| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 
 | /*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/audio_coding/neteq/merge.h"
#include <string.h>  // memmove, memcpy, memset, size_t
#include <algorithm>  // min, max
#include <memory>
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_coding/neteq/audio_multi_vector.h"
#include "modules/audio_coding/neteq/cross_correlation.h"
#include "modules/audio_coding/neteq/dsp_helper.h"
#include "modules/audio_coding/neteq/expand.h"
#include "modules/audio_coding/neteq/sync_buffer.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
Merge::Merge(int fs_hz,
             size_t num_channels,
             Expand* expand,
             SyncBuffer* sync_buffer)
    : fs_hz_(fs_hz),
      num_channels_(num_channels),
      fs_mult_(fs_hz_ / 8000),
      timestamps_per_call_(static_cast<size_t>(fs_hz_ / 100)),
      expand_(expand),
      sync_buffer_(sync_buffer),
      expanded_(num_channels_) {
  RTC_DCHECK_GT(num_channels_, 0);
}
Merge::~Merge() = default;
size_t Merge::Process(int16_t* input,
                      size_t input_length,
                      AudioMultiVector* output) {
  // TODO(hlundin): Change to an enumerator and skip assert.
  RTC_DCHECK(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ == 32000 ||
             fs_hz_ == 48000);
  RTC_DCHECK_LE(fs_hz_, kMaxSampleRate);  // Should not be possible.
  if (input_length == 0) {
    return 0;
  }
  size_t old_length;
  size_t expand_period;
  // Get expansion data to overlap and mix with.
  size_t expanded_length = GetExpandedSignal(&old_length, &expand_period);
  // Transfer input signal to an AudioMultiVector.
  AudioMultiVector input_vector(num_channels_);
  input_vector.PushBackInterleaved(
      rtc::ArrayView<const int16_t>(input, input_length));
  size_t input_length_per_channel = input_vector.Size();
  RTC_DCHECK_EQ(input_length_per_channel, input_length / num_channels_);
  size_t best_correlation_index = 0;
  size_t output_length = 0;
  std::unique_ptr<int16_t[]> input_channel(
      new int16_t[input_length_per_channel]);
  std::unique_ptr<int16_t[]> expanded_channel(new int16_t[expanded_length]);
  for (size_t channel = 0; channel < num_channels_; ++channel) {
    input_vector[channel].CopyTo(input_length_per_channel, 0,
                                 input_channel.get());
    expanded_[channel].CopyTo(expanded_length, 0, expanded_channel.get());
    const int16_t new_mute_factor = std::min<int16_t>(
        16384, SignalScaling(input_channel.get(), input_length_per_channel,
                             expanded_channel.get()));
    if (channel == 0) {
      // Downsample, correlate, and find strongest correlation period for the
      // reference (i.e., first) channel only.
      // Downsample to 4kHz sample rate.
      Downsample(input_channel.get(), input_length_per_channel,
                 expanded_channel.get(), expanded_length);
      // Calculate the lag of the strongest correlation period.
      best_correlation_index = CorrelateAndPeakSearch(
          old_length, input_length_per_channel, expand_period);
    }
    temp_data_.resize(input_length_per_channel + best_correlation_index);
    int16_t* decoded_output = temp_data_.data() + best_correlation_index;
    // Mute the new decoded data if needed (and unmute it linearly).
