| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 
 | /*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "api/neteq/neteq.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>  // memset
#include <algorithm>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "absl/flags/flag.h"
#include "api/audio/audio_frame.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/codecs/pcm16b/pcm16b.h"
#include "modules/audio_coding/neteq/test/neteq_decoding_test.h"
#include "modules/audio_coding/neteq/tools/audio_loop.h"
#include "modules/audio_coding/neteq/tools/neteq_rtp_dump_input.h"
#include "modules/audio_coding/neteq/tools/neteq_test.h"
#include "modules/include/module_common_types_public.h"
#include "modules/rtp_rtcp/include/rtcp_statistics.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "rtc_base/message_digest.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/system/arch.h"
#include "test/field_trial.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
ABSL_FLAG(bool, gen_ref, false, "Generate reference files.");
namespace webrtc {
#if defined(WEBRTC_LINUX) && defined(WEBRTC_ARCH_X86_64) &&         \
    defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) &&                      \
    (defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX)) && \
    defined(WEBRTC_CODEC_ILBC)
#define MAYBE_TestBitExactness TestBitExactness
#else
#define MAYBE_TestBitExactness DISABLED_TestBitExactness
#endif
TEST_F(NetEqDecodingTest, MAYBE_TestBitExactness) {
  const std::string input_rtp_file =
      webrtc::test::ResourcePath("audio_coding/neteq_universal_new", "rtp");
  const std::string output_checksum =
      "dee7a10ab92526876a70a85bc48a4906901af3df";
  const std::string network_stats_checksum =
      "911dbf5fd97f48d25b8f0967286eb73c9d6f6158";
  DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum,
                   absl::GetFlag(FLAGS_gen_ref));
}
#if defined(WEBRTC_LINUX) && defined(WEBRTC_ARCH_X86_64) && \
    defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && defined(WEBRTC_CODEC_OPUS)
#define MAYBE_TestOpusBitExactness TestOpusBitExactness
#else
#define MAYBE_TestOpusBitExactness DISABLED_TestOpusBitExactness
#endif
TEST_F(NetEqDecodingTest, MAYBE_TestOpusBitExactness) {
  const std::string input_rtp_file =
      webrtc::test::ResourcePath("audio_coding/neteq_opus", "rtp");
  const std::string output_checksum =
      "434bdc4ec08546510ee903d001c8be1a01c44e24|"
      "4336be0091e2faad7a194c16ee0a05e727325727|"
      "cefd2de4adfa8f6a9b66a3639ad63c2f6779d0cd";
  const std::string network_stats_checksum =
      "5f2c8e3dff9cff55dd7a9f4167939de001566d95|"
      "80ab17c17da030d4f2dfbf314ac44aacdadd7f0c";
  DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum,
                   absl::GetFlag(FLAGS_gen_ref));
}
#if defined(WEBRTC_LINUX) && defined(WEBRTC_ARCH_X86_64) && \
    defined(WEBRTC_NETEQ_UNITTEST_BITEXACT) && defined(WEBRTC_CODEC_OPUS)
#define MAYBE_TestOpusDtxBitExactness TestOpusDtxBitExactness
#else
#define MAYBE_TestOpusDtxBitExactness DISABLED_TestOpusDtxBitExactness
#endif
TEST_F(NetEqDecodingTest, MAYBE_TestOpusDtxBitExactness) {
  const std::string input_rtp_file =
      webrtc::test::ResourcePath("audio_coding/neteq_opus_dtx", "rtp");
  const std::string output_checksum =
      "7eddce841cbfa500964c91cdae78b01b9f448948|"
      "5d13affec87bf4cc8c7667f0cd0d25e1ad09c7c3";
  const std::string network_stats_checksum =
      "92b0fdcbf8bb9354d40140b7312f2fb76a078555";
  DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum,
                   absl::GetFlag(FLAGS_gen_ref));
}
// Use fax mode to avoid time-scaling. This is to simplify the testing of
// packet waiting times in the packet buffer.
class NetEqDecodingTestFaxMode : public NetEqDecodingTest {
 protected:
  NetEqDecodingTestFaxMode() : NetEqDecodingTest() {
    config_.for_test_no_time_stretching = true;
  }
  void TestJitterBufferDelay(bool apply_packet_loss);
};
TEST_F(NetEqDecodingTestFaxMode, TestFrameWaitingTimeStatistics) {
  // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio.
