
}
}
aDT->SetTransform(GetTransform());
}
// Whether a given composition operator can be mapped to a WebGL blend mode.
static inline bool SupportsDrawOptions(const DrawOptions& aOptions) {
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_OVER:
case CompositionOp::OP_ADD:
case CompositionOp::OP_ATOP:
case CompositionOp::OP_SOURCE:
case CompositionOp::OP_CLEAR:
return true;
default:
return false;
}
}
// Whether a pattern can be mapped to an available WebGL shader.
bool SharedContextWebgl::SupportsPattern(const Pattern& aPattern) {
switch (aPattern.GetType()) {
case PatternType::COLOR:
return true;
case PatternType::SURFACE: {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
if (surfacePattern.mExtendMode != ExtendMode::CLAMP) {
return false;
}
if (surfacePattern.mSurface) {
// If the surface is already uploaded to a texture, then just use it.
if (IsCompatibleSurface(surfacePattern.mSurface)) {
return true;
}
IntSize size = surfacePattern.mSurface->GetSize();
// The maximum size a surface can be before triggering a fallback to
// software. Bound the maximum surface size by the actual texture size
// limit.
int32_t maxSize = int32_t(
std::min(StaticPrefs::gfx_canvas_accelerated_max_surface_size(),
mMaxTextureSize));
// Check if either of the surface dimensions or the sampling rect,
// if supplied, exceed the maximum.
if (std::max(size.width, size.height) > maxSize &&
(surfacePattern.mSamplingRect.IsEmpty() ||
std::max(surfacePattern.mSamplingRect.width,
surfacePattern.mSamplingRect.height) > maxSize)) {
return false;
}
}
return true;
}
default:
// Patterns other than colors and surfaces are currently not accelerated.
return false;
}
}
bool DrawTargetWebgl::DrawRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor,
RefPtr<TextureHandle>* aHandle,
bool aTransformed, bool aClipped,
bool aAccelOnly, bool aForceUpdate,
const StrokeOptions* aStrokeOptions) {
// If there is nothing to draw, then don't draw...
if (aRect.IsEmpty()) {
return true;
}
// If we're already drawing directly to the WebGL context, then we want to
// continue to do so. However, if we're drawing into a Skia layer over the
// WebGL context, then we need to be careful to avoid repeatedly clearing
// and flushing the layer if we hit a drawing request that can be accelerated
// in between layered drawing requests, as clearing and flushing the layer
// can be significantly expensive when repeated. So when a Skia layer is
// active, if it is possible to continue drawing into the layer, then don't
// accelerate the drawing request.
if (mWebglValid || (mSkiaLayer && !mLayerDepth &&
(aAccelOnly || !SupportsLayering(aOptions)))) {
// If we get here, either the WebGL context is being directly drawn to
// or we are going to flush the Skia layer to it before doing so. The shared
// context still needs to be claimed and prepared for drawing. If this
// fails, we just fall back to drawing with Skia below.
if (PrepareContext(aClipped)) {
// The shared context is claimed and the framebuffer is now valid, so try
// accelerated drawing.
return mSharedContext->DrawRectAccel(
aRect, aPattern, aOptions, aMaskColor, aHandle, aTransformed,
aClipped, aAccelOnly, aForceUpdate, aStrokeOptions);
}
}
// Either there is no valid WebGL target to draw into, or we failed to prepare
// it for drawing. The only thing we can do at this point is fall back to
// drawing with Skia. If the request explicitly requires accelerated drawing,
// then draw nothing before returning failure.
if (!aAccelOnly) {
DrawRectFallback(aRect, aPattern, aOptions, aMaskColor, aTransformed,
aClipped, aStrokeOptions);
}
return false;
}
void DrawTargetWebgl::DrawRectFallback(const Rect& aRect,
const Pattern& aPattern,
const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor,
bool aTransformed, bool aClipped,
const StrokeOptions* aStrokeOptions) {
// Invalidate the WebGL target and prepare the Skia target for drawing.
MarkSkiaChanged(aOptions);
if (aTransformed) {
// If transforms are requested, then just translate back to FillRect.
if (aMaskColor) {
mSkia->Mask(ColorPattern(*aMaskColor), aPattern, aOptions);
} else if (aStrokeOptions) {
mSkia->StrokeRect(aRect, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillRect(aRect, aPattern, aOptions);
}
} else if (aClipped) {
// If no transform was requested but clipping is still required, then
// temporarily reset the transform before translating to FillRect.
mSkia->SetTransform(Matrix());
if (aMaskColor) {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
if (surfacePattern.mSamplingRect.IsEmpty()) {
mSkia->MaskSurface(ColorPattern(*aMaskColor), surfacePattern.mSurface,
aRect.TopLeft(), aOptions);
} else {
mSkia->Mask(ColorPattern(*aMaskColor), aPattern, aOptions);
}
} else if (aStrokeOptions) {
mSkia->StrokeRect(aRect, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillRect(aRect, aPattern, aOptions);
}
mSkia->SetTransform(mTransform);
} else if (aPattern.GetType() == PatternType::SURFACE) {
// No transform nor clipping was requested, so it is essentially just a
// copy.
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
mSkia->CopySurface(surfacePattern.mSurface,
surfacePattern.mSurface->GetRect(),
IntPoint::Round(aRect.TopLeft()));
} else {
MOZ_ASSERT(false);
}
}
inline already_AddRefed<WebGLTexture> SharedContextWebgl::GetCompatibleSnapshot(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::WEBGL) {
RefPtr<SourceSurfaceWebgl> webglSurf =
static_cast<SourceSurfaceWebgl*>(aSurface);
if (this == webglSurf->mSharedContext) {
// If there is a snapshot copy in a texture handle, use that.
if (webglSurf->mHandle) {
return do_AddRef(
webglSurf->mHandle->GetBackingTexture()->GetWebGLTexture());
}
if (RefPtr<DrawTargetWebgl> webglDT = webglSurf->GetTarget()) {
// If there is a copy-on-write reference to a target, use its backing
// texture directly. This is only safe if the targets don't match, but
// MarkChanged should ensure that any snapshots were copied into a
// texture handle before we ever get here.
if (!IsCurrentTarget(webglDT)) {
return do_AddRef(webglDT->mTex);
}
}
}
}
return nullptr;
}
inline bool SharedContextWebgl::IsCompatibleSurface(
SourceSurface* aSurface) const {
return bool(RefPtr<WebGLTexture>(GetCompatibleSnapshot(aSurface)));
}
bool SharedContextWebgl::UploadSurface(DataSourceSurface* aData,
SurfaceFormat aFormat,
const IntRect& aSrcRect,
const IntPoint& aDstOffset, bool aInit,
bool aZero,
const RefPtr<WebGLTexture>& aTex) {
webgl::TexUnpackBlobDesc texDesc = {
LOCAL_GL_TEXTURE_2D,
{uint32_t(aSrcRect.width), uint32_t(aSrcRect.height), 1}};
if (aData) {
// The surface needs to be uploaded to its backing texture either to
// initialize or update the texture handle contents. Map the data
// contents of the surface so it can be read.
DataSourceSurface::ScopedMap map(aData, DataSourceSurface::READ);
if (!map.IsMapped()) {
return false;
}
int32_t stride = map.GetStride();
int32_t bpp = BytesPerPixel(aFormat);
// Get the data pointer range considering the sampling rect offset and
// size.
Span<const uint8_t> range(
map.GetData() + aSrcRect.y * size_t(stride) + aSrcRect.x * bpp,
std::max(aSrcRect.height - 1, 0) * size_t(stride) +
aSrcRect.width * bpp);
texDesc.cpuData = Some(range);
// If the stride happens to be 4 byte aligned, assume that is the
// desired alignment regardless of format (even A8). Otherwise, we
// default to byte alignment.
texDesc.unpacking.alignmentInTypeElems = stride % 4 ? 1 : 4;
texDesc.unpacking.rowLength = stride / bpp;
} else if (aZero) {
// Create a PBO filled with zero data to initialize the texture data and
// avoid slow initialization inside WebGL.
MOZ_ASSERT(aSrcRect.TopLeft() == IntPoint(0, 0));
size_t size =
size_t(GetAlignedStride<4>(aSrcRect.width, BytesPerPixel(aFormat))) *
aSrcRect.height;
if (!mZeroBuffer || size > mZeroSize) {
mZeroBuffer = mWebgl->CreateBuffer();
mZeroSize = size;
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, mZeroBuffer);
// WebGL will zero initialize the empty buffer, so we don't send zero data
// explicitly.
mWebgl->BufferData(LOCAL_GL_PIXEL_UNPACK_BUFFER, size, nullptr,
LOCAL_GL_STATIC_DRAW);
} else {
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, mZeroBuffer);
}
texDesc.pboOffset = Some(0);
}
// Upload as RGBA8 to avoid swizzling during upload. Surfaces provide
// data as BGRA, but we manually swizzle that in the shader. An A8
// surface will be stored as an R8 texture that will also be swizzled
// in the shader.
GLenum intFormat =
aFormat == SurfaceFormat::A8 ? LOCAL_GL_R8 : LOCAL_GL_RGBA8;
GLenum extFormat =
aFormat == SurfaceFormat::A8 ? LOCAL_GL_RED : LOCAL_GL_RGBA;
webgl::PackingInfo texPI = {extFormat, LOCAL_GL_UNSIGNED_BYTE};
// Do the (partial) upload for the shared or standalone texture.
if (aTex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, aTex);
}
mWebgl->TexImage(0, aInit ? intFormat : 0,
{uint32_t(aDstOffset.x), uint32_t(aDstOffset.y), 0}, texPI,
texDesc);
if (aTex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, mLastTexture);
}
if (!aData && aZero) {
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, 0);
}
return true;
}
// Allocate a new texture handle backed by either a standalone texture or as a
// sub-texture of a larger shared texture.
already_AddRefed<TextureHandle> SharedContextWebgl::AllocateTextureHandle(
SurfaceFormat aFormat, const IntSize& aSize, bool aAllowShared,
bool aRenderable) {
RefPtr<TextureHandle> handle;
// Calculate the bytes that would be used by this texture handle, and prune
// enough other textures to ensure we have that much usable texture space
// available to allocate.
size_t usedBytes = BackingTexture::UsedBytes(aFormat, aSize);
PruneTextureMemory(usedBytes, false);
// The requested page size for shared textures.
int32_t pageSize = int32_t(std::min(
StaticPrefs::gfx_canvas_accelerated_shared_page_size(), mMaxTextureSize));
if (aAllowShared && std::max(aSize.width, aSize.height) <= pageSize / 2) {
// Ensure that the surface is no bigger than a quadrant of a shared texture
// page. If so, try to allocate it to a shared texture. Look for any
// existing shared texture page with a matching format and allocate
// from that if possible.
for (auto& shared : mSharedTextures) {
if (shared->GetFormat() == aFormat &&
shared->IsRenderable() == aRenderable) {
bool wasEmpty = !shared->HasAllocatedHandles();
handle = shared->Allocate(aSize);
if (handle) {
if (wasEmpty) {
// If the page was previously empty, then deduct it from the
// empty memory reserves.
mEmptyTextureMemory -= shared->UsedBytes();
}
break;
}
}
}
// If we couldn't find an existing shared texture page with matching
// format, then allocate a new page to put the request in.
if (!handle) {
if (RefPtr<WebGLTexture> tex = mWebgl->CreateTexture()) {
RefPtr<SharedTexture> shared =
new SharedTexture(IntSize(pageSize, pageSize), aFormat, tex);
if (aRenderable) {
shared->MarkRenderable();
}
mSharedTextures.push_back(shared);
mTotalTextureMemory += shared->UsedBytes();
handle = shared->Allocate(aSize);
}
}
} else {
// The surface wouldn't fit in a shared texture page, so we need to
// allocate a standalone texture for it instead.
if (RefPtr<WebGLTexture> tex = mWebgl->CreateTexture()) {
RefPtr<StandaloneTexture> standalone =
new StandaloneTexture(aSize, aFormat, tex);
if (aRenderable) {
standalone->MarkRenderable();
}
mStandaloneTextures.push_back(standalone);
mTotalTextureMemory += standalone->UsedBytes();
handle = standalone;
}
}
if (!handle) {
return nullptr;
}
// Insert the new texture handle into the front of the MRU list and
// update used space for it.
mTextureHandles.insertFront(handle);
++mNumTextureHandles;
mUsedTextureMemory += handle->UsedBytes();
return handle.forget();
}
static inline SamplingFilter GetSamplingFilter(const Pattern& aPattern) {
return aPattern.GetType() == PatternType::SURFACE
? static_cast<const SurfacePattern&>(aPattern).mSamplingFilter
: SamplingFilter::GOOD;
}
static inline bool UseNearestFilter(const Pattern& aPattern) {
return GetSamplingFilter(aPattern) == SamplingFilter::POINT;
}
// Determine if the rectangle is still axis-aligned and pixel-aligned.
static inline Maybe<IntRect> IsAlignedRect(bool aTransformed,
const Matrix& aCurrentTransform,
const Rect& aRect) {
if (!aTransformed || aCurrentTransform.HasOnlyIntegerTranslation()) {
auto intRect = RoundedToInt(aRect);
if (aRect.WithinEpsilonOf(Rect(intRect), 1.0e-3f)) {
if (aTransformed) {
intRect += RoundedToInt(aCurrentTransform.GetTranslation());
}
return Some(intRect);
}
}
return Nothing();
}
Maybe<uint32_t> SharedContextWebgl::GetUniformLocation(
const RefPtr<WebGLProgram>& aProg, const std::string& aName) const {
if (!aProg || !aProg->LinkInfo()) {
return Nothing();
}
for (const auto& activeUniform : aProg->LinkInfo()->active.activeUniforms) {
if (activeUniform.block_index != -1) continue;
auto locName = activeUniform.name;
const auto indexed = webgl::ParseIndexed(locName);
if (indexed) {
locName = indexed->name;
}
const auto baseLength = locName.size();
for (const auto& pair : activeUniform.locByIndex) {
if (indexed) {
locName.erase(baseLength); // Erase previous "[N]".
