| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 
 | /*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/audio_coding/neteq/background_noise.h"
#include <string.h>  // memcpy
#include <algorithm>  // min, max
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_coding/neteq/audio_multi_vector.h"
#include "modules/audio_coding/neteq/cross_correlation.h"
namespace webrtc {
namespace {
constexpr size_t kMaxSampleRate = 48000;
}  // namespace
// static
constexpr size_t BackgroundNoise::kMaxLpcOrder;
BackgroundNoise::BackgroundNoise(size_t num_channels)
    : num_channels_(num_channels),
      channel_parameters_(new ChannelParameters[num_channels_]) {
  Reset();
}
BackgroundNoise::~BackgroundNoise() {}
void BackgroundNoise::Reset() {
  initialized_ = false;
  for (size_t channel = 0; channel < num_channels_; ++channel) {
    channel_parameters_[channel].Reset();
  }
}
bool BackgroundNoise::Update(const AudioMultiVector& sync_buffer) {
  bool filter_params_saved = false;
  int32_t auto_correlation[kMaxLpcOrder + 1];
  int16_t filter_output[kMaxLpcOrder + kResidualLength];
  int16_t reflection_coefficients[kMaxLpcOrder];
  int16_t lpc_coefficients[kMaxLpcOrder + 1];
  for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
    ChannelParameters& parameters = channel_parameters_[channel_ix];
    int16_t temp_signal_array[kVecLen + kMaxLpcOrder] = {0};
    int16_t* temp_signal = &temp_signal_array[kMaxLpcOrder];
    RTC_DCHECK_GE(sync_buffer.Size(), kVecLen);
    sync_buffer[channel_ix].CopyTo(kVecLen, sync_buffer.Size() - kVecLen,
                                   temp_signal);
    int32_t sample_energy =
        CalculateAutoCorrelation(temp_signal, kVecLen, auto_correlation);
    if (sample_energy < parameters.energy_update_threshold) {
      // Generate LPC coefficients.
      if (auto_correlation[0] <= 0) {
        // Center value in auto-correlation is not positive. Do not update.
        return filter_params_saved;
      }
      // Regardless of whether the filter is actually updated or not,
      // update energy threshold levels, since we have in fact observed
      // a low energy signal.
      if (sample_energy < parameters.energy_update_threshold) {
        // Never go under 1.0 in average sample energy.
        parameters.energy_update_threshold = std::max(sample_energy, 1);
        parameters.low_energy_update_threshold = 0;
      }
      // Only update BGN if filter is stable, i.e., if return value from
      // Levinson-Durbin function is 1.
      if (WebRtcSpl_LevinsonDurbin(auto_correlation, lpc_coefficients,
                                   reflection_coefficients,
                                   kMaxLpcOrder) != 1) {
        return filter_params_saved;
      }
      // Generate the CNG gain factor by looking at the energy of the residual.
      WebRtcSpl_FilterMAFastQ12(temp_signal + kVecLen - kResidualLength,
                                filter_output, lpc_coefficients,
                                kMaxLpcOrder + 1, kResidualLength);
      int32_t residual_energy = WebRtcSpl_DotProductWithScale(
          filter_output, filter_output, kResidualLength, 0);
      // Check spectral flatness.
      // Comparing the residual variance with the input signal variance tells
      // if the spectrum is flat or not.
      // If 5 * residual_energy >= 16 * sample_energy, the spectrum is flat
      // enough.  Also ensure that the energy is non-zero.
      if ((sample_energy > 0) &&
          (int64_t{5} * residual_energy >= int64_t{16} * sample_energy)) {
        // Spectrum is flat enough; save filter parameters.
        // `temp_signal` + `kVecLen` - `kMaxLpcOrder` points at the first of the
        // `kMaxLpcOrder` samples in the residual signal, which will form the
        // filter state for the next noise generation.
        SaveParameters(channel_ix, lpc_coefficients,
                       temp_signal + kVecLen - kMaxLpcOrder, sample_energy,
                       residual_energy);
        filter_params_saved = true;
      }
    } else {
      // Will only happen if `sample_energy` is not low enough. Increase the
      // threshold for update so that it increases by a factor 4 in 4 seconds.
      IncrementEnergyThreshold(channel_ix, sample_energy);
    }
  }
  return filter_params_saved;
}
void BackgroundNoise::GenerateBackgroundNoise(
    rtc::ArrayView<const int16_t> random_vector,
    size_t channel,
    int mute_slope,
    bool too_many_expands,
    size_t num_noise_samples,
    int16_t* buffer) {
  constexpr size_t kNoiseLpcOrder = kMaxLpcOrder;
  int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
  RTC_DCHECK_LE(num_noise_samples, (kMaxSampleRate / 8000 * 125));
  RTC_DCHECK_GE(random_vector.size(), num_noise_samples);
  int16_t* noise_samples = &buffer[kNoiseLpcOrder];
  if (initialized()) {
    // Use background noise parameters.
    memcpy(noise_samples - kNoiseLpcOrder, FilterState(channel),
           sizeof(int16_t) * kNoiseLpcOrder);
    int dc_offset = 0;
    if (ScaleShift(channel) > 1) {
      dc_offset = 1 << (ScaleShift(channel) - 1);
    }
    // Scale random vector to correct energy level.
    WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector.data(),
                                    Scale(channel), dc_offset,
                                    ScaleShift(channel), num_noise_samples);
    WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
                              Filter(channel), kNoiseLpcOrder + 1,
                              num_noise_samples);
    SetFilterState(
        channel,
        {&(noise_samples[num_noise_samples - kNoiseLpcOrder]), kNoiseLpcOrder});
    // Unmute the background noise.
    int16_t bgn_mute_factor = MuteFactor(channel);
    if (bgn_mute_factor < 16384) {
      WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
                                      bgn_mute_factor, 8192, 14,
                                      num_noise_samples);
    }
    // Update mute_factor in BackgroundNoise class.