  size_t num_frames = 30;
  const size_t kSamples = 10 * 16;
  const size_t kPayloadBytes = kSamples * 2;
  for (size_t i = 0; i < num_frames; ++i) {
    const uint8_t payload[kPayloadBytes] = {0};
    RTPHeader rtp_info;
    rtp_info.sequenceNumber = rtc::checked_cast<uint16_t>(i);
    rtp_info.timestamp = rtc::checked_cast<uint32_t>(i * kSamples);
    rtp_info.ssrc = 0x1234;     // Just an arbitrary SSRC.
    rtp_info.payloadType = 94;  // PCM16b WB codec.
    rtp_info.markerBit = 0;
    ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
  }
  // Pull out all data.
  for (size_t i = 0; i < num_frames; ++i) {
    bool muted;
    ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
    ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
  }
  NetEqNetworkStatistics stats;
  EXPECT_EQ(0, neteq_->NetworkStatistics(&stats));
  // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms
  // spacing (per definition), we expect the delay to increase with 10 ms for
  // each packet. Thus, we are calculating the statistics for a series from 10
  // to 300, in steps of 10 ms.
  EXPECT_EQ(155, stats.mean_waiting_time_ms);
  EXPECT_EQ(155, stats.median_waiting_time_ms);
  EXPECT_EQ(10, stats.min_waiting_time_ms);
  EXPECT_EQ(300, stats.max_waiting_time_ms);
  // Check statistics again and make sure it's been reset.
  EXPECT_EQ(0, neteq_->NetworkStatistics(&stats));
  EXPECT_EQ(-1, stats.mean_waiting_time_ms);
  EXPECT_EQ(-1, stats.median_waiting_time_ms);
  EXPECT_EQ(-1, stats.min_waiting_time_ms);
  EXPECT_EQ(-1, stats.max_waiting_time_ms);
}
TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDrift) {
  // Apply a clock drift of -25 ms / s (sender faster than receiver).
  const double kDriftFactor = 1000.0 / (1000.0 + 25.0);
  const double kNetworkFreezeTimeMs = 0.0;
  const bool kGetAudioDuringFreezeRecovery = false;
  const int kDelayToleranceMs = 60;
  const int kMaxTimeToSpeechMs = 100;
  LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs,
                        kGetAudioDuringFreezeRecovery, kDelayToleranceMs,
                        kMaxTimeToSpeechMs);
}
TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDrift) {
  // Apply a clock drift of +25 ms / s (sender slower than receiver).
  const double kDriftFactor = 1000.0 / (1000.0 - 25.0);
  const double kNetworkFreezeTimeMs = 0.0;
  const bool kGetAudioDuringFreezeRecovery = false;
  const int kDelayToleranceMs = 40;
  const int kMaxTimeToSpeechMs = 100;
  LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs,
                        kGetAudioDuringFreezeRecovery, kDelayToleranceMs,
                        kMaxTimeToSpeechMs);
}
TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDriftNetworkFreeze) {
  // Apply a clock drift of -25 ms / s (sender faster than receiver).
  const double kDriftFactor = 1000.0 / (1000.0 + 25.0);
  const double kNetworkFreezeTimeMs = 5000.0;
  const bool kGetAudioDuringFreezeRecovery = false;
  const int kDelayToleranceMs = 60;
  const int kMaxTimeToSpeechMs = 200;
  LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs,
                        kGetAudioDuringFreezeRecovery, kDelayToleranceMs,
                        kMaxTimeToSpeechMs);
}
TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreeze) {
  // Apply a clock drift of +25 ms / s (sender slower than receiver).
  const double kDriftFactor = 1000.0 / (1000.0 - 25.0);
  const double kNetworkFreezeTimeMs = 5000.0;
  const bool kGetAudioDuringFreezeRecovery = false;
  const int kDelayToleranceMs = 40;
  const int kMaxTimeToSpeechMs = 100;
  LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs,
                        kGetAudioDuringFreezeRecovery, kDelayToleranceMs,
                        kMaxTimeToSpeechMs);
}
TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreezeExtraPull) {
  // Apply a clock drift of +25 ms / s (sender slower than receiver).
  const double kDriftFactor = 1000.0 / (1000.0 - 25.0);
  const double kNetworkFreezeTimeMs = 5000.0;
  const bool kGetAudioDuringFreezeRecovery = true;
  const int kDelayToleranceMs = 40;
  const int kMaxTimeToSpeechMs = 100;
  LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs,
                        kGetAudioDuringFreezeRecovery, kDelayToleranceMs,
                        kMaxTimeToSpeechMs);
}
TEST_F(NetEqDecodingTest, LongCngWithoutClockDrift) {
  const double kDriftFactor = 1.0;  // No drift.