locName += '[';
locName += std::to_string(pair.first);
locName += ']';
}
if (locName == aName || locName == aName + "[0]") {
return Some(pair.second);
}
}
}
return Nothing();
}
template <class T>
struct IsUniformDataValT : std::false_type {};
template <>
struct IsUniformDataValT<webgl::UniformDataVal> : std::true_type {};
template <>
struct IsUniformDataValT<float> : std::true_type {};
template <>
struct IsUniformDataValT<int32_t> : std::true_type {};
template <>
struct IsUniformDataValT<uint32_t> : std::true_type {};
template <typename T, typename = std::enable_if_t<IsUniformDataValT<T>::value>>
inline Range<const webgl::UniformDataVal> AsUniformDataVal(
const Range<const T>& data) {
return {data.begin().template ReinterpretCast<const webgl::UniformDataVal>(),
data.end().template ReinterpretCast<const webgl::UniformDataVal>()};
}
template <class T, size_t N>
inline void SharedContextWebgl::UniformData(GLenum aFuncElemType,
const Maybe<uint32_t>& aLoc,
const Array<T, N>& aData) {
// We currently always pass false for transpose. If in the future we need
// support for transpose then caching needs to take that in to account.
mWebgl->UniformData(*aLoc, false,
AsUniformDataVal(Range<const T>(Span<const T>(aData))));
}
template <class T, size_t N>
void SharedContextWebgl::MaybeUniformData(GLenum aFuncElemType,
const Maybe<uint32_t>& aLoc,
const Array<T, N>& aData,
Maybe<Array<T, N>>& aCached) {
if (aCached.isNothing() || !(*aCached == aData)) {
aCached = Some(aData);
UniformData(aFuncElemType, aLoc, aData);
}
}
inline void SharedContextWebgl::DrawQuad() {
mWebgl->DrawArraysInstanced(LOCAL_GL_TRIANGLE_FAN, 0, 4, 1);
}
void SharedContextWebgl::DrawTriangles(const PathVertexRange& aRange) {
mWebgl->DrawArraysInstanced(LOCAL_GL_TRIANGLES, GLint(aRange.mOffset),
GLsizei(aRange.mLength), 1);
}
// Common rectangle and pattern drawing function shared by many DrawTarget
// commands. If aMaskColor is specified, the provided surface pattern will be
// treated as a mask. If aHandle is specified, then the surface pattern's
// texture will be cached in the supplied handle, as opposed to using the
// surface's user data. If aTransformed or aClipped are false, then transforms
// and/or clipping will be disabled. If aAccelOnly is specified, then this
// function will return before it would have otherwise drawn without
// acceleration. If aForceUpdate is specified, then the provided texture handle
// will be respecified with the provided surface.
bool SharedContextWebgl::DrawRectAccel(
const Rect& aRect, const Pattern& aPattern, const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor, RefPtr<TextureHandle>* aHandle,
bool aTransformed, bool aClipped, bool aAccelOnly, bool aForceUpdate,
const StrokeOptions* aStrokeOptions, const PathVertexRange* aVertexRange,
const Matrix* aRectXform) {
// If the rect or clip rect is empty, then there is nothing to draw.
if (aRect.IsEmpty() || mClipRect.IsEmpty()) {
return true;
}
// Check if the drawing options and the pattern support acceleration. Also
// ensure the framebuffer is prepared for drawing. If not, fall back to using
// the Skia target. When we need to forcefully update a texture, we must be
// careful to override any pattern limits, as the caller ensures the pattern
// is otherwise a supported type.
if (!SupportsDrawOptions(aOptions) ||
(!aForceUpdate && !SupportsPattern(aPattern)) || aStrokeOptions ||
!mCurrentTarget->MarkChanged()) {
// If only accelerated drawing was requested, bail out without software
// drawing fallback.
if (!aAccelOnly) {
MOZ_ASSERT(!aVertexRange);
mCurrentTarget->DrawRectFallback(aRect, aPattern, aOptions, aMaskColor,
aTransformed, aClipped, aStrokeOptions);
}
return false;
}
const Matrix& currentTransform = mCurrentTarget->GetTransform();
// rectXform only applies to the rect, but should not apply to the pattern,
// as it might inadvertently alter the pattern.
Matrix rectXform = currentTransform;
if (aRectXform) {
rectXform.PreMultiply(*aRectXform);
}
if (aOptions.mCompositionOp == CompositionOp::OP_SOURCE && aTransformed &&
aClipped &&
(HasClipMask() || !rectXform.PreservesAxisAlignedRectangles() ||
!rectXform.TransformBounds(aRect).Contains(Rect(mClipAARect)) ||
(aPattern.GetType() == PatternType::SURFACE &&
!IsAlignedRect(aTransformed, rectXform, aRect)))) {
// Clear outside the mask region for masks that are not bounded by clip.
return DrawRectAccel(Rect(mClipRect), ColorPattern(DeviceColor(0, 0, 0, 0)),
DrawOptions(1.0f, CompositionOp::OP_SOURCE,
aOptions.mAntialiasMode),
Nothing(), nullptr, false, aClipped, aAccelOnly) &&
DrawRectAccel(aRect, aPattern,
DrawOptions(aOptions.mAlpha, CompositionOp::OP_ADD,
aOptions.mAntialiasMode),
aMaskColor, aHandle, aTransformed, aClipped,
aAccelOnly, aForceUpdate, aStrokeOptions, aVertexRange,
aRectXform);
}
if (aOptions.mCompositionOp == CompositionOp::OP_CLEAR &&
aPattern.GetType() == PatternType::SURFACE && !aMaskColor) {
// If the surface being drawn with clear is not a mask, then its contents
// needs to be ignored. Just use a color pattern instead.
return DrawRectAccel(aRect, ColorPattern(DeviceColor(1, 1, 1, 1)), aOptions,
Nothing(), aHandle, aTransformed, aClipped, aAccelOnly,
aForceUpdate, aStrokeOptions, aVertexRange,
aRectXform);
}
// Set up the scissor test to reflect the clipping rectangle, if supplied.
if (!mClipRect.Contains(IntRect(IntPoint(), mViewportSize))) {
EnableScissor(mClipRect);
} else {
DisableScissor();
}
bool success = false;
// Now try to actually draw the pattern...
switch (aPattern.GetType()) {
case PatternType::COLOR: {
if (!aVertexRange) {
// Only an uncached draw if not using the vertex cache.
mCurrentTarget->mProfile.OnUncachedDraw();
}
DeviceColor color = PremultiplyColor(
static_cast<const ColorPattern&>(aPattern).mColor, aOptions.mAlpha);
if (((color.a == 1.0f &&
aOptions.mCompositionOp == CompositionOp::OP_OVER) ||
aOptions.mCompositionOp == CompositionOp::OP_SOURCE ||
aOptions.mCompositionOp == CompositionOp::OP_CLEAR) &&
!aStrokeOptions && !aVertexRange && !HasClipMask() &&
mClipAARect.IsEqualEdges(Rect(mClipRect))) {
// Certain color patterns can be mapped to scissored clears. The
// composition op must effectively overwrite the destination, and the
// transform must map to an axis-aligned integer rectangle.
if (Maybe<IntRect> intRect =
IsAlignedRect(aTransformed, rectXform, aRect)) {
// Only use a clear if the area is larger than a quarter or the
// viewport.
if (intRect->Area() >=
(mViewportSize.width / 2) * (mViewportSize.height / 2)) {
if (!intRect->Contains(mClipRect)) {
EnableScissor(intRect->Intersect(mClipRect));
}
if (aOptions.mCompositionOp == CompositionOp::OP_CLEAR) {
color =
PremultiplyColor(mCurrentTarget->GetClearPattern().mColor);
}
mWebgl->ClearColor(color.b, color.g, color.r, color.a);
mWebgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
success = true;
break;
}
}
}
// Map the composition op to a WebGL blend mode, if possible.
Maybe<DeviceColor> blendColor;
if (aOptions.mCompositionOp == CompositionOp::OP_SOURCE ||
aOptions.mCompositionOp == CompositionOp::OP_CLEAR) {
// The source operator can support clipping and AA by emulating it with
// the over op. Supply the color with blend state, and set the shader
// color to white, to avoid needing dual-source blending.
blendColor = Some(color);
// Both source and clear operators should output a mask from the shader.
color = DeviceColor(1, 1, 1, 1);
}
SetBlendState(aOptions.mCompositionOp, blendColor);
// Since it couldn't be mapped to a scissored clear, we need to use the
// solid color shader with supplied transform.
if (mLastProgram != mSolidProgram) {
mWebgl->UseProgram(mSolidProgram);
mLastProgram = mSolidProgram;
}
Array<float, 2> viewportData = {float(mViewportSize.width),
float(mViewportSize.height)};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramViewport, viewportData,
mSolidProgramUniformState.mViewport);
// Generated paths provide their own AA as vertex alpha.
Array<float, 1> aaData = {aVertexRange ? 0.0f : 1.0f};
MaybeUniformData(LOCAL_GL_FLOAT, mSolidProgramAA, aaData,
mSolidProgramUniformState.mAA);
// Offset the clip AA bounds by 0.5 to ensure AA falls to 0 at pixel
// boundary.
Array<float, 4> clipData = {mClipAARect.x - 0.5f, mClipAARect.y - 0.5f,
mClipAARect.XMost() + 0.5f,
mClipAARect.YMost() + 0.5f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramClipBounds, clipData,
mSolidProgramUniformState.mClipBounds);
Array<float, 4> colorData = {color.b, color.g, color.r, color.a};
Matrix xform(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
if (aTransformed) {
xform *= rectXform;
}
Array<float, 6> xformData = {xform._11, xform._12, xform._21,
xform._22, xform._31, xform._32};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramTransform, xformData,
mSolidProgramUniformState.mTransform);
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramColor, colorData,
mSolidProgramUniformState.mColor);
// Finally draw the colored rectangle.
if (aVertexRange) {
// If there's a vertex range, then we need to draw triangles within from
// generated from a path stored in the path vertex buffer.
DrawTriangles(*aVertexRange);
} else {
// Otherwise we're drawing a simple filled rectangle.
DrawQuad();
}
success = true;
break;
}
case PatternType::SURFACE: {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
// If a texture handle was supplied, or if the surface already has an
// assigned texture handle stashed in its used data, try to use it.
RefPtr<TextureHandle> handle =
aHandle ? aHandle->get()
: (surfacePattern.mSurface
? static_cast<TextureHandle*>(
surfacePattern.mSurface->GetUserData(
&mTextureHandleKey))
: nullptr);
IntSize texSize;
IntPoint offset;
SurfaceFormat format;
// Check if the found handle is still valid and if its sampling rect
// matches the requested sampling rect.
if (handle && handle->IsValid() &&
(surfacePattern.mSamplingRect.IsEmpty() ||
handle->GetSamplingRect().IsEqualEdges(
surfacePattern.mSamplingRect))) {
texSize = handle->GetSize();
format = handle->GetFormat();
offset = handle->GetSamplingOffset();
} else {
// Otherwise, there is no handle that can be used yet, so extract
// information from the surface pattern.
handle = nullptr;
if (!surfacePattern.mSurface) {
// If there was no actual surface supplied, then we tried to draw
// using a texture handle, but the texture handle wasn't valid.
break;
}
texSize = surfacePattern.mSurface->GetSize();
format = surfacePattern.mSurface->GetFormat();
if (!surfacePattern.mSamplingRect.IsEmpty()) {
texSize = surfacePattern.mSamplingRect.Size();
offset = surfacePattern.mSamplingRect.TopLeft();
}
}
// We need to be able to transform from local space into texture space.
Matrix invMatrix = surfacePattern.mMatrix;
// If drawing a pre-transformed vertex range, then we need to ensure the
// user-space pattern is still transformed to screen-space.
if (aVertexRange && !aTransformed) {
invMatrix *= currentTransform;
}
if (!invMatrix.Invert()) {
break;
}
if (aRectXform) {
// If there is aRectXform, it must be applied to the source rectangle to
// generate the proper input coordinates for the inverse pattern matrix.
invMatrix.PreMultiply(*aRectXform);
}
RefPtr<WebGLTexture> tex;
IntRect bounds;
IntSize backingSize;
RefPtr<DataSourceSurface> data;
if (handle) {
if (aForceUpdate) {
data = surfacePattern.mSurface->GetDataSurface();
if (!data) {
break;
}
// The size of the texture may change if we update contents.
mUsedTextureMemory -= handle->UsedBytes();
handle->UpdateSize(texSize);
mUsedTextureMemory += handle->UsedBytes();
handle->SetSamplingOffset(surfacePattern.mSamplingRect.TopLeft());
}
// If using an existing handle, move it to the front of the MRU list.
handle->remove();
mTextureHandles.insertFront(handle);
} else if ((tex = GetCompatibleSnapshot(surfacePattern.mSurface))) {
backingSize = surfacePattern.mSurface->GetSize();
bounds = IntRect(offset, texSize);
// Count reusing a snapshot texture (no readback) as a cache hit.
mCurrentTarget->mProfile.OnCacheHit();
} else {
// If we get here, we need a data surface for a texture upload.
data = surfacePattern.mSurface->GetDataSurface();
if (!data) {
break;
}
// There is no existing handle. Try to allocate a new one. If the
// surface size may change via a forced update, then don't allocate
// from a shared texture page.
handle = AllocateTextureHandle(format, texSize, !aForceUpdate);
if (!handle) {
MOZ_ASSERT(false);
break;
}
// Link the handle to the surface's user data.
handle->SetSamplingOffset(surfacePattern.mSamplingRect.TopLeft());
if (aHandle) {
*aHandle = handle;
} else {
handle->SetSurface(surfacePattern.mSurface);
surfacePattern.mSurface->AddUserData(&mTextureHandleKey, handle.get(),
nullptr);
}
}
// Map the composition op to a WebGL blend mode, if possible. If there is
// a mask color and a texture with multiple channels, assume subpixel
// blending. If we encounter the source op here, then assume the surface
// is opaque (non-opaque is handled above) and emulate it with over.
SetBlendState(aOptions.mCompositionOp,
format != SurfaceFormat::A8 ? aMaskColor : Nothing());
// Switch to the image shader and set up relevant transforms.
if (mLastProgram != mImageProgram) {
mWebgl->UseProgram(mImageProgram);
mLastProgram = mImageProgram;
}
Array<float, 2> viewportData = {float(mViewportSize.width),
float(mViewportSize.height)};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramViewport, viewportData,
mImageProgramUniformState.mViewport);
// AA is not supported for OP_SOURCE. Generated paths provide their own
// AA as vertex alpha.
Array<float, 1> aaData = {
mLastCompositionOp == CompositionOp::OP_SOURCE || aVertexRange
? 0.0f
: 1.0f};
MaybeUniformData(LOCAL_GL_FLOAT, mImageProgramAA, aaData,
mImageProgramUniformState.mAA);
// Offset the clip AA bounds by 0.5 to ensure AA falls to 0 at pixel
// boundary.