    SetMuteFactor(channel, bgn_mute_factor);
  } else {
    // BGN parameters have not been initialized; use zero noise.
    memset(noise_samples, 0, sizeof(int16_t) * num_noise_samples);
  }
}
int32_t BackgroundNoise::Energy(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].energy;
}
void BackgroundNoise::SetMuteFactor(size_t channel, int16_t value) {
  RTC_DCHECK_LT(channel, num_channels_);
  channel_parameters_[channel].mute_factor = value;
}
int16_t BackgroundNoise::MuteFactor(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].mute_factor;
}
const int16_t* BackgroundNoise::Filter(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].filter;
}
const int16_t* BackgroundNoise::FilterState(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].filter_state;
}
void BackgroundNoise::SetFilterState(size_t channel,
                                     rtc::ArrayView<const int16_t> input) {
  RTC_DCHECK_LT(channel, num_channels_);
  size_t length = std::min(input.size(), kMaxLpcOrder);
  memcpy(channel_parameters_[channel].filter_state, input.data(),
         length * sizeof(int16_t));
}
int16_t BackgroundNoise::Scale(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].scale;
}
int16_t BackgroundNoise::ScaleShift(size_t channel) const {
  RTC_DCHECK_LT(channel, num_channels_);
  return channel_parameters_[channel].scale_shift;
}
int32_t BackgroundNoise::CalculateAutoCorrelation(
    const int16_t* signal,
    size_t length,
    int32_t* auto_correlation) const {
  static const int kCorrelationStep = -1;
  const int correlation_scale =
      CrossCorrelationWithAutoShift(signal, signal, length, kMaxLpcOrder + 1,
                                    kCorrelationStep, auto_correlation);
  // Number of shifts to normalize energy to energy/sample.
  int energy_sample_shift = kLogVecLen - correlation_scale;
  return auto_correlation[0] >> energy_sample_shift;
}
void BackgroundNoise::IncrementEnergyThreshold(size_t channel,
                                               int32_t sample_energy) {
  // TODO(hlundin): Simplify the below threshold update. What this code
  // does is simply "threshold += (increment * threshold) >> 16", but due
  // to the limited-width operations, it is not exactly the same. The
  // difference should be inaudible, but bit-exactness would not be
  // maintained.
  RTC_DCHECK_LT(channel, num_channels_);
  ChannelParameters& parameters = channel_parameters_[channel];
  int32_t temp_energy =
      (kThresholdIncrement * parameters.low_energy_update_threshold) >> 16;
  temp_energy +=
      kThresholdIncrement * (parameters.energy_update_threshold & 0xFF);
  temp_energy +=
      (kThresholdIncrement * ((parameters.energy_update_threshold >> 8) & 0xFF))
      << 8;
  parameters.low_energy_update_threshold += temp_energy;
  parameters.energy_update_threshold +=
      kThresholdIncrement * (parameters.energy_update_threshold >> 16);
  parameters.energy_update_threshold +=
      parameters.low_energy_update_threshold >> 16;
  parameters.low_energy_update_threshold =
      parameters.low_energy_update_threshold & 0x0FFFF;
  // Update maximum energy.
  // Decrease by a factor 1/1024 each time.
  parameters.max_energy = parameters.max_energy - (parameters.max_energy >> 10);
  if (sample_energy > parameters.max_energy) {
    parameters.max_energy = sample_energy;
  }
  // Set `energy_update_threshold` to no less than 60 dB lower than
  // `max_energy_`. Adding 524288 assures proper rounding.
  int32_t energy_update_threshold = (parameters.max_energy + 524288) >> 20;
  if (energy_update_threshold > parameters.energy_update_threshold) {
    parameters.energy_update_threshold = energy_update_threshold;
  }
}
void BackgroundNoise::SaveParameters(size_t channel,
                                     const int16_t* lpc_coefficients,
                                     const int16_t* filter_state,
                                     int32_t sample_energy,
                                     int32_t residual_energy) {
  RTC_DCHECK_LT(channel, num_channels_);
  ChannelParameters& parameters = channel_parameters_[channel];
  memcpy(parameters.filter, lpc_coefficients,
         (kMaxLpcOrder + 1) * sizeof(int16_t));
  memcpy(parameters.filter_state, filter_state, kMaxLpcOrder * sizeof(int16_t));
  // Save energy level and update energy threshold levels.
  // Never get under 1.0 in average sample energy.
  parameters.energy = std::max(sample_energy, 1);
  parameters.energy_update_threshold = parameters.energy;
  parameters.low_energy_update_threshold = 0;
  // Normalize residual_energy to 29 or 30 bits before sqrt.
  int16_t norm_shift = WebRtcSpl_NormW32(residual_energy) - 1;
  if (norm_shift & 0x1) {
    norm_shift -= 1;  // Even number of shifts required.
  }
  residual_energy = WEBRTC_SPL_SHIFT_W32(residual_energy, norm_shift);
  // Calculate scale and shift factor.
  parameters.scale = static_cast<int16_t>(WebRtcSpl_SqrtFloor(residual_energy));
  // Add 13 to the `scale_shift_`, since the random numbers table is in
  // Q13.
  // TODO(hlundin): Move the "13" to where the `scale_shift_` is used?
  parameters.scale_shift =
      static_cast<int16_t>(13 + ((kLogResidualLength + norm_shift) / 2));
  initialized_ = true;
}
}  // namespace webrtc
 |