    // This is the overlapping part of expanded_signal.
    size_t interpolation_length =
        std::min(kMaxCorrelationLength * fs_mult_,
                 expanded_length - best_correlation_index);
    interpolation_length =
        std::min(interpolation_length, input_length_per_channel);
    RTC_DCHECK_LE(new_mute_factor, 16384);
    int16_t mute_factor =
        std::max(expand_->MuteFactor(channel), new_mute_factor);
    RTC_DCHECK_GE(mute_factor, 0);
    if (mute_factor < 16384) {
      // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB,
      // and so on, or as fast as it takes to come back to full gain within the
      // frame length.
      const int back_to_fullscale_inc = static_cast<int>(
          ((16384 - mute_factor) << 6) / input_length_per_channel);
      const int increment = std::max(4194 / fs_mult_, back_to_fullscale_inc);
      mute_factor = static_cast<int16_t>(DspHelper::RampSignal(
          input_channel.get(), interpolation_length, mute_factor, increment));
      DspHelper::UnmuteSignal(&input_channel[interpolation_length],
                              input_length_per_channel - interpolation_length,
                              &mute_factor, increment,
                              &decoded_output[interpolation_length]);
    } else {
      // No muting needed.
      memmove(
          &decoded_output[interpolation_length],
          &input_channel[interpolation_length],
          sizeof(int16_t) * (input_length_per_channel - interpolation_length));
    }
    // Do overlap and mix linearly.
    int16_t increment =
        static_cast<int16_t>(16384 / (interpolation_length + 1));  // In Q14.
    int16_t local_mute_factor = 16384 - increment;
    memmove(temp_data_.data(), expanded_channel.get(),
            sizeof(int16_t) * best_correlation_index);
    DspHelper::CrossFade(&expanded_channel[best_correlation_index],
                         input_channel.get(), interpolation_length,
                         &local_mute_factor, increment, decoded_output);
    output_length = best_correlation_index + input_length_per_channel;
    if (channel == 0) {
      RTC_DCHECK(output->Empty());  // Output should be empty at this point.
      output->AssertSize(output_length);
    } else {
      RTC_DCHECK_EQ(output->Size(), output_length);
    }
    (*output)[channel].OverwriteAt(temp_data_.data(), output_length, 0);
  }
  // Copy back the first part of the data to `sync_buffer_` and remove it from
  // `output`.
  sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index());
  output->PopFront(old_length);
  // Return new added length. `old_length` samples were borrowed from
  // `sync_buffer_`.
  RTC_DCHECK_GE(output_length, old_length);
  return output_length - old_length;
}
size_t Merge::GetExpandedSignal(size_t* old_length, size_t* expand_period) {
  // Check how much data that is left since earlier.
  *old_length = sync_buffer_->FutureLength();
  // Should never be less than overlap_length.
  RTC_DCHECK_GE(*old_length, expand_->overlap_length());
  // Generate data to merge the overlap with using expand.
  expand_->SetParametersForMergeAfterExpand();
  if (*old_length >= 210 * kMaxSampleRate / 8000) {
    // TODO(hlundin): Write test case for this.
    // The number of samples available in the sync buffer is more than what fits
    // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples,
    // but shift them towards the end of the buffer. This is ok, since all of
    // the buffer will be expand data anyway, so as long as the beginning is
    // left untouched, we're fine.
    size_t length_diff = *old_length - 210 * kMaxSampleRate / 8000;
    sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index());
    *old_length = 210 * kMaxSampleRate / 8000;
    // This is the truncated length.
  }
  // This assert should always be true thanks to the if statement above.
  RTC_DCHECK_GE(210 * kMaxSampleRate / 8000, *old_length);
  AudioMultiVector expanded_temp(num_channels_);
  expand_->Process(&expanded_temp);
  *expand_period = expanded_temp.Size();  // Samples per channel.
  expanded_.Clear();
  // Copy what is left since earlier into the expanded vector.
  expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index());
  RTC_DCHECK_EQ(expanded_.Size(), *old_length);
  RTC_DCHECK_GT(expanded_temp.Size(), 0);
  // Do "ugly" copy and paste from the expanded in order to generate more data
  // to correlate (but not interpolate) with.
  const size_t required_length = static_cast<size_t>((120 + 80 + 2) * fs_mult_);
  if (expanded_.Size() < required_length) {
    while (expanded_.Size() < required_length) {
      // Append one more pitch period each time.