Array<float, 4> clipData = {mClipAARect.x - 0.5f, mClipAARect.y - 0.5f,
mClipAARect.XMost() + 0.5f,
mClipAARect.YMost() + 0.5f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramClipBounds, clipData,
mImageProgramUniformState.mClipBounds);
DeviceColor color =
mLastCompositionOp == CompositionOp::OP_CLEAR
? DeviceColor(1, 1, 1, 1)
: PremultiplyColor(
aMaskColor && format != SurfaceFormat::A8
? DeviceColor::Mask(1.0f, aMaskColor->a)
: aMaskColor.valueOr(DeviceColor(1, 1, 1, 1)),
aOptions.mAlpha);
Array<float, 4> colorData = {color.b, color.g, color.r, color.a};
Array<float, 1> swizzleData = {format == SurfaceFormat::A8 ? 1.0f : 0.0f};
Matrix xform(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
if (aTransformed) {
xform *= rectXform;
}
Array<float, 6> xformData = {xform._11, xform._12, xform._21,
xform._22, xform._31, xform._32};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramTransform, xformData,
mImageProgramUniformState.mTransform);
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramColor, colorData,
mImageProgramUniformState.mColor);
MaybeUniformData(LOCAL_GL_FLOAT, mImageProgramSwizzle, swizzleData,
mImageProgramUniformState.mSwizzle);
// Start binding the WebGL state for the texture.
BackingTexture* backing = nullptr;
if (handle) {
backing = handle->GetBackingTexture();
if (!tex) {
tex = backing->GetWebGLTexture();
}
bounds = handle->GetBounds();
backingSize = backing->GetSize();
}
if (mLastTexture != tex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, tex);
mLastTexture = tex;
}
if (backing && !backing->IsInitialized()) {
// If this is the first time the texture is used, we need to initialize
// the clamping and filtering state.
backing->MarkInitialized();
InitTexParameters(tex);
if (texSize != backingSize) {
// If this is a shared texture handle whose actual backing texture is
// larger than it, then we need to allocate the texture page to the
// full backing size before we can do a partial upload of the surface.
UploadSurface(nullptr, format, IntRect(IntPoint(), backingSize),
IntPoint(), true, true);
}
}
if (data) {
UploadSurface(data, format, IntRect(offset, texSize), bounds.TopLeft(),
texSize == backingSize);
// Signal that we had to upload new data to the texture cache.
mCurrentTarget->mProfile.OnCacheMiss();
} else {
// Signal that we are reusing data from the texture cache.
mCurrentTarget->mProfile.OnCacheHit();
}
// Set up the texture coordinate matrix to map from the input rectangle to
// the backing texture subrect.
Size backingSizeF(backingSize);
Matrix uvMatrix(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
uvMatrix *= invMatrix;
uvMatrix *= Matrix(1.0f / backingSizeF.width, 0.0f, 0.0f,
1.0f / backingSizeF.height,
float(bounds.x - offset.x) / backingSizeF.width,
float(bounds.y - offset.y) / backingSizeF.height);
Array<float, 6> uvData = {uvMatrix._11, uvMatrix._12, uvMatrix._21,
uvMatrix._22, uvMatrix._31, uvMatrix._32};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramTexMatrix, uvData,
mImageProgramUniformState.mTexMatrix);
// Clamp sampling to within the bounds of the backing texture subrect.
Array<float, 4> texBounds = {
(bounds.x + 0.5f) / backingSizeF.width,
(bounds.y + 0.5f) / backingSizeF.height,
(bounds.XMost() - 0.5f) / backingSizeF.width,
(bounds.YMost() - 0.5f) / backingSizeF.height,
};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramTexBounds, texBounds,
mImageProgramUniformState.mTexBounds);
// Ensure we use nearest filtering when no antialiasing is requested.
if (UseNearestFilter(surfacePattern)) {
SetTexFilter(tex, false);
}
// Finally draw the image rectangle.
if (aVertexRange) {
// If there's a vertex range, then we need to draw triangles within from
// generated from a path stored in the path vertex buffer.
DrawTriangles(*aVertexRange);
} else {
// Otherwise we're drawing a simple filled rectangle.
DrawQuad();
}
// Restore the default linear filter if overridden.
if (UseNearestFilter(surfacePattern)) {
SetTexFilter(tex, true);
}
success = true;
break;
}
default:
gfxWarning() << "Unknown DrawTargetWebgl::DrawRect pattern type: "
<< (int)aPattern.GetType();
break;
}
return success;
}
bool SharedContextWebgl::RemoveSharedTexture(
const RefPtr<SharedTexture>& aTexture) {
auto pos =
std::find(mSharedTextures.begin(), mSharedTextures.end(), aTexture);
if (pos == mSharedTextures.end()) {
return false;
}
// Keep around a reserve of empty pages to avoid initialization costs from
// allocating shared pages. If still below the limit of reserved pages, then
// just add it to the reserve. Otherwise, erase the empty texture page.
size_t maxBytes = StaticPrefs::gfx_canvas_accelerated_reserve_empty_cache()
<< 20;
size_t usedBytes = aTexture->UsedBytes();
if (mEmptyTextureMemory + usedBytes <= maxBytes) {
mEmptyTextureMemory += usedBytes;
} else {
mTotalTextureMemory -= usedBytes;
mSharedTextures.erase(pos);
ClearLastTexture();
}
return true;
}
void SharedTextureHandle::Cleanup(SharedContextWebgl& aContext) {
mTexture->Free(*this);
// Check if the shared handle's owning page has no more allocated handles
// after we freed it. If so, remove the empty shared texture page also.
if (!mTexture->HasAllocatedHandles()) {
aContext.RemoveSharedTexture(mTexture);
}
}
bool SharedContextWebgl::RemoveStandaloneTexture(
const RefPtr<StandaloneTexture>& aTexture) {
auto pos = std::find(mStandaloneTextures.begin(), mStandaloneTextures.end(),
aTexture);
if (pos == mStandaloneTextures.end()) {
return false;
}
mTotalTextureMemory -= aTexture->UsedBytes();
mStandaloneTextures.erase(pos);
ClearLastTexture();
return true;
}
void StandaloneTexture::Cleanup(SharedContextWebgl& aContext) {
aContext.RemoveStandaloneTexture(this);
}
// Prune a given texture handle and release its associated resources.
void SharedContextWebgl::PruneTextureHandle(
const RefPtr<TextureHandle>& aHandle) {
// Invalidate the handle so nothing will subsequently use its contents.
aHandle->Invalidate();
// If the handle has an associated SourceSurface, unlink it.
UnlinkSurfaceTexture(aHandle);
// If the handle has an associated CacheEntry, unlink it.
if (RefPtr<CacheEntry> entry = aHandle->GetCacheEntry()) {
entry->Unlink();
}
// Deduct the used space from the total.
mUsedTextureMemory -= aHandle->UsedBytes();
// Ensure any allocated shared or standalone texture regions get freed.
aHandle->Cleanup(*this);
}
// Prune any texture memory above the limit (or margin below the limit) or any
// least-recently-used handles that are no longer associated with any usable
// surface.
bool SharedContextWebgl::PruneTextureMemory(size_t aMargin, bool aPruneUnused) {
// The maximum amount of texture memory that may be used by textures.
size_t maxBytes = StaticPrefs::gfx_canvas_accelerated_cache_size() << 20;
maxBytes -= std::min(maxBytes, aMargin);
size_t maxItems = StaticPrefs::gfx_canvas_accelerated_cache_items();
size_t oldItems = mNumTextureHandles;
while (!mTextureHandles.isEmpty() &&
(mUsedTextureMemory > maxBytes || mNumTextureHandles > maxItems ||
(aPruneUnused && !mTextureHandles.getLast()->IsUsed()))) {
PruneTextureHandle(mTextureHandles.popLast());
--mNumTextureHandles;
}
return mNumTextureHandles < oldItems;
}
void DrawTargetWebgl::FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions) {
if (SupportsPattern(aPattern)) {
if (RectInsidePrecisionLimits(aRect, mTransform)) {
DrawRect(aRect, aPattern, aOptions);
return;
}
if (aPattern.GetType() == PatternType::COLOR &&
RectContainsViewport(aRect)) {
// If the pattern is transform-invariant and the rect encompasses the
// entire viewport, just clip drawing to the viewport to avoid transform
// issues.
DrawRect(Rect(GetRect()), aPattern, aOptions, Nothing(), nullptr, false);
return;
}
}
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->FillRect(aRect, aPattern, aOptions);
} else {
// If the pattern is unsupported, then transform the rect to a path so it
// can be cached.
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(aRect));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions);
}
}
void CacheEntry::Link(const RefPtr<TextureHandle>& aHandle) {
mHandle = aHandle;
mHandle->SetCacheEntry(this);
}
// When the CacheEntry becomes unused, it marks the corresponding
// TextureHandle as unused and unlinks it from the CacheEntry. The
// entry is removed from its containing Cache, if applicable.
void CacheEntry::Unlink() {
// The entry may not have a valid handle if rasterization failed.
if (mHandle) {
mHandle->SetCacheEntry(nullptr);
mHandle = nullptr;
}
RemoveFromList();
}
// Hashes a path and pattern to a single hash value that can be used for quick
// comparisons. This currently avoids to expensive hashing of internal path
// and pattern data for speed, relying instead on later exact comparisons for
// disambiguation.
HashNumber PathCacheEntry::HashPath(const QuantizedPath& aPath,
const Pattern* aPattern,
const Matrix& aTransform,
const IntRect& aBounds,
const Point& aOrigin) {
HashNumber hash = 0;
hash = AddToHash(hash, aPath.mPath.num_types);
hash = AddToHash(hash, aPath.mPath.num_points);
if (aPath.mPath.num_points > 0) {
hash = AddToHash(hash, aPath.mPath.points[0].x);
hash = AddToHash(hash, aPath.mPath.points[0].y);
if (aPath.mPath.num_points > 1) {
hash = AddToHash(hash, aPath.mPath.points[1].x);
hash = AddToHash(hash, aPath.mPath.points[1].y);
}
}
// Quantize the relative offset of the path to its bounds.
IntPoint offset = RoundedToInt((aOrigin - Point(aBounds.TopLeft())) * 16.0f);
hash = AddToHash(hash, offset.x);
hash = AddToHash(hash, offset.y);
hash = AddToHash(hash, aBounds.width);
hash = AddToHash(hash, aBounds.height);
if (aPattern) {
hash = AddToHash(hash, (int)aPattern->GetType());
}
return hash;
}
// When caching rendered geometry, we need to ensure the scale and orientation
// is approximately the same. The offset will be considered separately.
static inline bool HasMatchingScale(const Matrix& aTransform1,
const Matrix& aTransform2) {
return FuzzyEqual(aTransform1._11, aTransform2._11) &&
FuzzyEqual(aTransform1._12, aTransform2._12) &&
FuzzyEqual(aTransform1._21, aTransform2._21) &&
FuzzyEqual(aTransform1._22, aTransform2._22);
}
// Determines if an existing path cache entry matches an incoming path and
// pattern.
inline bool PathCacheEntry::MatchesPath(
const QuantizedPath& aPath, const Pattern* aPattern,
const StrokeOptions* aStrokeOptions, AAStrokeMode aStrokeMode,
const Matrix& aTransform, const IntRect& aBounds, const Point& aOrigin,
HashNumber aHash, float aSigma) {
return aHash == mHash && HasMatchingScale(aTransform, mTransform) &&
// Ensure the clipped relative bounds fit inside those of the entry
aBounds.x - aOrigin.x >= mBounds.x - mOrigin.x &&
(aBounds.x - aOrigin.x) + aBounds.width <=
(mBounds.x - mOrigin.x) + mBounds.width &&
aBounds.y - aOrigin.y >= mBounds.y - mOrigin.y &&
(aBounds.y - aOrigin.y) + aBounds.height <=
(mBounds.y - mOrigin.y) + mBounds.height &&
aPath == mPath &&
(!aPattern ? !mPattern : mPattern && *aPattern == *mPattern) &&
(!aStrokeOptions
? !mStrokeOptions
: mStrokeOptions && *aStrokeOptions == *mStrokeOptions &&
mAAStrokeMode == aStrokeMode) &&
aSigma == mSigma;
}
PathCacheEntry::PathCacheEntry(QuantizedPath&& aPath, Pattern* aPattern,
StoredStrokeOptions* aStrokeOptions,
AAStrokeMode aStrokeMode,
const Matrix& aTransform, const IntRect& aBounds,
const Point& aOrigin, HashNumber aHash,
float aSigma)
: CacheEntryImpl<PathCacheEntry>(aTransform, aBounds, aHash),
mPath(std::move(aPath)),
mOrigin(aOrigin),
mPattern(aPattern),
mStrokeOptions(aStrokeOptions),
mAAStrokeMode(aStrokeMode),
mSigma(aSigma) {}
// Attempt to find a matching entry in the path cache. If one isn't found,
// a new entry will be created. The caller should check whether the contained
// texture handle is valid to determine if it will need to render the text run
// or just reuse the cached texture.
already_AddRefed<PathCacheEntry> PathCache::FindOrInsertEntry(
QuantizedPath aPath, const Pattern* aPattern,
const StrokeOptions* aStrokeOptions, AAStrokeMode aStrokeMode,
const Matrix& aTransform, const IntRect& aBounds, const Point& aOrigin,
float aSigma) {
HashNumber hash =
PathCacheEntry::HashPath(aPath, aPattern, aTransform, aBounds, aOrigin);
for (const RefPtr<PathCacheEntry>& entry : GetChain(hash)) {
if (entry->MatchesPath(aPath, aPattern, aStrokeOptions, aStrokeMode,
aTransform, aBounds, aOrigin, hash, aSigma)) {
return do_AddRef(entry);
}
}
Pattern* pattern = nullptr;
if (aPattern) {
pattern = aPattern->CloneWeak();
if (!pattern) {
return nullptr;
}
}
StoredStrokeOptions* strokeOptions = nullptr;
if (aStrokeOptions) {
strokeOptions = aStrokeOptions->Clone();
if (!strokeOptions) {
return nullptr;
}
}
RefPtr<PathCacheEntry> entry =
new PathCacheEntry(std::move(aPath), pattern, strokeOptions, aStrokeMode,
aTransform, aBounds, aOrigin, hash, aSigma);
Insert(entry);
return entry.forget();
}
void DrawTargetWebgl::Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const SkPath& skiaPath = static_cast<const PathSkia*>(aPath)->GetPath();
SkRect skiaRect = SkRect::MakeEmpty();
// Draw the path as a simple rectangle with a supported pattern when possible.
if (skiaPath.isRect(&skiaRect) && SupportsPattern(aPattern)) {
Rect rect = SkRectToRect(skiaRect);
if (RectInsidePrecisionLimits(rect, mTransform)) {
DrawRect(rect, aPattern, aOptions);
return;
}
if (aPattern.GetType() == PatternType::COLOR &&
RectContainsViewport(rect)) {
// If the pattern is transform-invariant and the rect encompasses the
// entire viewport, just clip drawing to the viewport to avoid transform
// issues.