  const double kNetworkFreezeTimeMs = 0.0;
  const bool kGetAudioDuringFreezeRecovery = false;
  const int kDelayToleranceMs = 10;
  const int kMaxTimeToSpeechMs = 50;
  LongCngWithClockDrift(kDriftFactor, kNetworkFreezeTimeMs,
                        kGetAudioDuringFreezeRecovery, kDelayToleranceMs,
                        kMaxTimeToSpeechMs);
}
TEST_F(NetEqDecodingTest, UnknownPayloadType) {
  const size_t kPayloadBytes = 100;
  uint8_t payload[kPayloadBytes] = {0};
  RTPHeader rtp_info;
  PopulateRtpInfo(0, 0, &rtp_info);
  rtp_info.payloadType = 1;  // Not registered as a decoder.
  EXPECT_EQ(NetEq::kFail, neteq_->InsertPacket(rtp_info, payload));
}
#if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX)
#define MAYBE_DecoderError DecoderError
#else
#define MAYBE_DecoderError DISABLED_DecoderError
#endif
TEST_F(NetEqDecodingTest, MAYBE_DecoderError) {
  const size_t kPayloadBytes = 100;
  uint8_t payload[kPayloadBytes] = {0};
  RTPHeader rtp_info;
  PopulateRtpInfo(0, 0, &rtp_info);
  rtp_info.payloadType = 103;  // iSAC, but the payload is invalid.
  EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
  // Set all of `out_data_` to 1, and verify that it was set to 0 by the call
  // to GetAudio.
  int16_t* out_frame_data = out_frame_.mutable_data();
  for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; ++i) {
    out_frame_data[i] = 1;
  }
  bool muted;
  EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&out_frame_, &muted));
  ASSERT_FALSE(muted);
  // Verify that the first 160 samples are set to 0.
  static const int kExpectedOutputLength = 160;  // 10 ms at 16 kHz sample rate.
  const int16_t* const_out_frame_data = out_frame_.data();
  for (int i = 0; i < kExpectedOutputLength; ++i) {
    rtc::StringBuilder ss;
    ss << "i = " << i;
    SCOPED_TRACE(ss.str());  // Print out the parameter values on failure.
    EXPECT_EQ(0, const_out_frame_data[i]);
  }
}
TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) {
  // Set all of `out_data_` to 1, and verify that it was set to 0 by the call
  // to GetAudio.
  int16_t* out_frame_data = out_frame_.mutable_data();
  for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; ++i) {
    out_frame_data[i] = 1;
  }
  bool muted;
  EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
  ASSERT_FALSE(muted);
  // Verify that the first block of samples is set to 0.
  static const int kExpectedOutputLength =
      kInitSampleRateHz / 100;  // 10 ms at initial sample rate.
  const int16_t* const_out_frame_data = out_frame_.data();
  for (int i = 0; i < kExpectedOutputLength; ++i) {
    rtc::StringBuilder ss;
    ss << "i = " << i;
    SCOPED_TRACE(ss.str());  // Print out the parameter values on failure.
    EXPECT_EQ(0, const_out_frame_data[i]);
  }
  // Verify that the sample rate did not change from the initial configuration.
  EXPECT_EQ(config_.sample_rate_hz, neteq_->last_output_sample_rate_hz());
}
class NetEqBgnTest : public NetEqDecodingTest {
 protected:
  void CheckBgn(int sampling_rate_hz) {
    size_t expected_samples_per_channel = 0;
    uint8_t payload_type = 0xFF;  // Invalid.
    if (sampling_rate_hz == 8000) {
      expected_samples_per_channel = kBlockSize8kHz;
      payload_type = 93;  // PCM 16, 8 kHz.
    } else if (sampling_rate_hz == 16000) {
      expected_samples_per_channel = kBlockSize16kHz;
      payload_type = 94;  // PCM 16, 16 kHZ.
    } else if (sampling_rate_hz == 32000) {
      expected_samples_per_channel = kBlockSize32kHz;
      payload_type = 95;  // PCM 16, 32 kHz.
    } else {
      ASSERT_TRUE(false);  // Unsupported test case.
    }
    AudioFrame output;
    test::AudioLoop input;
    // We are using the same 32 kHz input file for all tests, regardless of
    // `sampling_rate_hz`. The output may sound weird, but the test is still
    // valid.