      expanded_.PushBack(expanded_temp);
    }
    // Trim the length to exactly `required_length`.
    expanded_.PopBack(expanded_.Size() - required_length);
  }
  RTC_DCHECK_GE(expanded_.Size(), required_length);
  return required_length;
}
int16_t Merge::SignalScaling(const int16_t* input,
                             size_t input_length,
                             const int16_t* expanded_signal) const {
  // Adjust muting factor if new vector is more or less of the BGN energy.
  const auto mod_input_length = rtc::SafeMin<size_t>(
      64 * rtc::dchecked_cast<size_t>(fs_mult_), input_length);
  const int16_t expanded_max =
      WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length);
  int32_t factor =
      (expanded_max * expanded_max) / (std::numeric_limits<int32_t>::max() /
                                       static_cast<int32_t>(mod_input_length));
  const int expanded_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor);
  int32_t energy_expanded = WebRtcSpl_DotProductWithScale(
      expanded_signal, expanded_signal, mod_input_length, expanded_shift);
  // Calculate energy of input signal.
  const int16_t input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length);
  factor = (input_max * input_max) / (std::numeric_limits<int32_t>::max() /
                                      static_cast<int32_t>(mod_input_length));
  const int input_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor);
  int32_t energy_input = WebRtcSpl_DotProductWithScale(
      input, input, mod_input_length, input_shift);
  // Align to the same Q-domain.
  if (input_shift > expanded_shift) {
    energy_expanded = energy_expanded >> (input_shift - expanded_shift);
  } else {
    energy_input = energy_input >> (expanded_shift - input_shift);
  }
  // Calculate muting factor to use for new frame.
  int16_t mute_factor;
  if (energy_input > energy_expanded) {
    // Normalize `energy_input` to 14 bits.
    int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17;
    energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift);
    // Put `energy_expanded` in a domain 14 higher, so that
    // energy_expanded / energy_input is in Q14.
    energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14);
    // Calculate sqrt(energy_expanded / energy_input) in Q14.
    mute_factor = static_cast<int16_t>(
        WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14));
  } else {
    // Set to 1 (in Q14) when `expanded` has higher energy than `input`.
    mute_factor = 16384;
  }
  return mute_factor;
}
// TODO(hlundin): There are some parameter values in this method that seem
// strange. Compare with Expand::Correlation.
void Merge::Downsample(const int16_t* input,
                       size_t input_length,
                       const int16_t* expanded_signal,
                       size_t expanded_length) {
  const int16_t* filter_coefficients;
  size_t num_coefficients;
  int decimation_factor = fs_hz_ / 4000;
  static const size_t kCompensateDelay = 0;
  size_t length_limit = static_cast<size_t>(fs_hz_ / 100);  // 10 ms in samples.
  if (fs_hz_ == 8000) {
    filter_coefficients = DspHelper::kDownsample8kHzTbl;
    num_coefficients = 3;
  } else if (fs_hz_ == 16000) {
    filter_coefficients = DspHelper::kDownsample16kHzTbl;
    num_coefficients = 5;
  } else if (fs_hz_ == 32000) {
    filter_coefficients = DspHelper::kDownsample32kHzTbl;
    num_coefficients = 7;
  } else {  // fs_hz_ == 48000
    filter_coefficients = DspHelper::kDownsample48kHzTbl;
    num_coefficients = 7;
  }
  size_t signal_offset = num_coefficients - 1;
  WebRtcSpl_DownsampleFast(
      &expanded_signal[signal_offset], expanded_length - signal_offset,
      expanded_downsampled_, kExpandDownsampLength, filter_coefficients,
      num_coefficients, decimation_factor, kCompensateDelay);
  if (input_length <= length_limit) {
    // Not quite long enough, so we have to cheat a bit.