DrawRect(Rect(GetRect()), aPattern, aOptions, Nothing(), nullptr, false);
return;
}
}
DrawPath(aPath, aPattern, aOptions);
}
void DrawTargetWebgl::FillCircle(const Point& aOrigin, float aRadius,
const Pattern& aPattern,
const DrawOptions& aOptions) {
DrawCircle(aOrigin, aRadius, aPattern, aOptions);
}
QuantizedPath::QuantizedPath(const WGR::Path& aPath) : mPath(aPath) {}
QuantizedPath::QuantizedPath(QuantizedPath&& aPath) noexcept
: mPath(aPath.mPath) {
aPath.mPath.points = nullptr;
aPath.mPath.num_points = 0;
aPath.mPath.types = nullptr;
aPath.mPath.num_types = 0;
}
QuantizedPath::~QuantizedPath() {
if (mPath.points || mPath.types) {
WGR::wgr_path_release(mPath);
}
}
bool QuantizedPath::operator==(const QuantizedPath& aOther) const {
return mPath.num_types == aOther.mPath.num_types &&
mPath.num_points == aOther.mPath.num_points &&
mPath.fill_mode == aOther.mPath.fill_mode &&
!memcmp(mPath.types, aOther.mPath.types,
mPath.num_types * sizeof(uint8_t)) &&
!memcmp(mPath.points, aOther.mPath.points,
mPath.num_points * sizeof(WGR::Point));
}
// Generate a quantized path from the Skia path using WGR. The supplied
// transform will be applied to the path. The path is stored relative to its
// bounds origin to support translation later.
static Maybe<QuantizedPath> GenerateQuantizedPath(
WGR::PathBuilder* aPathBuilder, const SkPath& aPath, const Rect& aBounds,
const Matrix& aTransform) {
if (!aPathBuilder) {
return Nothing();
}
WGR::wgr_builder_reset(aPathBuilder);
WGR::wgr_builder_set_fill_mode(aPathBuilder,
aPath.getFillType() == SkPathFillType::kWinding
? WGR::FillMode::Winding
: WGR::FillMode::EvenOdd);
SkPath::RawIter iter(aPath);
SkPoint params[4];
SkPath::Verb currentVerb;
// printf_stderr("bounds: (%d, %d) %d x %d\n", aBounds.x, aBounds.y,
// aBounds.width, aBounds.height);
Matrix transform = aTransform;
transform.PostTranslate(-aBounds.TopLeft());
while ((currentVerb = iter.next(params)) != SkPath::kDone_Verb) {
switch (currentVerb) {
case SkPath::kMove_Verb: {
Point p0 = transform.TransformPoint(SkPointToPoint(params[0]));
WGR::wgr_builder_move_to(aPathBuilder, p0.x, p0.y);
break;
}
case SkPath::kLine_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
WGR::wgr_builder_line_to(aPathBuilder, p1.x, p1.y);
break;
}
case SkPath::kCubic_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
Point p3 = transform.TransformPoint(SkPointToPoint(params[3]));
// printf_stderr("cubic (%f, %f), (%f, %f), (%f, %f)\n", p1.x, p1.y,
// p2.x, p2.y, p3.x, p3.y);
WGR::wgr_builder_curve_to(aPathBuilder, p1.x, p1.y, p2.x, p2.y, p3.x,
p3.y);
break;
}
case SkPath::kQuad_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
// printf_stderr("quad (%f, %f), (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
WGR::wgr_builder_quad_to(aPathBuilder, p1.x, p1.y, p2.x, p2.y);
break;
}
case SkPath::kConic_Verb: {
Point p0 = transform.TransformPoint(SkPointToPoint(params[0]));
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
float w = iter.conicWeight();
std::vector<Point> quads;
int numQuads = ConvertConicToQuads(p0, p1, p2, w, quads);
for (int i = 0; i < numQuads; i++) {
Point q1 = quads[2 * i + 1];
Point q2 = quads[2 * i + 2];
// printf_stderr("conic quad (%f, %f), (%f, %f)\n", q1.x, q1.y, q2.x,
// q2.y);
WGR::wgr_builder_quad_to(aPathBuilder, q1.x, q1.y, q2.x, q2.y);
}
break;
}
case SkPath::kClose_Verb:
// printf_stderr("close\n");
WGR::wgr_builder_close(aPathBuilder);
break;
default:
MOZ_ASSERT(false);
// Unexpected verb found in path!
return Nothing();
}
}
WGR::Path p = WGR::wgr_builder_get_path(aPathBuilder);
if (!p.num_points || !p.num_types) {
WGR::wgr_path_release(p);
return Nothing();
}
return Some(QuantizedPath(p));
}
// Get the output vertex buffer using WGR from an input quantized path.
static Maybe<WGR::VertexBuffer> GeneratePathVertexBuffer(
const QuantizedPath& aPath, const IntRect& aClipRect,
bool aRasterizationTruncates, WGR::OutputVertex* aBuffer,
size_t aBufferCapacity) {
WGR::VertexBuffer vb = WGR::wgr_path_rasterize_to_tri_list(
&aPath.mPath, aClipRect.x, aClipRect.y, aClipRect.width, aClipRect.height,
true, false, aRasterizationTruncates, aBuffer, aBufferCapacity);
if (!vb.len || (aBuffer && vb.len > aBufferCapacity)) {
WGR::wgr_vertex_buffer_release(vb);
return Nothing();
}
return Some(vb);
}
static inline AAStroke::LineJoin ToAAStrokeLineJoin(JoinStyle aJoin) {
switch (aJoin) {
case JoinStyle::BEVEL:
return AAStroke::LineJoin::Bevel;
case JoinStyle::ROUND:
return AAStroke::LineJoin::Round;
case JoinStyle::MITER:
case JoinStyle::MITER_OR_BEVEL:
return AAStroke::LineJoin::Miter;
}
return AAStroke::LineJoin::Miter;
}
static inline AAStroke::LineCap ToAAStrokeLineCap(CapStyle aCap) {
switch (aCap) {
case CapStyle::BUTT:
return AAStroke::LineCap::Butt;
case CapStyle::ROUND:
return AAStroke::LineCap::Round;
case CapStyle::SQUARE:
return AAStroke::LineCap::Square;
}
return AAStroke::LineCap::Butt;
}
static inline Point WGRPointToPoint(const WGR::Point& aPoint) {
// WGR points are 28.4 fixed-point where (0.0, 0.0) is assumed to be a pixel
// center, as opposed to (0.5, 0.5) in canvas device space. WGR thus shifts
// each point by (-0.5, -0.5). To undo this, transform from fixed-point back
// to floating-point, and reverse the pixel shift by adding back (0.5, 0.5).
return Point(IntPoint(aPoint.x, aPoint.y)) * (1.0f / 16.0f) +
Point(0.5f, 0.5f);
}
// Generates a vertex buffer for a stroked path using aa-stroke.
static Maybe<AAStroke::VertexBuffer> GenerateStrokeVertexBuffer(
const QuantizedPath& aPath, const StrokeOptions* aStrokeOptions,
float aScale, WGR::OutputVertex* aBuffer, size_t aBufferCapacity) {
AAStroke::StrokeStyle style = {aStrokeOptions->mLineWidth * aScale,
ToAAStrokeLineCap(aStrokeOptions->mLineCap),
ToAAStrokeLineJoin(aStrokeOptions->mLineJoin),
aStrokeOptions->mMiterLimit};
if (style.width <= 0.0f || !std::isfinite(style.width) ||
style.miter_limit <= 0.0f || !std::isfinite(style.miter_limit)) {
return Nothing();
}
AAStroke::Stroker* s = AAStroke::aa_stroke_new(
&style, (AAStroke::OutputVertex*)aBuffer, aBufferCapacity);
bool valid = true;
size_t curPoint = 0;
for (size_t curType = 0; valid && curType < aPath.mPath.num_types;) {
// Verify that we are at the start of a sub-path.
if ((aPath.mPath.types[curType] & WGR::PathPointTypePathTypeMask) !=
WGR::PathPointTypeStart) {
valid = false;
break;
}
// Find where the next sub-path starts so we can locate the end.
size_t endType = curType + 1;
for (; endType < aPath.mPath.num_types; endType++) {
if ((aPath.mPath.types[endType] & WGR::PathPointTypePathTypeMask) ==
WGR::PathPointTypeStart) {
break;
}
}
// Check if the path is closed. This is a flag modifying the last type.
bool closed =
(aPath.mPath.types[endType - 1] & WGR::PathPointTypeCloseSubpath) != 0;
for (; curType < endType; curType++) {
// If this is the last type and the sub-path is not closed, determine if
// this segment should be capped.
bool end = curType + 1 == endType && !closed;
switch (aPath.mPath.types[curType] & WGR::PathPointTypePathTypeMask) {
case WGR::PathPointTypeStart: {
if (curPoint + 1 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
AAStroke::aa_stroke_move_to(s, p1.x, p1.y, closed);
if (end) {
AAStroke::aa_stroke_line_to(s, p1.x, p1.y, true);
}
curPoint++;
break;
}
case WGR::PathPointTypeLine: {
if (curPoint + 1 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
AAStroke::aa_stroke_line_to(s, p1.x, p1.y, end);
curPoint++;
break;
}
case WGR::PathPointTypeBezier: {
if (curPoint + 3 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
Point p2 = WGRPointToPoint(aPath.mPath.points[curPoint + 1]);
Point p3 = WGRPointToPoint(aPath.mPath.points[curPoint + 2]);
AAStroke::aa_stroke_curve_to(s, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y,
end);
curPoint += 3;
break;
}
default:
MOZ_ASSERT(false, "Unknown WGR path point type");
valid = false;
break;
}
}
// Close the sub-path if necessary.
if (valid && closed) {
AAStroke::aa_stroke_close(s);
}
}
Maybe<AAStroke::VertexBuffer> result;
if (valid) {
AAStroke::VertexBuffer vb = AAStroke::aa_stroke_finish(s);
if (!vb.len || (aBuffer && vb.len > aBufferCapacity)) {
AAStroke::aa_stroke_vertex_buffer_release(vb);
} else {
result = Some(vb);
}
}
AAStroke::aa_stroke_release(s);
return result;
}
// Search the path cache for any entries stored in the path vertex buffer and
// remove them.
void PathCache::ClearVertexRanges() {
for (auto& chain : mChains) {
PathCacheEntry* entry = chain.getFirst();
while (entry) {
PathCacheEntry* next = entry->getNext();
if (entry->GetVertexRange().IsValid()) {
entry->Unlink();
}
entry = next;
}
}
}
inline bool DrawTargetWebgl::ShouldAccelPath(
const DrawOptions& aOptions, const StrokeOptions* aStrokeOptions) {
return mWebglValid && SupportsDrawOptions(aOptions) && PrepareContext();
}
// For now, we only directly support stroking solid color patterns to limit
// artifacts from blending of overlapping geometry generated by AAStroke. Other
// types of patterns may be partially supported by rendering to a temporary
// mask.
static inline AAStrokeMode SupportsAAStroke(const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions& aStrokeOptions,
bool aAllowStrokeAlpha) {
if (aStrokeOptions.mDashPattern) {
return AAStrokeMode::Unsupported;
}
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_SOURCE:
return AAStrokeMode::Geometry;
case CompositionOp::OP_OVER:
if (aPattern.GetType() == PatternType::COLOR) {
return static_cast<const ColorPattern&>(aPattern).mColor.a *
aOptions.mAlpha <
1.0f &&
!aAllowStrokeAlpha
? AAStrokeMode::Mask
: AAStrokeMode::Geometry;
}
return AAStrokeMode::Unsupported;
default:
return AAStrokeMode::Unsupported;
}
}
// Render an AA-Stroke'd vertex range into an R8 mask texture for subsequent
// drawing.
already_AddRefed<TextureHandle> SharedContextWebgl::DrawStrokeMask(
const PathVertexRange& aVertexRange, const IntSize& aSize) {
// Allocate a new texture handle to store the rendered mask.
RefPtr<TextureHandle> handle =
AllocateTextureHandle(SurfaceFormat::A8, aSize, true, true);
if (!handle) {
return nullptr;
}
IntRect texBounds = handle->GetBounds();
BackingTexture* backing = handle->GetBackingTexture();
if (!backing->IsInitialized()) {
// If the backing texture is uninitialized, it needs its sampling parameters
// set for later use.
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, backing->GetWebGLTexture());
mWebgl->TexStorage(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_R8,
{uint32_t(backing->GetSize().width),
uint32_t(backing->GetSize().height), 1});
InitTexParameters(backing->GetWebGLTexture());
ClearLastTexture();
}
// Set up a scratch framebuffer to render to the appropriate sub-texture of
// the backing texture.
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
webgl::FbAttachInfo attachInfo;
attachInfo.tex = backing->GetWebGLTexture();
mWebgl->FramebufferAttach(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D, attachInfo);
mWebgl->Viewport(texBounds.x, texBounds.y, texBounds.width, texBounds.height);
EnableScissor(texBounds);
if (!backing->IsInitialized()) {
backing->MarkInitialized();
// WebGL implicitly clears the backing texture the first time it is used.
} else {
// Ensure the mask background is clear.
mWebgl->ClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mWebgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
}
// Reset any blending when drawing the mask.
SetBlendState(CompositionOp::OP_OVER);
// Set up the solid color shader to draw a simple opaque mask.
if (mLastProgram != mSolidProgram) {
mWebgl->UseProgram(mSolidProgram);
mLastProgram = mSolidProgram;
}
Array<float, 2> viewportData = {float(texBounds.width),
float(texBounds.height)};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramViewport, viewportData,
mSolidProgramUniformState.mViewport);
Array<float, 1> aaData = {0.0f};
MaybeUniformData(LOCAL_GL_FLOAT, mSolidProgramAA, aaData,
mSolidProgramUniformState.mAA);
Array<float, 4> clipData = {-0.5f, -0.5f, float(texBounds.width) + 0.5f,
float(texBounds.height) + 0.5f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramClipBounds, clipData,
mSolidProgramUniformState.mClipBounds);
Array<float, 4> colorData = {1.0f, 1.0f, 1.0f, 1.0f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramColor, colorData,
mSolidProgramUniformState.mColor);
Array<float, 6> xformData = {1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f};
MaybeUniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramTransform, xformData,
mSolidProgramUniformState.mTransform);
// Ensure the current clip mask is ignored.
RefPtr<WebGLTexture> prevClipMask = mLastClipMask;
SetNoClipMask();
// Draw the mask using the supplied path vertex range.