    ASSERT_TRUE(input.Init(
        webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"),
        10 * sampling_rate_hz,  // Max 10 seconds loop length.
        expected_samples_per_channel));
    // Payload of 10 ms of PCM16 32 kHz.
    uint8_t payload[kBlockSize32kHz * sizeof(int16_t)];
    RTPHeader rtp_info;
    PopulateRtpInfo(0, 0, &rtp_info);
    rtp_info.payloadType = payload_type;
    bool muted;
    for (int n = 0; n < 10; ++n) {  // Insert few packets and get audio.
      auto block = input.GetNextBlock();
      ASSERT_EQ(expected_samples_per_channel, block.size());
      size_t enc_len_bytes =
          WebRtcPcm16b_Encode(block.data(), block.size(), payload);
      ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2);
      ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>(
                                                      payload, enc_len_bytes)));
      output.Reset();
      ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
      ASSERT_EQ(1u, output.num_channels_);
      ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_);
      ASSERT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
      // Next packet.
      rtp_info.timestamp +=
          rtc::checked_cast<uint32_t>(expected_samples_per_channel);
      rtp_info.sequenceNumber++;
    }
    output.Reset();
    // Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull
    // one frame without checking speech-type. This is the first frame pulled
    // without inserting any packet, and might not be labeled as PLC.
    ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
    ASSERT_EQ(1u, output.num_channels_);
    ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_);
    // To be able to test the fading of background noise we need at lease to
    // pull 611 frames.
    const int kFadingThreshold = 611;
    // Test several CNG-to-PLC packet for the expected behavior. The number 20
    // is arbitrary, but sufficiently large to test enough number of frames.
    const int kNumPlcToCngTestFrames = 20;
    bool plc_to_cng = false;
    for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) {
      output.Reset();
      // Set to non-zero.
      memset(output.mutable_data(), 1, AudioFrame::kMaxDataSizeBytes);
      ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
      ASSERT_FALSE(muted);
      ASSERT_EQ(1u, output.num_channels_);
      ASSERT_EQ(expected_samples_per_channel, output.samples_per_channel_);
      if (output.speech_type_ == AudioFrame::kPLCCNG) {
        plc_to_cng = true;
        double sum_squared = 0;
        const int16_t* output_data = output.data();
        for (size_t k = 0;
             k < output.num_channels_ * output.samples_per_channel_; ++k)
          sum_squared += output_data[k] * output_data[k];
        EXPECT_EQ(0, sum_squared);
      } else {
        EXPECT_EQ(AudioFrame::kPLC, output.speech_type_);
      }
    }
    EXPECT_TRUE(plc_to_cng);  // Just to be sure that PLC-to-CNG has occurred.
  }
};
TEST_F(NetEqBgnTest, RunTest) {
  CheckBgn(8000);
  CheckBgn(16000);
  CheckBgn(32000);
}
TEST_F(NetEqDecodingTest, SequenceNumberWrap) {
  // Start with a sequence number that will soon wrap.
  std::set<uint16_t> drop_seq_numbers;  // Don't drop any packets.
  WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false);
}
TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) {
  // Start with a sequence number that will soon wrap.
  std::set<uint16_t> drop_seq_numbers;
  drop_seq_numbers.insert(0xFFFF);
  drop_seq_numbers.insert(0x0);
  WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false);
}
TEST_F(NetEqDecodingTest, TimestampWrap) {
  // Start with a timestamp that will soon wrap.
  std::set<uint16_t> drop_seq_numbers;
  WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true);
}
TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) {
  // Start with a timestamp and a sequence number that will wrap at the same
  // time.
  std::set<uint16_t> drop_seq_numbers;
  WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true);
}
TEST_F(NetEqDecodingTest, DiscardDuplicateCng) {
  uint16_t seq_no = 0;
  uint32_t timestamp = 0;
  const int kFrameSizeMs = 10;
  const int kSampleRateKhz = 16;
  const int kSamples = kFrameSizeMs * kSampleRateKhz;
  const size_t kPayloadBytes = kSamples * 2;
  const int algorithmic_delay_samples =
      std::max(algorithmic_delay_ms_ * kSampleRateKhz, 5 * kSampleRateKhz / 8);
  // Insert three speech packets. Three are needed to get the frame length
  // correct.
  uint8_t payload[kPayloadBytes] = {0};
  RTPHeader rtp_info;
  bool muted;
  for (int i = 0; i < 3; ++i) {
    PopulateRtpInfo(seq_no, timestamp, &rtp_info);
    ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
    ++seq_no;
    timestamp += kSamples;
    // Pull audio once.
    ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
    ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
  }
  // Verify speech output.
  EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_);
  // Insert same CNG packet twice.
  const int kCngPeriodMs = 100;
  const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz;
  size_t payload_len;
  PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
  // This is the first time this CNG packet is inserted.
  ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>(
                                                  payload, payload_len)));
  // Pull audio once and make sure CNG is played.
  ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
  ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
  EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_);
  EXPECT_FALSE(
      neteq_->GetPlayoutTimestamp());  // Returns empty value during CNG.
  EXPECT_EQ(timestamp - algorithmic_delay_samples,
            out_frame_.timestamp_ + out_frame_.samples_per_channel_);
  // Insert the same CNG packet again. Note that at this point it is old, since
  // we have already decoded the first copy of it.
  ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>(
                                                  payload, payload_len)));
  // Pull audio until we have played `kCngPeriodMs` of CNG. Start at 10 ms since
  // we have already pulled out CNG once.
  for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) {
    ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
    ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
    EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_);
    EXPECT_FALSE(
        neteq_->GetPlayoutTimestamp());  // Returns empty value during CNG.
    EXPECT_EQ(timestamp - algorithmic_delay_samples,
              out_frame_.timestamp_ + out_frame_.samples_per_channel_);
  }
  ++seq_no;
  timestamp += kCngPeriodSamples;
  uint32_t first_speech_timestamp = timestamp;
  // Insert speech again.
  for (int i = 0; i < 4; ++i) {
    PopulateRtpInfo(seq_no, timestamp, &rtp_info);
    ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
    ++seq_no;
    timestamp += kSamples;
  }
  // Pull audio once and verify that the output is speech again.
  ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
  ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
  EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_);
  absl::optional<uint32_t> playout_timestamp = neteq_->GetPlayoutTimestamp();
  ASSERT_TRUE(playout_timestamp);
  EXPECT_EQ(first_speech_timestamp + kSamples - algorithmic_delay_samples,
            *playout_timestamp);
}
TEST_F(NetEqDecodingTest, CngFirst) {
  uint16_t seq_no = 0;
  uint32_t timestamp = 0;
  const int kFrameSizeMs = 10;
  const int kSampleRateKhz = 16;
  const int kSamples = kFrameSizeMs * kSampleRateKhz;
  const int kPayloadBytes = kSamples * 2;
  const int kCngPeriodMs = 100;
  const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz;
  size_t payload_len;
  uint8_t payload[kPayloadBytes] = {0};
  RTPHeader rtp_info;
  PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
  ASSERT_EQ(NetEq::kOK,
            neteq_->InsertPacket(
                rtp_info, rtc::ArrayView<const uint8_t>(payload, payload_len)));
  ++seq_no;
  timestamp += kCngPeriodSamples;
  // Pull audio once and make sure CNG is played.
  bool muted;
  ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
  ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
  EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_);
  // Insert some speech packets.
  const uint32_t first_speech_timestamp = timestamp;
  int timeout_counter = 0;
  do {
    ASSERT_LT(timeout_counter++, 20) << "Test timed out";
    PopulateRtpInfo(seq_no, timestamp, &rtp_info);
    ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
    ++seq_no;
    timestamp += kSamples;
    // Pull audio once.
    ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
    ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_);
  } while (!IsNewerTimestamp(out_frame_.timestamp_, first_speech_timestamp));
  // Verify speech output.
  EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_);
}
class NetEqDecodingTestWithMutedState : public NetEqDecodingTest {
 public:
  NetEqDecodingTestWithMutedState() : NetEqDecodingTest() {
    config_.enable_muted_state = true;
  }
 protected:
  static constexpr size_t kSamples = 10 * 16;
  static constexpr size_t kPayloadBytes = kSamples * 2;
  void InsertPacket(uint32_t rtp_timestamp) {
    uint8_t payload[kPayloadBytes] = {0};
    RTPHeader rtp_info;
    PopulateRtpInfo(0, rtp_timestamp, &rtp_info);
    EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
  }
  void InsertCngPacket(uint32_t rtp_timestamp) {
    uint8_t payload[kPayloadBytes] = {0};
    RTPHeader rtp_info;
    size_t payload_len;
    PopulateCng(0, rtp_timestamp, &rtp_info, payload, &payload_len);
    EXPECT_EQ(NetEq::kOK,
              neteq_->InsertPacket(rtp_info, rtc::ArrayView<const uint8_t>(
                                                 payload, payload_len)));
  }
  bool GetAudioReturnMuted() {
    bool muted;
    EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
    return muted;
  }
  void GetAudioUntilMuted() {
    while (!GetAudioReturnMuted()) {
      ASSERT_LT(counter_++, 1000) << "Test timed out";
    }
  }
  void GetAudioUntilNormal() {
    bool muted = false;
    while (out_frame_.speech_type_ != AudioFrame::kNormalSpeech) {
      EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
      ASSERT_LT(counter_++, 1000) << "Test timed out";
    }
    EXPECT_FALSE(muted);
  }
  int counter_ = 0;
};
// Verifies that NetEq goes in and out of muted state as expected.
