| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 
 | /*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/audio_coding/neteq/delay_manager.h"
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include <numeric>
#include <string>
#include "modules/include/module_common_types_public.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
constexpr int kMinBaseMinimumDelayMs = 0;
constexpr int kMaxBaseMinimumDelayMs = 10000;
constexpr int kStartDelayMs = 80;
std::unique_ptr<ReorderOptimizer> MaybeCreateReorderOptimizer(
    const DelayManager::Config& config) {
  if (!config.use_reorder_optimizer) {
    return nullptr;
  }
  return std::make_unique<ReorderOptimizer>(
      (1 << 15) * config.reorder_forget_factor, config.ms_per_loss_percent,
      config.start_forget_weight);
}
}  // namespace
DelayManager::Config::Config() {
  StructParametersParser::Create(                       //
      "quantile", &quantile,                            //
      "forget_factor", &forget_factor,                  //
      "start_forget_weight", &start_forget_weight,      //
      "resample_interval_ms", &resample_interval_ms,    //
      "use_reorder_optimizer", &use_reorder_optimizer,  //
      "reorder_forget_factor", &reorder_forget_factor,  //
      "ms_per_loss_percent", &ms_per_loss_percent)
      ->Parse(webrtc::field_trial::FindFullName(
          "WebRTC-Audio-NetEqDelayManagerConfig"));
}
void DelayManager::Config::Log() {
  RTC_LOG(LS_INFO) << "Delay manager config:"
                      " quantile="
                   << quantile << " forget_factor=" << forget_factor
                   << " start_forget_weight=" << start_forget_weight.value_or(0)
                   << " resample_interval_ms="
                   << resample_interval_ms.value_or(0)
                   << " use_reorder_optimizer=" << use_reorder_optimizer
                   << " reorder_forget_factor=" << reorder_forget_factor
                   << " ms_per_loss_percent=" << ms_per_loss_percent;
}
DelayManager::DelayManager(const Config& config, const TickTimer* tick_timer)
    : max_packets_in_buffer_(config.max_packets_in_buffer),
      underrun_optimizer_(tick_timer,
                          (1 << 30) * config.quantile,
                          (1 << 15) * config.forget_factor,
                          config.start_forget_weight,
                          config.resample_interval_ms),
      reorder_optimizer_(MaybeCreateReorderOptimizer(config)),
      base_minimum_delay_ms_(config.base_minimum_delay_ms),
      effective_minimum_delay_ms_(config.base_minimum_delay_ms),
      minimum_delay_ms_(0),
      maximum_delay_ms_(0),
      target_level_ms_(kStartDelayMs) {
  RTC_DCHECK_GE(base_minimum_delay_ms_, 0);
  Reset();
}
DelayManager::~DelayManager() {}
void DelayManager::Update(int arrival_delay_ms, bool reordered) {
  if (!reorder_optimizer_ || !reordered) {
    underrun_optimizer_.Update(arrival_delay_ms);
  }
  target_level_ms_ =
      underrun_optimizer_.GetOptimalDelayMs().value_or(kStartDelayMs);
  if (reorder_optimizer_) {
    reorder_optimizer_->Update(arrival_delay_ms, reordered, target_level_ms_);
    target_level_ms_ = std::max(
        target_level_ms_, reorder_optimizer_->GetOptimalDelayMs().value_or(0));
  }
  unlimited_target_level_ms_ = target_level_ms_;
  target_level_ms_ = std::max(target_level_ms_, effective_minimum_delay_ms_);
  if (maximum_delay_ms_ > 0) {
    target_level_ms_ = std::min(target_level_ms_, maximum_delay_ms_);
  }
  if (packet_len_ms_ > 0) {
    // Limit to 75% of maximum buffer size.
    target_level_ms_ = std::min(
        target_level_ms_, 3 * max_packets_in_buffer_ * packet_len_ms_ / 4);
  }
}
int DelayManager::SetPacketAudioLength(int length_ms) {
  if (length_ms <= 0) {
    RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms;
    return -1;
  }
  packet_len_ms_ = length_ms;
  return 0;
}
void DelayManager::Reset() {
  packet_len_ms_ = 0;
  underrun_optimizer_.Reset();
  target_level_ms_ = kStartDelayMs;
  if (reorder_optimizer_) {
    reorder_optimizer_->Reset();
  }
}
int DelayManager::TargetDelayMs() const {
  return target_level_ms_;
}
int DelayManager::UnlimitedTargetLevelMs() const {
  return unlimited_target_level_ms_;
}
bool DelayManager::IsValidMinimumDelay(int delay_ms) const {
  return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound();
}
bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const {
  return kMinBaseMinimumDelayMs <= delay_ms &&
         delay_ms <= kMaxBaseMinimumDelayMs;
}
bool DelayManager::SetMinimumDelay(int delay_ms) {
  if (!IsValidMinimumDelay(delay_ms)) {
    return false;
  }
  minimum_delay_ms_ = delay_ms;
  UpdateEffectiveMinimumDelay();
  return true;
}
bool DelayManager::SetMaximumDelay(int delay_ms) {
  // If `delay_ms` is zero then it unsets the maximum delay and target level is
  // unconstrained by maximum delay.
  if (delay_ms != 0 && delay_ms < minimum_delay_ms_) {
    // Maximum delay shouldn't be less than minimum delay or less than a packet.
    return false;
  }
  maximum_delay_ms_ = delay_ms;
  UpdateEffectiveMinimumDelay();
  return true;
}
bool DelayManager::SetBaseMinimumDelay(int delay_ms) {
  if (!IsValidBaseMinimumDelay(delay_ms)) {
    return false;
  }
  base_minimum_delay_ms_ = delay_ms;
  UpdateEffectiveMinimumDelay();
  return true;
}
int DelayManager::GetBaseMinimumDelay() const {
  return base_minimum_delay_ms_;
}
void DelayManager::UpdateEffectiveMinimumDelay() {
  // Clamp `base_minimum_delay_ms_` into the range which can be effectively
  // used.
  const int base_minimum_delay_ms =
      rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound());
  effective_minimum_delay_ms_ =
      std::max(minimum_delay_ms_, base_minimum_delay_ms);
}
int DelayManager::MinimumDelayUpperBound() const {
  // Choose the lowest possible bound discarding 0 cases which mean the value
  // is not set and unconstrained.
  int q75 = max_packets_in_buffer_ * packet_len_ms_ * 3 / 4;
  q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs;
  const int maximum_delay_ms =
      maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs;
  return std::min(maximum_delay_ms, q75);
}
}  // namespace webrtc
 |