DrawTriangles(aVertexRange);
// Restore the previous framebuffer state.
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
mWebgl->Viewport(0, 0, mViewportSize.width, mViewportSize.height);
if (prevClipMask) {
SetClipMask(prevClipMask);
}
return handle.forget();
}
bool SharedContextWebgl::DrawPathAccel(
const Path* aPath, const Pattern& aPattern, const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions, bool aAllowStrokeAlpha,
const ShadowOptions* aShadow, bool aCacheable, const Matrix* aPathXform) {
// Get the transformed bounds for the path and conservatively check if the
// bounds overlap the canvas.
const PathSkia* pathSkia = static_cast<const PathSkia*>(aPath);
const Matrix& currentTransform = mCurrentTarget->GetTransform();
Matrix pathXform = currentTransform;
// If there is a path-specific transform that shouldn't be applied to the
// pattern, then generate a matrix that should only be used with the Skia
// path.
if (aPathXform) {
pathXform.PreMultiply(*aPathXform);
}
Rect bounds = pathSkia->GetFastBounds(pathXform, aStrokeOptions);
// If the path is empty, then there is nothing to draw.
if (bounds.IsEmpty()) {
return true;
}
IntRect viewport(IntPoint(), mViewportSize);
if (aShadow) {
// Inflate the bounds to account for the blur radius.
bounds += aShadow->mOffset;
int32_t blurRadius = aShadow->BlurRadius();
bounds.Inflate(blurRadius);
viewport.Inflate(blurRadius);
}
Point realOrigin = bounds.TopLeft();
if (aCacheable) {
// Quantize the path origin to increase the reuse of cache entries.
bounds.Scale(4.0f);
bounds.Round();
bounds.Scale(0.25f);
}
Point quantizedOrigin = bounds.TopLeft();
// If the path doesn't intersect the viewport, then there is nothing to draw.
IntRect intBounds = RoundedOut(bounds).Intersect(viewport);
if (intBounds.IsEmpty()) {
return true;
}
// Nudge the bounds to account for the quantization rounding.
Rect quantBounds = Rect(intBounds) + (realOrigin - quantizedOrigin);
// If the pattern is a solid color, then this will be used along with a path
// mask to render the path, as opposed to baking the pattern into the cached
// path texture.
Maybe<DeviceColor> color =
aOptions.mCompositionOp == CompositionOp::OP_CLEAR
? Some(DeviceColor(1, 1, 1, 1))
: (aPattern.GetType() == PatternType::COLOR
? Some(static_cast<const ColorPattern&>(aPattern).mColor)
: Nothing());
AAStrokeMode aaStrokeMode =
aStrokeOptions && mPathAAStroke
? SupportsAAStroke(aPattern, aOptions, *aStrokeOptions,
aAllowStrokeAlpha)
: AAStrokeMode::Unsupported;
// Look for an existing path cache entry, if possible, or otherwise create
// one. If the draw request is not cacheable, then don't create an entry.
RefPtr<PathCacheEntry> entry;
RefPtr<TextureHandle> handle;
if (aCacheable) {
if (!mPathCache) {
mPathCache = MakeUnique<PathCache>();
}
// Use a quantized, relative (to its bounds origin) version of the path as
// a cache key to help limit cache bloat.
Maybe<QuantizedPath> qp = GenerateQuantizedPath(
mWGRPathBuilder, pathSkia->GetPath(), quantBounds, pathXform);
if (!qp) {
return false;
}
entry = mPathCache->FindOrInsertEntry(
std::move(*qp), color ? nullptr : &aPattern, aStrokeOptions,
aaStrokeMode, currentTransform, intBounds, quantizedOrigin,
aShadow ? aShadow->mSigma : -1.0f);
if (!entry) {
return false;
}
handle = entry->GetHandle();
}
// If there is a shadow, it needs to draw with the shadow color rather than
// the path color.
Maybe<DeviceColor> shadowColor = color;
if (aShadow && aOptions.mCompositionOp != CompositionOp::OP_CLEAR) {
shadowColor = Some(aShadow->mColor);
if (color) {
shadowColor->a *= color->a;
}
}
SamplingFilter filter =
aShadow ? SamplingFilter::GOOD : GetSamplingFilter(aPattern);
if (handle && handle->IsValid()) {
// If the entry has a valid texture handle still, use it. However, the
// entry texture is assumed to be located relative to its previous bounds.
// We need to offset the pattern by the difference between its new unclipped
// origin and its previous previous unclipped origin. Then when we finally
// draw a rectangle at the expected new bounds, it will overlap the portion
// of the old entry texture we actually need to sample from.
Point offset =
(realOrigin - entry->GetOrigin()) + entry->GetBounds().TopLeft();
SurfacePattern pathPattern(nullptr, ExtendMode::CLAMP,
Matrix::Translation(offset), filter);
return DrawRectAccel(quantBounds, pathPattern, aOptions, shadowColor,
&handle, false, true, true);
}
if (mPathVertexCapacity > 0 && !handle && entry && !aShadow &&
aOptions.mAntialiasMode != AntialiasMode::NONE &&
SupportsPattern(aPattern) &&
entry->GetPath().mPath.num_types <= mPathMaxComplexity) {
if (entry->GetVertexRange().IsValid()) {
// If there is a valid cached vertex data in the path vertex buffer, then
// just draw that. We must draw at integer pixel boundaries (using
// intBounds instead of quantBounds) due to WGR's reliance on pixel center
// location.
mCurrentTarget->mProfile.OnCacheHit();
return DrawRectAccel(Rect(intBounds.TopLeft(), Size(1, 1)), aPattern,
aOptions, Nothing(), nullptr, false, true, true,
false, nullptr, &entry->GetVertexRange());
}
// printf_stderr("Generating... verbs %d, points %d\n",
// int(pathSkia->GetPath().countVerbs()),
// int(pathSkia->GetPath().countPoints()));
WGR::OutputVertex* outputBuffer = nullptr;
size_t outputBufferCapacity = 0;
if (mWGROutputBuffer) {
outputBuffer = mWGROutputBuffer.get();
outputBufferCapacity = mPathVertexCapacity / sizeof(WGR::OutputVertex);
}
Maybe<WGR::VertexBuffer> wgrVB;
Maybe<AAStroke::VertexBuffer> strokeVB;
if (!aStrokeOptions) {
if (aPath == mUnitCirclePath) {
auto scaleFactors = pathXform.ScaleFactors();
if (scaleFactors.AreScalesSame()) {
Point center = pathXform.GetTranslation() - quantBounds.TopLeft();
float radius = scaleFactors.xScale;
AAStroke::VertexBuffer vb = AAStroke::aa_stroke_filled_circle(
center.x, center.y, radius, (AAStroke::OutputVertex*)outputBuffer,
outputBufferCapacity);
if (!vb.len || (outputBuffer && vb.len > outputBufferCapacity)) {
AAStroke::aa_stroke_vertex_buffer_release(vb);
} else {
strokeVB = Some(vb);
}
}
}
if (!strokeVB) {
wgrVB = GeneratePathVertexBuffer(
entry->GetPath(), IntRect(-intBounds.TopLeft(), mViewportSize),
mRasterizationTruncates, outputBuffer, outputBufferCapacity);
}
} else {
if (aaStrokeMode != AAStrokeMode::Unsupported) {
auto scaleFactors = currentTransform.ScaleFactors();
if (scaleFactors.AreScalesSame()) {
strokeVB = GenerateStrokeVertexBuffer(
entry->GetPath(), aStrokeOptions, scaleFactors.xScale,
outputBuffer, outputBufferCapacity);
}
}
if (!strokeVB && mPathWGRStroke) {
// If stroking, then generate a path to fill the stroked region. This
// path will need to be quantized again because it differs from the
// path used for the cache entry, but this allows us to avoid
// generating a fill path on a cache hit.
Maybe<Rect> cullRect;
Matrix invTransform = currentTransform;
if (invTransform.Invert()) {
// Transform the stroking clip rect from device space to local
// space.
Rect invRect = invTransform.TransformBounds(Rect(mClipRect));
invRect.RoundOut();
cullRect = Some(invRect);
}
SkPath fillPath;
if (pathSkia->GetFillPath(*aStrokeOptions, pathXform, fillPath,
cullRect)) {
// printf_stderr(" stroke fill... verbs %d, points %d\n",
// int(fillPath.countVerbs()),
// int(fillPath.countPoints()));
if (Maybe<QuantizedPath> qp = GenerateQuantizedPath(
mWGRPathBuilder, fillPath, quantBounds, pathXform)) {
wgrVB = GeneratePathVertexBuffer(
*qp, IntRect(-intBounds.TopLeft(), mViewportSize),
mRasterizationTruncates, outputBuffer, outputBufferCapacity);
}
}
}
}
if (wgrVB || strokeVB) {
const uint8_t* vbData =
wgrVB ? (const uint8_t*)wgrVB->data : (const uint8_t*)strokeVB->data;
if (outputBuffer && !vbData) {
vbData = (const uint8_t*)outputBuffer;
}
size_t vbLen = wgrVB ? wgrVB->len : strokeVB->len;
uint32_t vertexBytes = uint32_t(
std::min(vbLen * sizeof(WGR::OutputVertex), size_t(UINT32_MAX)));
// printf_stderr(" ... %d verts, %d bytes\n", int(vbLen),
// int(vertexBytes));
if (vertexBytes > mPathVertexCapacity - mPathVertexOffset &&
vertexBytes <= mPathVertexCapacity - sizeof(kRectVertexData)) {
// If the vertex data is too large to fit in the remaining path vertex
// buffer, then orphan the contents of the vertex buffer to make room
// for it.
if (mPathCache) {
mPathCache->ClearVertexRanges();
}
ResetPathVertexBuffer(false);
}
if (vertexBytes <= mPathVertexCapacity - mPathVertexOffset) {
// If there is actually room to fit the vertex data in the vertex buffer
// after orphaning as necessary, then upload the data to the next
// available offset in the buffer.
PathVertexRange vertexRange(
uint32_t(mPathVertexOffset / sizeof(WGR::OutputVertex)),
uint32_t(vbLen));
// printf_stderr(" ... offset %d\n", mPathVertexOffset);
// Normal glBufferSubData interleaved with draw calls causes performance
// issues on Mali, so use our special unsynchronized version. This is
// safe as we never update regions referenced by pending draw calls.
mWebgl->BufferSubData(LOCAL_GL_ARRAY_BUFFER, mPathVertexOffset,
vertexBytes, vbData,
/* unsynchronized */ true);
mPathVertexOffset += vertexBytes;
if (wgrVB) {
WGR::wgr_vertex_buffer_release(wgrVB.ref());
} else {
AAStroke::aa_stroke_vertex_buffer_release(strokeVB.ref());
}
if (strokeVB && aaStrokeMode == AAStrokeMode::Mask) {
// Attempt to generate a stroke mask for path.
if (RefPtr<TextureHandle> handle =
DrawStrokeMask(vertexRange, intBounds.Size())) {
// Finally, draw the rendered stroke mask.
if (entry) {
entry->Link(handle);
}
mCurrentTarget->mProfile.OnCacheMiss();
SurfacePattern maskPattern(
nullptr, ExtendMode::CLAMP,
Matrix::Translation(quantBounds.TopLeft()),
SamplingFilter::GOOD);
return DrawRectAccel(quantBounds, maskPattern, aOptions, color,
&handle, false, true, true);
}
} else {
// Remember the vertex range in the cache entry so that it can be
// reused later.
if (entry) {
entry->SetVertexRange(vertexRange);
}
// Finally, draw the uploaded vertex data.
mCurrentTarget->mProfile.OnCacheMiss();
return DrawRectAccel(Rect(intBounds.TopLeft(), Size(1, 1)), aPattern,
aOptions, Nothing(), nullptr, false, true, true,
false, nullptr, &vertexRange);
}
} else {
if (wgrVB) {
WGR::wgr_vertex_buffer_release(wgrVB.ref());
} else {
AAStroke::aa_stroke_vertex_buffer_release(strokeVB.ref());
}
}
// If we failed to draw the vertex data for some reason, then fall through
// to the texture rasterization path.
}
}
// If a stroke path covers too much screen area, it is likely that most is
// empty space in the interior. This usually imposes too high a cost versus
// just rasterizing without acceleration. Note that AA-Stroke generally
// produces more acceptable amounts of geometry for larger paths, so we do
// this heuristic after we attempt AA-Stroke.
if (aStrokeOptions &&
intBounds.width * intBounds.height >
(mViewportSize.width / 2) * (mViewportSize.height / 2)) {
return false;
}
// If there isn't a valid texture handle, then we need to rasterize the
// path in a software canvas and upload this to a texture. Solid color
// patterns will be rendered as a path mask that can then be modulated
// with any color. Other pattern types have to rasterize the pattern
// directly into the cached texture.
handle = nullptr;
RefPtr<DrawTargetSkia> pathDT = new DrawTargetSkia;
if (pathDT->Init(intBounds.Size(), color || aShadow
? SurfaceFormat::A8
: SurfaceFormat::B8G8R8A8)) {
Point offset = -quantBounds.TopLeft();
if (aShadow) {
// Ensure the the shadow is drawn at the requested offset
offset += aShadow->mOffset;
}
DrawOptions drawOptions(1.0f, CompositionOp::OP_OVER,
aOptions.mAntialiasMode);
static const ColorPattern maskPattern(DeviceColor(1.0f, 1.0f, 1.0f, 1.0f));
const Pattern& cachePattern = color ? maskPattern : aPattern;
// If the source pattern is a DrawTargetWebgl snapshot, we may shift
// targets when drawing the path, so back up the old target.
DrawTargetWebgl* oldTarget = mCurrentTarget;
{
RefPtr<const Path> path;
if (color || !aPathXform) {
// If the pattern is transform invariant or there is no pathXform, then
// it is safe to use the path directly.
path = aPath;
pathDT->SetTransform(pathXform * Matrix::Translation(offset));
} else {
// If there is a pathXform, then pre-apply that to the path to avoid
// altering the pattern.