TEST_F(NetEqDecodingTestWithMutedState, MutedState) {
  // Insert one speech packet.
  InsertPacket(0);
  // Pull out audio once and expect it not to be muted.
  EXPECT_FALSE(GetAudioReturnMuted());
  // Pull data until faded out.
  GetAudioUntilMuted();
  EXPECT_TRUE(out_frame_.muted());
  // Verify that output audio is not written during muted mode. Other parameters
  // should be correct, though.
  AudioFrame new_frame;
  int16_t* frame_data = new_frame.mutable_data();
  for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; i++) {
    frame_data[i] = 17;
  }
  bool muted;
  EXPECT_EQ(0, neteq_->GetAudio(&new_frame, &muted));
  EXPECT_TRUE(muted);
  EXPECT_TRUE(out_frame_.muted());
  for (size_t i = 0; i < AudioFrame::kMaxDataSizeSamples; i++) {
    EXPECT_EQ(17, frame_data[i]);
  }
  EXPECT_EQ(out_frame_.timestamp_ + out_frame_.samples_per_channel_,
            new_frame.timestamp_);
  EXPECT_EQ(out_frame_.samples_per_channel_, new_frame.samples_per_channel_);
  EXPECT_EQ(out_frame_.sample_rate_hz_, new_frame.sample_rate_hz_);
  EXPECT_EQ(out_frame_.num_channels_, new_frame.num_channels_);
  EXPECT_EQ(out_frame_.speech_type_, new_frame.speech_type_);
  EXPECT_EQ(out_frame_.vad_activity_, new_frame.vad_activity_);
  // Insert new data. Timestamp is corrected for the time elapsed since the last
  // packet. Verify that normal operation resumes.
  InsertPacket(kSamples * counter_);
  GetAudioUntilNormal();
  EXPECT_FALSE(out_frame_.muted());
  NetEqNetworkStatistics stats;
  EXPECT_EQ(0, neteq_->NetworkStatistics(&stats));
  // NetEqNetworkStatistics::expand_rate tells the fraction of samples that were
  // concealment samples, in Q14 (16384 = 100%) .The vast majority should be
  // concealment samples in this test.
  EXPECT_GT(stats.expand_rate, 14000);
  // And, it should be greater than the speech_expand_rate.
  EXPECT_GT(stats.expand_rate, stats.speech_expand_rate);
}
// Verifies that NetEq goes out of muted state when given a delayed packet.
TEST_F(NetEqDecodingTestWithMutedState, MutedStateDelayedPacket) {
  // Insert one speech packet.
  InsertPacket(0);
  // Pull out audio once and expect it not to be muted.
  EXPECT_FALSE(GetAudioReturnMuted());
  // Pull data until faded out.
  GetAudioUntilMuted();
  // Insert new data. Timestamp is only corrected for the half of the time
  // elapsed since the last packet. That is, the new packet is delayed. Verify
  // that normal operation resumes.
  InsertPacket(kSamples * counter_ / 2);
  GetAudioUntilNormal();
}
// Verifies that NetEq goes out of muted state when given a future packet.
TEST_F(NetEqDecodingTestWithMutedState, MutedStateFuturePacket) {
  // Insert one speech packet.
  InsertPacket(0);
  // Pull out audio once and expect it not to be muted.
  EXPECT_FALSE(GetAudioReturnMuted());
  // Pull data until faded out.
  GetAudioUntilMuted();
  // Insert new data. Timestamp is over-corrected for the time elapsed since the
  // last packet. That is, the new packet is too early. Verify that normal
  // operation resumes.
  InsertPacket(kSamples * counter_ * 2);
  GetAudioUntilNormal();
}
// Verifies that NetEq goes out of muted state when given an old packet.
TEST_F(NetEqDecodingTestWithMutedState, MutedStateOldPacket) {
  // Insert one speech packet.
  InsertPacket(0);
  // Pull out audio once and expect it not to be muted.
  EXPECT_FALSE(GetAudioReturnMuted());
  // Pull data until faded out.
  GetAudioUntilMuted();
  EXPECT_NE(AudioFrame::kNormalSpeech, out_frame_.speech_type_);
  // Insert a few packets which are older than the first packet.
  for (int i = 0; i < 5; ++i) {
    InsertPacket(kSamples * (i - 1000));
  }
  GetAudioUntilNormal();
}
// Verifies that NetEq doesn't enter muted state when CNG mode is active and the
// packet stream is suspended for a long time.