    // If the input is shorter than the offset, we consider the input to be 0
    // length. This will cause us to skip the downsampling since it makes no
    // sense anyway, and input_downsampled_ will be filled with zeros. This is
    // clearly a pathological case, and the signal quality will suffer, but
    // there is not much we can do.
    const size_t temp_len =
        input_length > signal_offset ? input_length - signal_offset : 0;
    // TODO(hlundin): Should `downsamp_temp_len` be corrected for round-off
    // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor?
    size_t downsamp_temp_len = temp_len / decimation_factor;
    if (downsamp_temp_len > 0) {
      WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len,
                               input_downsampled_, downsamp_temp_len,
                               filter_coefficients, num_coefficients,
                               decimation_factor, kCompensateDelay);
    }
    memset(&input_downsampled_[downsamp_temp_len], 0,
           sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len));
  } else {
    WebRtcSpl_DownsampleFast(
        &input[signal_offset], input_length - signal_offset, input_downsampled_,
        kInputDownsampLength, filter_coefficients, num_coefficients,
        decimation_factor, kCompensateDelay);
  }
}
size_t Merge::CorrelateAndPeakSearch(size_t start_position,
                                     size_t input_length,
                                     size_t expand_period) const {
  // Calculate correlation without any normalization.
  const size_t max_corr_length = kMaxCorrelationLength;
  size_t stop_position_downsamp =
      std::min(max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1);
  int32_t correlation[kMaxCorrelationLength];
  CrossCorrelationWithAutoShift(input_downsampled_, expanded_downsampled_,
                                kInputDownsampLength, stop_position_downsamp, 1,
                                correlation);
  // Normalize correlation to 14 bits and copy to a 16-bit array.
  const size_t pad_length = expand_->overlap_length() - 1;
  const size_t correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength;
  std::unique_ptr<int16_t[]> correlation16(
      new int16_t[correlation_buffer_size]);
  memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t));
  int16_t* correlation_ptr = &correlation16[pad_length];
  int32_t max_correlation =
      WebRtcSpl_MaxAbsValueW32(correlation, stop_position_downsamp);
  int norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation));
  WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp,
                                   correlation, norm_shift);
  // Calculate allowed starting point for peak finding.
  // The peak location bestIndex must fulfill two criteria:
  // (1) w16_bestIndex + input_length <
  //     timestamps_per_call_ + expand_->overlap_length();
  // (2) w16_bestIndex + input_length < start_position.
  size_t start_index = timestamps_per_call_ + expand_->overlap_length();
  start_index = std::max(start_position, start_index);
  start_index = (input_length > start_index) ? 0 : (start_index - input_length);
  // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.)
  size_t start_index_downsamp = start_index / (fs_mult_ * 2);
  // Calculate a modified `stop_position_downsamp` to account for the increased
  // start index `start_index_downsamp` and the effective array length.
  size_t modified_stop_pos =
      std::min(stop_position_downsamp,
               kMaxCorrelationLength + pad_length - start_index_downsamp);
  size_t best_correlation_index;
  int16_t best_correlation;
  static const size_t kNumCorrelationCandidates = 1;
  DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp],
                           modified_stop_pos, kNumCorrelationCandidates,
                           fs_mult_, &best_correlation_index,
                           &best_correlation);
  // Compensate for modified start index.
  best_correlation_index += start_index;
  // Ensure that underrun does not occur for 10ms case => we have to get at
  // least 10ms + overlap . (This should never happen thanks to the above
  // modification of peak-finding starting point.)
  while (((best_correlation_index + input_length) <
          (timestamps_per_call_ + expand_->overlap_length())) ||
         ((best_correlation_index + input_length) < start_position)) {
    RTC_DCHECK_NOTREACHED();                  // Should never happen.
    best_correlation_index += expand_period;  // Jump one lag ahead.
  }
  return best_correlation_index;
}
size_t Merge::RequiredFutureSamples() {
  return fs_hz_ / 100 * num_channels_;  // 10 ms.
}
}  // namespace webrtc
 |