RefPtr<PathBuilder> builder =
aPath->TransformedCopyToBuilder(*aPathXform);
path = builder->Finish();
pathDT->SetTransform(currentTransform * Matrix::Translation(offset));
}
if (aStrokeOptions) {
pathDT->Stroke(path, cachePattern, *aStrokeOptions, drawOptions);
} else {
pathDT->Fill(path, cachePattern, drawOptions);
}
}
if (aShadow && aShadow->mSigma > 0.0f) {
// Blur the shadow if required.
uint8_t* data = nullptr;
IntSize size;
int32_t stride = 0;
SurfaceFormat format = SurfaceFormat::UNKNOWN;
if (pathDT->LockBits(&data, &size, &stride, &format)) {
AlphaBoxBlur blur(Rect(pathDT->GetRect()), stride, aShadow->mSigma,
aShadow->mSigma);
blur.Blur(data);
pathDT->ReleaseBits(data);
}
}
RefPtr<SourceSurface> pathSurface = pathDT->Snapshot();
if (pathSurface) {
// If the target changed, try to restore it.
if (mCurrentTarget != oldTarget && !oldTarget->PrepareContext()) {
return false;
}
SurfacePattern pathPattern(pathSurface, ExtendMode::CLAMP,
Matrix::Translation(quantBounds.TopLeft()),
filter);
// Try and upload the rasterized path to a texture. If there is a
// valid texture handle after this, then link it to the entry.
// Otherwise, we might have to fall back to software drawing the
// path, so unlink it from the entry.
if (DrawRectAccel(quantBounds, pathPattern, aOptions, shadowColor,
&handle, false, true) &&
handle) {
if (entry) {
entry->Link(handle);
}
} else if (entry) {
entry->Unlink();
}
return true;
}
}
return false;
}
void DrawTargetWebgl::DrawPath(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions,
bool aAllowStrokeAlpha) {
// If there is a WebGL context, then try to cache the path to avoid slow
// fallbacks.
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawPathAccel(aPath, aPattern, aOptions, aStrokeOptions,
aAllowStrokeAlpha)) {
return;
}
// There was no path cache entry available to use, so fall back to drawing the
// path with Skia.
MarkSkiaChanged(aOptions);
if (aStrokeOptions) {
mSkia->Stroke(aPath, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->Fill(aPath, aPattern, aOptions);
}
}
// DrawCircleAccel is a more specialized version of DrawPathAccel that attempts
// to cache a unit circle.
bool SharedContextWebgl::DrawCircleAccel(const Point& aCenter, float aRadius,
const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
// Cache a unit circle and transform it to avoid creating a path repeatedly.
if (!mUnitCirclePath) {
mUnitCirclePath = MakePathForCircle(*mCurrentTarget, Point(0, 0), 1);
}
// Scale and translate the circle to the desired shape.
Matrix circleXform(aRadius, 0, 0, aRadius, aCenter.x, aCenter.y);
return DrawPathAccel(mUnitCirclePath, aPattern, aOptions, aStrokeOptions,
true, nullptr, true, &circleXform);
}
void DrawTargetWebgl::DrawCircle(const Point& aOrigin, float aRadius,
const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawCircleAccel(aOrigin, aRadius, aPattern, aOptions,
aStrokeOptions)) {
return;
}
MarkSkiaChanged(aOptions);
if (aStrokeOptions) {
mSkia->StrokeCircle(aOrigin, aRadius, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillCircle(aOrigin, aRadius, aPattern, aOptions);
}
}
void DrawTargetWebgl::DrawSurface(SourceSurface* aSurface, const Rect& aDest,
const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions,
const DrawOptions& aOptions) {
Matrix matrix = Matrix::Scaling(aDest.width / aSource.width,
aDest.height / aSource.height);
matrix.PreTranslate(-aSource.x, -aSource.y);
matrix.PostTranslate(aDest.x, aDest.y);
SurfacePattern pattern(aSurface, ExtendMode::CLAMP, matrix,
aSurfOptions.mSamplingFilter);
DrawRect(aDest, pattern, aOptions);
}
void DrawTargetWebgl::Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions) {
if (!SupportsDrawOptions(aOptions) ||
aMask.GetType() != PatternType::SURFACE ||
aSource.GetType() != PatternType::COLOR) {
MarkSkiaChanged(aOptions);
mSkia->Mask(aSource, aMask, aOptions);
return;
}
auto sourceColor = static_cast<const ColorPattern&>(aSource).mColor;
auto maskPattern = static_cast<const SurfacePattern&>(aMask);
DrawRect(Rect(IntRect(IntPoint(), maskPattern.mSurface->GetSize())),
maskPattern, aOptions, Some(sourceColor));
}
void DrawTargetWebgl::MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset, const DrawOptions& aOptions) {
if (!SupportsDrawOptions(aOptions) ||
aSource.GetType() != PatternType::COLOR) {
MarkSkiaChanged(aOptions);
mSkia->MaskSurface(aSource, aMask, aOffset, aOptions);
} else {
auto sourceColor = static_cast<const ColorPattern&>(aSource).mColor;
SurfacePattern pattern(aMask, ExtendMode::CLAMP,
Matrix::Translation(aOffset));
DrawRect(Rect(aOffset, Size(aMask->GetSize())), pattern, aOptions,
Some(sourceColor));
}
}
// Extract the surface's alpha values into an A8 surface.
static already_AddRefed<DataSourceSurface> ExtractAlpha(SourceSurface* aSurface,
bool aAllowSubpixelAA) {
RefPtr<DataSourceSurface> surfaceData = aSurface->GetDataSurface();
if (!surfaceData) {
return nullptr;
}
DataSourceSurface::ScopedMap srcMap(surfaceData, DataSourceSurface::READ);
if (!srcMap.IsMapped()) {
return nullptr;
}
IntSize size = surfaceData->GetSize();
RefPtr<DataSourceSurface> alpha =
Factory::CreateDataSourceSurface(size, SurfaceFormat::A8, false);
if (!alpha) {
return nullptr;
}
DataSourceSurface::ScopedMap dstMap(alpha, DataSourceSurface::WRITE);
if (!dstMap.IsMapped()) {
return nullptr;
}
// For subpixel masks, ignore the alpha and instead sample one of the color
// channels as if they were alpha.
SwizzleData(
srcMap.GetData(), srcMap.GetStride(),
aAllowSubpixelAA ? SurfaceFormat::A8R8G8B8 : surfaceData->GetFormat(),
dstMap.GetData(), dstMap.GetStride(), SurfaceFormat::A8, size);
return alpha.forget();
}
void DrawTargetWebgl::DrawShadow(const Path* aPath, const Pattern& aPattern,
const ShadowOptions& aShadow,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
// If there is a WebGL context, then try to cache the path to avoid slow
// fallbacks.
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawPathAccel(aPath, aPattern, aOptions, aStrokeOptions,
false, &aShadow)) {
return;
}
// There was no path cache entry available to use, so fall back to drawing the
// path with Skia.
MarkSkiaChanged(aOptions);
mSkia->DrawShadow(aPath, aPattern, aShadow, aOptions, aStrokeOptions);
}
void DrawTargetWebgl::DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const ShadowOptions& aShadow,
CompositionOp aOperator) {
DrawOptions options(1.0f, aOperator);
if (ShouldAccelPath(options, nullptr)) {
SurfacePattern pattern(aSurface, ExtendMode::CLAMP,
Matrix::Translation(aDest));
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(Rect(aSurface->GetRect()) + aDest));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
AutoRestoreTransform restore(this);
SetTransform(Matrix());
if (mSharedContext->DrawPathAccel(path, pattern, options, nullptr, false,
&aShadow, false)) {
DrawRect(Rect(aSurface->GetRect()) + aDest, pattern, options);
return;
}
}
MarkSkiaChanged(options);
mSkia->DrawSurfaceWithShadow(aSurface, aDest, aShadow, aOperator);
}
already_AddRefed<PathBuilder> DrawTargetWebgl::CreatePathBuilder(
FillRule aFillRule) const {
return mSkia->CreatePathBuilder(aFillRule);
}
void DrawTargetWebgl::SetTransform(const Matrix& aTransform) {
DrawTarget::SetTransform(aTransform);
mSkia->SetTransform(aTransform);
}
void DrawTargetWebgl::StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->StrokeRect(aRect, aPattern, aStrokeOptions, aOptions);
} else {
// If the stroke options are unsupported, then transform the rect to a path
// so it can be cached.
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(aRect));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions, &aStrokeOptions, true);
}
}
static inline bool IsThinLine(const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
auto scale = aTransform.ScaleFactors();
return std::max(scale.xScale, scale.yScale) * aStrokeOptions.mLineWidth <= 1;
}
bool DrawTargetWebgl::StrokeLineAccel(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions,
bool aClosed) {
// Approximating a wide line as a rectangle works only with certain cap styles
// in the general case (butt or square). However, if the line width is
// sufficiently thin, we can either ignore the round cap (or treat it like
// square for zero-length lines) without causing objectionable artifacts.
// Lines may sometimes be used in closed paths that immediately reverse back,
// in which case we need to use mLineJoin instead of mLineCap to determine the
// actual cap used.
CapStyle capStyle =
aClosed ? (aStrokeOptions.mLineJoin == JoinStyle::ROUND ? CapStyle::ROUND
: CapStyle::BUTT)
: aStrokeOptions.mLineCap;
if (mWebglValid && SupportsPattern(aPattern) &&
(capStyle != CapStyle::ROUND ||
IsThinLine(GetTransform(), aStrokeOptions)) &&
aStrokeOptions.mDashPattern == nullptr && aStrokeOptions.mLineWidth > 0) {
// Treat the line as a rectangle whose center-line is the supplied line and
// for which the height is the supplied line width. Generate a matrix that
// maps the X axis to the orientation of the line and the Y axis to the
// normal vector to the line. This only works if the line caps are squared,
// as rounded rectangles are currently not supported for round line caps.
Point start = aStart;
Point dirX = aEnd - aStart;
Point dirY;
float dirLen = dirX.Length();
float scale = aStrokeOptions.mLineWidth;
if (dirLen == 0.0f) {
// If the line is zero-length, then only a cap is rendered.
switch (capStyle) {
case CapStyle::BUTT:
// The cap doesn't extend beyond the line so nothing is drawn.
return true;
case CapStyle::ROUND:
case CapStyle::SQUARE:
// Draw a unit square centered at the single point.
dirX = Point(scale, 0.0f);
dirY = Point(0.0f, scale);
// Offset the start by half a unit.
start.x -= 0.5f * scale;
break;
}
} else {
// Make the scale map to a single unit length.
scale /= dirLen;
dirY = Point(-dirX.y, dirX.x) * scale;
if (capStyle == CapStyle::SQUARE) {
// Offset the start by half a unit.
start -= (dirX * scale) * 0.5f;
// Ensure the extent also accounts for the start and end cap.
dirX += dirX * scale;
}
}
Matrix lineXform(dirX.x, dirX.y, dirY.x, dirY.y, start.x - 0.5f * dirY.x,
start.y - 0.5f * dirY.y);
if (PrepareContext() &&
mSharedContext->DrawRectAccel(Rect(0, 0, 1, 1), aPattern, aOptions,
Nothing(), nullptr, true, true, true,
false, nullptr, nullptr, &lineXform)) {
return true;
}
}
return false;
}
void DrawTargetWebgl::StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->StrokeLine(aStart, aEnd, aPattern, aStrokeOptions, aOptions);
} else if (!StrokeLineAccel(aStart, aEnd, aPattern, aStrokeOptions,
aOptions)) {
// If the stroke options are unsupported, then transform the line to a path
// so it can be cached.
SkPath skiaPath;
skiaPath.moveTo(PointToSkPoint(aStart));
skiaPath.lineTo(PointToSkPoint(aEnd));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions, &aStrokeOptions, true);
}
}
void DrawTargetWebgl::Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const auto& skiaPath = static_cast<const PathSkia*>(aPath)->GetPath();
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->Stroke(aPath, aPattern, aStrokeOptions, aOptions);
return;
}
// Avoid using Skia's isLine here because some paths erroneously include a
// closePath at the end, causing isLine to not detect the line. In that case
// we just draw a line in reverse right over the original line.
int numVerbs = skiaPath.countVerbs();
bool allowStrokeAlpha = false;
if (numVerbs >= 2 && numVerbs <= 3) {
uint8_t verbs[3];
skiaPath.getVerbs(verbs, numVerbs);
if (verbs[0] == SkPath::kMove_Verb && verbs[1] == SkPath::kLine_Verb &&
(numVerbs < 3 || verbs[2] == SkPath::kClose_Verb)) {
bool closed = numVerbs >= 3;
Point start = SkPointToPoint(skiaPath.getPoint(0));
Point end = SkPointToPoint(skiaPath.getPoint(1));
if (StrokeLineAccel(start, end, aPattern, aStrokeOptions, aOptions,
closed)) {
if (closed) {
StrokeLineAccel(end, start, aPattern, aStrokeOptions, aOptions, true);
}
return;
}
// If accelerated line drawing failed, just treat it as a path.
allowStrokeAlpha = true;
}
}
DrawPath(aPath, aPattern, aOptions, &aStrokeOptions, allowStrokeAlpha);
}
void DrawTargetWebgl::StrokeCircle(const Point& aOrigin, float aRadius,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
DrawCircle(aOrigin, aRadius, aPattern, aOptions, &aStrokeOptions);
}
bool DrawTargetWebgl::ShouldUseSubpixelAA(ScaledFont* aFont,
const DrawOptions& aOptions) {
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
return GetPermitSubpixelAA() &&
(aaMode == AntialiasMode::DEFAULT ||
aaMode == AntialiasMode::SUBPIXEL) &&
aOptions.mCompositionOp == CompositionOp::OP_OVER;
}
void DrawTargetWebgl::StrokeGlyphs(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!aFont || !aBuffer.mNumGlyphs) {
return;
}
bool useSubpixelAA = ShouldUseSubpixelAA(aFont, aOptions);
if (mWebglValid && SupportsDrawOptions(aOptions) &&
aPattern.GetType() == PatternType::COLOR && PrepareContext() &&
mSharedContext->DrawGlyphsAccel(aFont, aBuffer, aPattern, aOptions,
&aStrokeOptions, useSubpixelAA)) {
return;
}
if (useSubpixelAA) {
// Subpixel AA does not support layering because the subpixel masks can't
// blend with the over op.
MarkSkiaChanged();
} else {
MarkSkiaChanged(aOptions);
}
mSkia->StrokeGlyphs(aFont, aBuffer, aPattern, aStrokeOptions, aOptions);
}
// Depending on whether we enable subpixel position for a given font, Skia may
// round transformed coordinates differently on each axis. By default, text is
// subpixel quantized horizontally and snapped to a whole integer vertical
// baseline. Axis-flip transforms instead snap to horizontal boundaries while
// subpixel quantizing along the vertical. For other types of transforms, Skia
// just applies subpixel quantization to both axes.