TEST_F(NetEqDecodingTestWithMutedState, DoNotMuteExtendedCngWithoutPackets) {
  // Insert one CNG packet.
  InsertCngPacket(0);
  // Pull 10 seconds of audio (10 ms audio generated per lap).
  for (int i = 0; i < 1000; ++i) {
    bool muted;
    EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
    ASSERT_FALSE(muted);
  }
  EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_);
}
// Verifies that NetEq goes back to normal after a long CNG period with the
// packet stream suspended.
TEST_F(NetEqDecodingTestWithMutedState, RecoverAfterExtendedCngWithoutPackets) {
  // Insert one CNG packet.
  InsertCngPacket(0);
  // Pull 10 seconds of audio (10 ms audio generated per lap).
  for (int i = 0; i < 1000; ++i) {
    bool muted;
    EXPECT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
  }
  // Insert new data. Timestamp is corrected for the time elapsed since the last
  // packet. Verify that normal operation resumes.
  InsertPacket(kSamples * counter_);
  GetAudioUntilNormal();
}
namespace {
::testing::AssertionResult AudioFramesEqualExceptData(const AudioFrame& a,
                                                      const AudioFrame& b) {
  if (a.timestamp_ != b.timestamp_)
    return ::testing::AssertionFailure() << "timestamp_ diff (" << a.timestamp_
                                         << " != " << b.timestamp_ << ")";
  if (a.sample_rate_hz_ != b.sample_rate_hz_)
    return ::testing::AssertionFailure()
           << "sample_rate_hz_ diff (" << a.sample_rate_hz_
           << " != " << b.sample_rate_hz_ << ")";
  if (a.samples_per_channel_ != b.samples_per_channel_)
    return ::testing::AssertionFailure()
           << "samples_per_channel_ diff (" << a.samples_per_channel_
           << " != " << b.samples_per_channel_ << ")";
  if (a.num_channels_ != b.num_channels_)
    return ::testing::AssertionFailure()
           << "num_channels_ diff (" << a.num_channels_
           << " != " << b.num_channels_ << ")";
  if (a.speech_type_ != b.speech_type_)
    return ::testing::AssertionFailure()
           << "speech_type_ diff (" << a.speech_type_
           << " != " << b.speech_type_ << ")";
  if (a.vad_activity_ != b.vad_activity_)
    return ::testing::AssertionFailure()
           << "vad_activity_ diff (" << a.vad_activity_
           << " != " << b.vad_activity_ << ")";
  return ::testing::AssertionSuccess();
}
::testing::AssertionResult AudioFramesEqual(const AudioFrame& a,
                                            const AudioFrame& b) {
  ::testing::AssertionResult res = AudioFramesEqualExceptData(a, b);
  if (!res)
    return res;
  if (memcmp(a.data(), b.data(),
             a.samples_per_channel_ * a.num_channels_ * sizeof(*a.data())) !=
      0) {
    return ::testing::AssertionFailure() << "data_ diff";
  }
  return ::testing::AssertionSuccess();
}
}  // namespace
TEST_F(NetEqDecodingTestTwoInstances, CompareMutedStateOnOff) {
  ASSERT_FALSE(config_.enable_muted_state);
  config2_.enable_muted_state = true;
  CreateSecondInstance();
  // Insert one speech packet into both NetEqs.
  const size_t kSamples = 10 * 16;
  const size_t kPayloadBytes = kSamples * 2;
  uint8_t payload[kPayloadBytes] = {0};
  RTPHeader rtp_info;
  PopulateRtpInfo(0, 0, &rtp_info);
  EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
  EXPECT_EQ(0, neteq2_->InsertPacket(rtp_info, payload));
  AudioFrame out_frame1, out_frame2;
  bool muted;
  for (int i = 0; i < 1000; ++i) {
    rtc::StringBuilder ss;
    ss << "i = " << i;
    SCOPED_TRACE(ss.str());  // Print out the loop iterator on failure.
    EXPECT_EQ(0, neteq_->GetAudio(&out_frame1, &muted));
    EXPECT_FALSE(muted);
    EXPECT_EQ(0, neteq2_->GetAudio(&out_frame2, &muted));
    if (muted) {
      EXPECT_TRUE(AudioFramesEqualExceptData(out_frame1, out_frame2));
    } else {
      EXPECT_TRUE(AudioFramesEqual(out_frame1, out_frame2));
    }
  }
  EXPECT_TRUE(muted);
  // Insert new data. Timestamp is corrected for the time elapsed since the last
  // packet.
  for (int i = 0; i < 5; ++i) {
    PopulateRtpInfo(0, kSamples * 1000 + kSamples * i, &rtp_info);
    EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
    EXPECT_EQ(0, neteq2_->InsertPacket(rtp_info, payload));
  }
  int counter = 0;
  while (out_frame1.speech_type_ != AudioFrame::kNormalSpeech) {
    ASSERT_LT(counter++, 1000) << "Test timed out";
    rtc::StringBuilder ss;
    ss << "counter = " << counter;
    SCOPED_TRACE(ss.str());  // Print out the loop iterator on failure.