// We must duplicate the amount of quantization Skia applies carefully as a
// boundary value such as 0.49 may round to 0.5 with subpixel quantization,
// but if Skia actually snapped it to a whole integer instead, it would round
// down to 0. If a subsequent glyph with offset 0.51 came in, we might
// mistakenly round it down to 0.5, whereas Skia would round it up to 1. Thus
// we would alias 0.49 and 0.51 to the same cache entry, while Skia would
// actually snap the offset to 0 or 1, depending, resulting in mismatched
// hinting.
static inline IntPoint QuantizeScale(ScaledFont* aFont,
const Matrix& aTransform) {
if (!aFont->UseSubpixelPosition()) {
return {1, 1};
}
if (aTransform._12 == 0) {
// Glyphs are rendered subpixel horizontally, so snap vertically.
return {4, 1};
}
if (aTransform._11 == 0) {
// Glyphs are rendered subpixel vertically, so snap horizontally.
return {1, 4};
}
// The transform isn't aligned, so don't snap.
return {4, 4};
}
// Skia only supports subpixel positioning to the nearest 1/4 fraction. It
// would be wasteful to attempt to cache text runs with positioning that is
// anymore precise than this. To prevent this cache bloat, we quantize the
// transformed glyph positions to the nearest 1/4. The scaling factor for
// the quantization is baked into the transform, so that if subpixel rounding
// is used on a given axis, then the axis will be multiplied by 4 before
// rounding. Since the quantized position is not used for rasterization, the
// transform is safe to modify as such.
static inline IntPoint QuantizePosition(const Matrix& aTransform,
const IntPoint& aOffset,
const Point& aPosition) {
return RoundedToInt(aTransform.TransformPoint(aPosition)) - aOffset;
}
// Get a quantized starting offset for the glyph buffer. We want this offset
// to encapsulate the transform and buffer offset while still preserving the
// relative subpixel positions of the glyphs this offset is subtracted from.
static inline IntPoint QuantizeOffset(const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const GlyphBuffer& aBuffer) {
IntPoint offset =
RoundedToInt(aTransform.TransformPoint(aBuffer.mGlyphs[0].mPosition));
offset.x.value &= ~(aQuantizeScale.x.value - 1);
offset.y.value &= ~(aQuantizeScale.y.value - 1);
return offset;
}
// Hashes a glyph buffer to a single hash value that can be used for quick
// comparisons. Each glyph position is transformed and quantized before
// hashing.
HashNumber GlyphCacheEntry::HashGlyphs(const GlyphBuffer& aBuffer,
const Matrix& aTransform,
const IntPoint& aQuantizeScale) {
HashNumber hash = 0;
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
const Glyph& glyph = aBuffer.mGlyphs[i];
hash = AddToHash(hash, glyph.mIndex);
IntPoint pos = QuantizePosition(aTransform, offset, glyph.mPosition);
hash = AddToHash(hash, pos.x);
hash = AddToHash(hash, pos.y);
}
return hash;
}
// Determines if an existing glyph cache entry matches an incoming text run.
inline bool GlyphCacheEntry::MatchesGlyphs(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeOffset,
const IntPoint& aBoundsOffset, const IntRect& aClipRect, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
// First check if the hash matches to quickly reject the text run before any
// more expensive checking. If it matches, then check if the color and
// transform are the same.
if (aHash != mHash || aBuffer.mNumGlyphs != mBuffer.mNumGlyphs ||
aColor != mColor || !HasMatchingScale(aTransform, mTransform)) {
return false;
}
// Finally check if all glyphs and their quantized positions match.
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
const Glyph& dst = mBuffer.mGlyphs[i];
const Glyph& src = aBuffer.mGlyphs[i];
if (dst.mIndex != src.mIndex ||
dst.mPosition != Point(QuantizePosition(aTransform, aQuantizeOffset,
src.mPosition))) {
return false;
}
}
// Check that stroke options actually match.
if (aStrokeOptions) {
// If stroking, verify that the entry is also stroked with the same options.
if (!(mStrokeOptions && *aStrokeOptions == *mStrokeOptions)) {
return false;
}
} else if (mStrokeOptions) {
// If not stroking, check if the entry is stroked. If so, don't match.
return false;
}
// Verify that the full bounds, once translated and clipped, are equal to the
// clipped bounds.
return (mFullBounds + aBoundsOffset)
.Intersect(aClipRect)
.IsEqualEdges(GetBounds() + aBoundsOffset);
}
GlyphCacheEntry::GlyphCacheEntry(const GlyphBuffer& aBuffer,
const DeviceColor& aColor,
const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const IntRect& aBounds,
const IntRect& aFullBounds, HashNumber aHash,
StoredStrokeOptions* aStrokeOptions)
: CacheEntryImpl<GlyphCacheEntry>(aTransform, aBounds, aHash),
mColor(aColor),
mFullBounds(aFullBounds),
mStrokeOptions(aStrokeOptions) {
// Store a copy of the glyph buffer with positions already quantized for fast
// comparison later.
Glyph* glyphs = new Glyph[aBuffer.mNumGlyphs];
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
// Make the bounds relative to the offset so we can add a new offset later.
IntPoint boundsOffset(offset.x / aQuantizeScale.x,
offset.y / aQuantizeScale.y);
mBounds -= boundsOffset;
mFullBounds -= boundsOffset;
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
Glyph& dst = glyphs[i];
const Glyph& src = aBuffer.mGlyphs[i];
dst.mIndex = src.mIndex;
dst.mPosition = Point(QuantizePosition(aTransform, offset, src.mPosition));
}
mBuffer.mGlyphs = glyphs;
mBuffer.mNumGlyphs = aBuffer.mNumGlyphs;
}
GlyphCacheEntry::~GlyphCacheEntry() { delete[] mBuffer.mGlyphs; }
// Attempt to find a matching entry in the glyph cache. The caller should check
// whether the contained texture handle is valid to determine if it will need to
// render the text run or just reuse the cached texture.
already_AddRefed<GlyphCacheEntry> GlyphCache::FindEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aClipRect, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
IntPoint boundsOffset(offset.x / aQuantizeScale.x,
offset.y / aQuantizeScale.y);
for (const RefPtr<GlyphCacheEntry>& entry : GetChain(aHash)) {
if (entry->MatchesGlyphs(aBuffer, aColor, aTransform, offset, boundsOffset,
aClipRect, aHash, aStrokeOptions)) {
return do_AddRef(entry);
}
}
return nullptr;
}
// Insert a new entry in the glyph cache.
already_AddRefed<GlyphCacheEntry> GlyphCache::InsertEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aBounds, const IntRect& aFullBounds, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
StoredStrokeOptions* strokeOptions = nullptr;
if (aStrokeOptions) {
strokeOptions = aStrokeOptions->Clone();
if (!strokeOptions) {
return nullptr;
}
}
RefPtr<GlyphCacheEntry> entry =
new GlyphCacheEntry(aBuffer, aColor, aTransform, aQuantizeScale, aBounds,
aFullBounds, aHash, strokeOptions);
Insert(entry);
return entry.forget();
}
GlyphCache::GlyphCache(ScaledFont* aFont) : mFont(aFont) {}
static void ReleaseGlyphCache(void* aPtr) {
delete static_cast<GlyphCache*>(aPtr);
}
void DrawTargetWebgl::SetPermitSubpixelAA(bool aPermitSubpixelAA) {
DrawTarget::SetPermitSubpixelAA(aPermitSubpixelAA);
mSkia->SetPermitSubpixelAA(aPermitSubpixelAA);
}
// Check for any color glyphs contained within a rasterized BGRA8 text result.
static bool CheckForColorGlyphs(const RefPtr<SourceSurface>& aSurface) {
if (aSurface->GetFormat() != SurfaceFormat::B8G8R8A8) {
return false;
}
RefPtr<DataSourceSurface> dataSurf = aSurface->GetDataSurface();
if (!dataSurf) {
return true;
}
DataSourceSurface::ScopedMap map(dataSurf, DataSourceSurface::READ);
if (!map.IsMapped()) {
return true;
}
IntSize size = dataSurf->GetSize();
const uint8_t* data = map.GetData();
int32_t stride = map.GetStride();
for (int y = 0; y < size.height; y++) {
const uint32_t* x = (const uint32_t*)data;
const uint32_t* end = x + size.width;
for (; x < end; x++) {
// Verify if all components are the same as for premultiplied grayscale.
uint32_t color = *x;
uint32_t gray = color & 0xFF;
gray |= gray << 8;
gray |= gray << 16;
if (color != gray) return true;
}
data += stride;
}
return false;
}
// Draws glyphs to the WebGL target by trying to generate a cached texture for
// the text run that can be subsequently reused to quickly render the text run
// without using any software surfaces.
bool SharedContextWebgl::DrawGlyphsAccel(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions,
bool aUseSubpixelAA) {
// Whether the font may use bitmaps. If so, we need to render the glyphs with
// color as grayscale bitmaps will use the color while color emoji will not,
// with no easy way to know ahead of time. We currently have to check the
// rasterized result to see if there are any color glyphs. To render subpixel
// masks, we need to know that the rasterized result actually represents a
// subpixel mask rather than try to interpret it as a normal RGBA result such
// as for color emoji.
bool useBitmaps = !aStrokeOptions && aFont->MayUseBitmaps() &&
aOptions.mCompositionOp != CompositionOp::OP_CLEAR;
// Look for an existing glyph cache on the font. If not there, create it.
GlyphCache* cache =
static_cast<GlyphCache*>(aFont->GetUserData(&mGlyphCacheKey));
if (!cache) {
cache = new GlyphCache(aFont);
aFont->AddUserData(&mGlyphCacheKey, cache, ReleaseGlyphCache);
mGlyphCaches.insertFront(cache);
}
// Hash the incoming text run and looking for a matching entry.
DeviceColor color = aOptions.mCompositionOp == CompositionOp::OP_CLEAR
? DeviceColor(1, 1, 1, 1)
: static_cast<const ColorPattern&>(aPattern).mColor;
#ifdef XP_MACOSX
// On macOS, depending on whether the text is classified as light-on-dark or
// dark-on-light, we may end up with different amounts of dilation applied, so
// we can't use the same mask in the two circumstances, or the glyphs will be
// dilated incorrectly.
bool lightOnDark =
useBitmaps || (color.r >= 0.33f && color.g >= 0.33f && color.b >= 0.33f &&
color.r + color.g + color.b >= 2.0f);
#else
// On other platforms, we assume no color-dependent dilation.
const bool lightOnDark = true;
#endif
// If the font has bitmaps, use the color directly. Otherwise, the texture
// will hold a grayscale mask, so encode the key's subpixel and light-or-dark
// state in the color.
const Matrix& currentTransform = mCurrentTarget->GetTransform();
IntPoint quantizeScale = QuantizeScale(aFont, currentTransform);
Matrix quantizeTransform = currentTransform;
quantizeTransform.PostScale(quantizeScale.x, quantizeScale.y);
HashNumber hash =
GlyphCacheEntry::HashGlyphs(aBuffer, quantizeTransform, quantizeScale);
DeviceColor colorOrMask =
useBitmaps
? color
: DeviceColor::Mask(aUseSubpixelAA ? 1 : 0, lightOnDark ? 1 : 0);
IntRect clipRect(IntPoint(), mViewportSize);
RefPtr<GlyphCacheEntry> entry =
cache->FindEntry(aBuffer, colorOrMask, quantizeTransform, quantizeScale,
clipRect, hash, aStrokeOptions);
if (!entry) {
// For small text runs, bounds computations can be expensive relative to the
// cost of looking up a cache result. Avoid doing local bounds computations
// until actually inserting the entry into the cache.
Maybe<Rect> bounds = mCurrentTarget->mSkia->GetGlyphLocalBounds(
aFont, aBuffer, aPattern, aStrokeOptions, aOptions);
if (!bounds) {
return true;
}
// Transform the local bounds into device space so that we know how big
// the cached texture will be.
Rect xformBounds = currentTransform.TransformBounds(*bounds);
// Check if the transform flattens out the bounds before rounding.
if (xformBounds.IsEmpty()) {
return true;
}
IntRect fullBounds = RoundedOut(currentTransform.TransformBounds(*bounds));
IntRect clipBounds = fullBounds.Intersect(clipRect);
// Check if the bounds are completely clipped out.
if (clipBounds.IsEmpty()) {
return true;
}
entry = cache->InsertEntry(aBuffer, colorOrMask, quantizeTransform,
quantizeScale, clipBounds, fullBounds, hash,
aStrokeOptions);
if (!entry) {
return false;
}
}
// The bounds of the entry may have a different transform offset from the
// bounds of the currently drawn text run. The entry bounds are relative to
// the entry's quantized offset already, so just move the bounds to the new
// offset.
IntRect intBounds = entry->GetBounds();
IntPoint newOffset =
QuantizeOffset(quantizeTransform, quantizeScale, aBuffer);
intBounds +=
IntPoint(newOffset.x / quantizeScale.x, newOffset.y / quantizeScale.y);
// Ensure there is a clear border around the text. This must be applied only
// after clipping so that we always have some border texels for filtering.
intBounds.Inflate(2);
RefPtr<TextureHandle> handle = entry->GetHandle();
if (handle && handle->IsValid()) {
// If there is an entry with a valid cached texture handle, then try
// to draw with that. If that for some reason failed, then fall back
// to using the Skia target as that means we were preventing from
// drawing to the WebGL context based on something other than the
// texture.
SurfacePattern pattern(nullptr, ExtendMode::CLAMP,
Matrix::Translation(intBounds.TopLeft()));
if (DrawRectAccel(Rect(intBounds), pattern, aOptions,
useBitmaps ? Nothing() : Some(color), &handle, false,
true, true)) {
return true;
}
} else {
handle = nullptr;
// If we get here, either there wasn't a cached texture handle or it
// wasn't valid. Render the text run into a temporary target.
RefPtr<DrawTargetSkia> textDT = new DrawTargetSkia;
if (textDT->Init(intBounds.Size(),
lightOnDark && !useBitmaps && !aUseSubpixelAA
? SurfaceFormat::A8
: SurfaceFormat::B8G8R8A8)) {
if (!lightOnDark) {
// If rendering dark-on-light text, we need to clear the background to
// white while using an opaque alpha value to allow this.
textDT->FillRect(Rect(IntRect(IntPoint(), intBounds.Size())),
ColorPattern(DeviceColor(1, 1, 1, 1)),
DrawOptions(1.0f, CompositionOp::OP_OVER));
}
textDT->SetTransform(currentTransform *
Matrix::Translation(-intBounds.TopLeft()));
textDT->SetPermitSubpixelAA(aUseSubpixelAA);
DrawOptions drawOptions(1.0f, CompositionOp::OP_OVER,
aOptions.mAntialiasMode);
// If bitmaps might be used, then we have to supply the color, as color
// emoji may ignore it while grayscale bitmaps may use it, with no way to
// know ahead of time. Otherwise, assume the output will be a mask and
// just render it white to determine intensity. Depending on whether the
// text is light or dark, we render white or black text respectively.
ColorPattern colorPattern(
useBitmaps ? color : DeviceColor::Mask(lightOnDark ? 1 : 0, 1));
if (aStrokeOptions) {
textDT->StrokeGlyphs(aFont, aBuffer, colorPattern, *aStrokeOptions,
drawOptions);
} else {
textDT->FillGlyphs(aFont, aBuffer, colorPattern, drawOptions);
}
if (!lightOnDark) {
uint8_t* data = nullptr;
IntSize size;
int32_t stride = 0;
SurfaceFormat format = SurfaceFormat::UNKNOWN;
if (!textDT->LockBits(&data, &size, &stride, &format)) {
return false;
}
uint8_t* row = data;
for (int y = 0; y < size.height; ++y) {
uint8_t* px = row;
for (int x = 0; x < size.width; ++x) {
// If rendering dark-on-light text, we need to invert the final mask
// so that it is in the expected white text on transparent black
// format. The alpha will be initialized to the largest of the
// values.
px[0] = 255 - px[0];
px[1] = 255 - px[1];
px[2] = 255 - px[2];
px[3] = std::max(px[0], std::max(px[1], px[2]));
px += 4;
}
row += stride;
}
textDT->ReleaseBits(data);
}
RefPtr<SourceSurface> textSurface = textDT->Snapshot();
if (textSurface) {
// If we don't expect the text surface to contain color glyphs
// such as from subpixel AA, then do one final check to see if
// any ended up in the result. If not, extract the alpha values
// from the surface so we can render it as a mask.
if (textSurface->GetFormat() != SurfaceFormat::A8 &&
!CheckForColorGlyphs(textSurface)) {
textSurface = ExtractAlpha(textSurface, !useBitmaps);
if (!textSurface) {
// Failed extracting alpha for the text surface...
return false;
}
}
// Attempt to upload the rendered text surface into a texture
// handle and draw it.
SurfacePattern pattern(textSurface, ExtendMode::CLAMP,
Matrix::Translation(intBounds.TopLeft()));
if (DrawRectAccel(Rect(intBounds), pattern, aOptions,
useBitmaps ? Nothing() : Some(color), &handle, false,
true) &&
handle) {
// If drawing succeeded, then the text surface was uploaded to
// a texture handle. Assign it to the glyph cache entry.
entry->Link(handle);
} else {
// If drawing failed, remove the entry from the cache.
entry->Unlink();
}
return true;
}
}
}
return false;
}
void DrawTargetWebgl::FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
if (!aFont || !aBuffer.mNumGlyphs) {
return;
}
bool useSubpixelAA = ShouldUseSubpixelAA(aFont, aOptions);
if (mWebglValid && SupportsDrawOptions(aOptions) &&
aPattern.GetType() == PatternType::COLOR && PrepareContext() &&
mSharedContext->DrawGlyphsAccel(aFont, aBuffer, aPattern, aOptions,
nullptr, useSubpixelAA)) {
return;
}
// If not able to cache the text run to a texture, then just fall back to
// drawing with the Skia target.
if (useSubpixelAA) {
// Subpixel AA does not support layering because the subpixel masks can't
// blend with the over op.
MarkSkiaChanged();
} else {
MarkSkiaChanged(aOptions);
}
mSkia->FillGlyphs(aFont, aBuffer, aPattern, aOptions);
}
// Attempts to read the contents of the WebGL context into the Skia target.
bool DrawTargetWebgl::ReadIntoSkia() {
if (mSkiaValid) {
return false;
}
bool didReadback = false;
if (mWebglValid) {
uint8_t* data = nullptr;
IntSize size;
int32_t stride;
SurfaceFormat format;
if (mIsClear) {
// If the WebGL target is still clear, then just clear the Skia target.
mSkia->DetachAllSnapshots();
mSkiaNoClip->FillRect(Rect(mSkiaNoClip->GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
// If there's no existing snapshot and we can successfully map the Skia
// target for reading, then try to read into that.
if (!mSnapshot && mSkia->LockBits(&data, &size, &stride, &format)) {
(void)ReadInto(data, stride);
mSkia->ReleaseBits(data);
} else if (RefPtr<SourceSurface> snapshot = Snapshot()) {
// Otherwise, fall back to getting a snapshot from WebGL if available
// and then copying that to Skia.
mSkia->CopySurface(snapshot, GetRect(), IntPoint(0, 0));
}
didReadback = true;
}
}
mSkiaValid = true;
// The Skia data is flat after reading, so disable any layering.
mSkiaLayer = false;
return didReadback;
}
// Reads data from the WebGL context and blends it with the current Skia layer.
void DrawTargetWebgl::FlattenSkia() {
if (!mSkiaValid || !mSkiaLayer) {
return;
}
mSkiaLayer = false;
if (mSkiaLayerClear) {
// If the WebGL target is clear, then there is nothing to blend.
return;
}
if (RefPtr<DataSourceSurface> base = ReadSnapshot()) {
mSkia->DetachAllSnapshots();
mSkiaNoClip->DrawSurface(base, Rect(GetRect()), Rect(GetRect()),
DrawSurfaceOptions(SamplingFilter::POINT),
DrawOptions(1.f, CompositionOp::OP_DEST_OVER));
}
}
// Attempts to draw the contents of the Skia target into the WebGL context.
bool DrawTargetWebgl::FlushFromSkia() {
// If the WebGL context has been lost, then mark it as invalid and fail.
if (mSharedContext->IsContextLost()) {
mWebglValid = false;
return false;
}
// The WebGL target is already valid, so there is nothing to do.
if (mWebglValid) {
return true;
}
// Ensure that DrawRect doesn't recursively call into FlushFromSkia. If
// the Skia target isn't valid, then it doesn't matter what is in the the
// WebGL target either, so only try to blend if there is a valid Skia target.
mWebglValid = true;
if (mSkiaValid) {
AutoRestoreContext restore(this);
// If the Skia target is clear, then there is no need to use a snapshot.
// Directly clear the WebGL target instead.
if (mIsClear) {
if (!DrawRect(Rect(GetRect()), GetClearPattern(),
DrawOptions(1.0f, CompositionOp::OP_SOURCE), Nothing(),
nullptr, false, false, true)) {
mWebglValid = false;
return false;
}
return true;
}
RefPtr<SourceSurface> skiaSnapshot = mSkia->Snapshot();
if (!skiaSnapshot) {
// There's a valid Skia target to draw to, but for some reason there is
// no available snapshot, so just keep using the Skia target.
mWebglValid = false;
return false;
}
// If there is no layer, then just upload it directly.
if (!mSkiaLayer) {
if (PrepareContext(false) && MarkChanged()) {
if (RefPtr<DataSourceSurface> data = skiaSnapshot->GetDataSurface()) {
mSharedContext->UploadSurface(data, mFormat, GetRect(), IntPoint(),
false, false, mTex);
return true;
}
}
// Failed to upload the Skia snapshot.
mWebglValid = false;
return false;
}
SurfacePattern pattern(skiaSnapshot, ExtendMode::CLAMP);
// If there is a layer, blend the snapshot with the WebGL context.
if (!DrawRect(Rect(GetRect()), pattern,
DrawOptions(1.0f, CompositionOp::OP_OVER), Nothing(),
&mSnapshotTexture, false, false, true, true)) {
// If accelerated drawing failed for some reason, then leave the Skia
// target unchanged.
mWebglValid = false;
return false;
}
}
return true;
}
void DrawTargetWebgl::UsageProfile::BeginFrame() {
// Reset the usage profile counters for the new frame.
mFallbacks = 0;
mLayers = 0;
mCacheMisses = 0;
mCacheHits = 0;
mUncachedDraws = 0;
mReadbacks = 0;
}
void DrawTargetWebgl::UsageProfile::EndFrame() {
bool failed = false;
// If we hit a complete fallback to software rendering, or if cache misses
// were more than cutoff ratio of all requests, then we consider the frame as
// having failed performance profiling.
float cacheRatio =
StaticPrefs::gfx_canvas_accelerated_profile_cache_miss_ratio();
if (mFallbacks > 0 ||
float(mCacheMisses + mReadbacks + mLayers) >
cacheRatio * float(mCacheMisses + mCacheHits + mUncachedDraws +
mReadbacks + mLayers)) {
failed = true;
}
if (failed) {
++mFailedFrames;
}
++mFrameCount;
}
bool DrawTargetWebgl::UsageProfile::RequiresRefresh() const {
// If we've rendered at least the required number of frames for a profile and
// more than the cutoff ratio of frames did not meet performance criteria,
// then we should stop using an accelerated canvas.
uint32_t profileFrames = StaticPrefs::gfx_canvas_accelerated_profile_frames();
if (!profileFrames || mFrameCount < profileFrames) {
return false;
}
float failRatio =
StaticPrefs::gfx_canvas_accelerated_profile_fallback_ratio();
return mFailedFrames > failRatio * mFrameCount;
}
void SharedContextWebgl::CachePrefs() {
uint32_t capacity = StaticPrefs::gfx_canvas_accelerated_gpu_path_size() << 20;
if (capacity != mPathVertexCapacity) {
mPathVertexCapacity = capacity;
if (mPathCache) {
mPathCache->ClearVertexRanges();
}
if (mPathVertexBuffer) {
ResetPathVertexBuffer();
}
}
mPathMaxComplexity =
StaticPrefs::gfx_canvas_accelerated_gpu_path_complexity();
mPathAAStroke = StaticPrefs::gfx_canvas_accelerated_aa_stroke_enabled();
mPathWGRStroke = StaticPrefs::gfx_canvas_accelerated_stroke_to_fill_path();
}
// For use within CanvasRenderingContext2D, called on BorrowDrawTarget.
void DrawTargetWebgl::BeginFrame(bool aInvalidContents) {
// If still rendering into the Skia target, switch back to the WebGL
// context.
if (!mWebglValid) {
if (aInvalidContents) {
// If nothing needs to persist, just mark the WebGL context valid.
mWebglValid = true;
// Even if the Skia framebuffer is marked clear, since the WebGL
// context is not valid, its contents may be out-of-date and not
// necessarily clear.
mIsClear = false;
} else {
FlushFromSkia();
}
}
// Check if we need to clear out any cached because of memory pressure.
mSharedContext->ClearCachesIfNecessary();
// Cache any prefs for the frame.
mSharedContext->CachePrefs();
mProfile.BeginFrame();
}
// For use within CanvasRenderingContext2D, called on ReturnDrawTarget.
void DrawTargetWebgl::EndFrame() {
if (StaticPrefs::gfx_canvas_accelerated_debug()) {
// Draw a green rectangle in the upper right corner to indicate
// acceleration.
IntRect corner = IntRect(mSize.width - 16, 0, 16, 16).Intersect(GetRect());
DrawRect(Rect(corner), ColorPattern(DeviceColor(0.0f, 1.0f, 0.0f, 1.0f)),
DrawOptions(), Nothing(), nullptr, false, false);
}
mProfile.EndFrame();
// Ensure we're not somehow using more than the allowed texture memory.
mSharedContext->PruneTextureMemory();
// Signal that we're done rendering the frame in case no present occurs.
mSharedContext->mWebgl->EndOfFrame();
// Check if we need to clear out any cached because of memory pressure.
mSharedContext->ClearCachesIfNecessary();
}
bool DrawTargetWebgl::CopyToSwapChain(
layers::TextureType aTextureType, layers::RemoteTextureId aId,
layers::RemoteTextureOwnerId aOwnerId,
layers::RemoteTextureOwnerClient* aOwnerClient) {
if (!mWebglValid && !FlushFromSkia()) {
return false;
}
// Copy and swizzle the WebGL framebuffer to the swap chain front buffer.
webgl::SwapChainOptions options;
options.bgra = true;
// Allow async present to be toggled on for accelerated Canvas2D
// independent of WebGL via pref.
options.forceAsyncPresent =
StaticPrefs::gfx_canvas_accelerated_async_present();
options.remoteTextureId = aId;
options.remoteTextureOwnerId = aOwnerId;
return mSharedContext->mWebgl->CopyToSwapChain(mFramebuffer, aTextureType,
options, aOwnerClient);
}
already_AddRefed<DrawTarget> DrawTargetWebgl::CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
return mSkia->CreateSimilarDrawTarget(aSize, aFormat);
}
bool DrawTargetWebgl::CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
return mSkia->CanCreateSimilarDrawTarget(aSize, aFormat);
}
RefPtr<DrawTarget> DrawTargetWebgl::CreateClippedDrawTarget(
const Rect& aBounds, SurfaceFormat aFormat) {
return mSkia->CreateClippedDrawTarget(aBounds, aFormat);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const {
return mSkia->CreateSourceSurfaceFromData(aData, aSize, aStride, aFormat);
}
already_AddRefed<SourceSurface>
DrawTargetWebgl::CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const {
return mSkia->CreateSourceSurfaceFromNativeSurface(aSurface);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::OptimizeSourceSurface(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::WEBGL) {
return do_AddRef(aSurface);
}
return mSkia->OptimizeSourceSurface(aSurface);
}
already_AddRefed<SourceSurface>
DrawTargetWebgl::OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
return mSkia->OptimizeSourceSurfaceForUnknownAlpha(aSurface);
}
already_AddRefed<GradientStops> DrawTargetWebgl::CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops, ExtendMode aExtendMode) const {
return mSkia->CreateGradientStops(aStops, aNumStops, aExtendMode);
}
already_AddRefed<FilterNode> DrawTargetWebgl::CreateFilter(FilterType aType) {
return mSkia->CreateFilter(aType);
}
void DrawTargetWebgl::DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions) {
MarkSkiaChanged(aOptions);
mSkia->DrawFilter(aNode, aSourceRect, aDestPoint, aOptions);
}
bool DrawTargetWebgl::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
MarkSkiaChanged();
return mSkia->Draw3DTransformedSurface(aSurface, aMatrix);
}
void DrawTargetWebgl::PushLayer(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds, bool aCopyBackground) {
PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, CompositionOp::OP_OVER);
}
void DrawTargetWebgl::PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds,
bool aCopyBackground,
CompositionOp aCompositionOp) {
MarkSkiaChanged(DrawOptions(aOpacity, aCompositionOp));
mSkia->PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, aCompositionOp);
++mLayerDepth;
SetPermitSubpixelAA(mSkia->GetPermitSubpixelAA());
}
void DrawTargetWebgl::PopLayer() {
MOZ_ASSERT(mSkiaValid);
MOZ_ASSERT(mLayerDepth > 0);
--mLayerDepth;
mSkia->PopLayer();
SetPermitSubpixelAA(mSkia->GetPermitSubpixelAA());
}
} // namespace mozilla::gfx
|