    EXPECT_EQ(0, neteq_->GetAudio(&out_frame1, &muted));
    EXPECT_FALSE(muted);
    EXPECT_EQ(0, neteq2_->GetAudio(&out_frame2, &muted));
    if (muted) {
      EXPECT_TRUE(AudioFramesEqualExceptData(out_frame1, out_frame2));
    } else {
      EXPECT_TRUE(AudioFramesEqual(out_frame1, out_frame2));
    }
  }
  EXPECT_FALSE(muted);
}
TEST_F(NetEqDecodingTest, TestConcealmentEvents) {
  const int kNumConcealmentEvents = 19;
  const size_t kSamples = 10 * 16;
  const size_t kPayloadBytes = kSamples * 2;
  int seq_no = 0;
  RTPHeader rtp_info;
  rtp_info.ssrc = 0x1234;     // Just an arbitrary SSRC.
  rtp_info.payloadType = 94;  // PCM16b WB codec.
  rtp_info.markerBit = 0;
  const uint8_t payload[kPayloadBytes] = {0};
  bool muted;
  for (int i = 0; i < kNumConcealmentEvents; i++) {
    // Insert some packets of 10 ms size.
    for (int j = 0; j < 10; j++) {
      rtp_info.sequenceNumber = seq_no++;
      rtp_info.timestamp = rtp_info.sequenceNumber * kSamples;
      neteq_->InsertPacket(rtp_info, payload);
      neteq_->GetAudio(&out_frame_, &muted);
    }
    // Lose a number of packets.
    int num_lost = 1 + i;
    for (int j = 0; j < num_lost; j++) {
      seq_no++;
      neteq_->GetAudio(&out_frame_, &muted);
    }
  }
  // Check number of concealment events.
  NetEqLifetimeStatistics stats = neteq_->GetLifetimeStatistics();
  EXPECT_EQ(kNumConcealmentEvents, static_cast<int>(stats.concealment_events));
}
// Test that the jitter buffer delay stat is computed correctly.
void NetEqDecodingTestFaxMode::TestJitterBufferDelay(bool apply_packet_loss) {
  const int kNumPackets = 10;
  const int kDelayInNumPackets = 2;
  const int kPacketLenMs = 10;  // All packets are of 10 ms size.
  const size_t kSamples = kPacketLenMs * 16;
  const size_t kPayloadBytes = kSamples * 2;
  RTPHeader rtp_info;
  rtp_info.ssrc = 0x1234;     // Just an arbitrary SSRC.
  rtp_info.payloadType = 94;  // PCM16b WB codec.
  rtp_info.markerBit = 0;
  const uint8_t payload[kPayloadBytes] = {0};
  bool muted;
  int packets_sent = 0;
  int packets_received = 0;
  int expected_delay = 0;
  int expected_target_delay = 0;
  uint64_t expected_emitted_count = 0;
  while (packets_received < kNumPackets) {
    // Insert packet.
    if (packets_sent < kNumPackets) {
      rtp_info.sequenceNumber = packets_sent++;
      rtp_info.timestamp = rtp_info.sequenceNumber * kSamples;
      neteq_->InsertPacket(rtp_info, payload);
    }
    // Get packet.
    if (packets_sent > kDelayInNumPackets) {
      neteq_->GetAudio(&out_frame_, &muted);
      packets_received++;
      // The delay reported by the jitter buffer never exceeds
      // the number of samples previously fetched with GetAudio
      // (hence the min()).
      int packets_delay = std::min(packets_received, kDelayInNumPackets + 1);
      // The increase of the expected delay is the product of
      // the current delay of the jitter buffer in ms * the
      // number of samples that are sent for play out.
      int current_delay_ms = packets_delay * kPacketLenMs;
      expected_delay += current_delay_ms * kSamples;
      expected_target_delay += neteq_->TargetDelayMs() * kSamples;
      expected_emitted_count += kSamples;
    }
  }
  if (apply_packet_loss) {
    // Extra call to GetAudio to cause concealment.
    neteq_->GetAudio(&out_frame_, &muted);
  }
  // Check jitter buffer delay.
  NetEqLifetimeStatistics stats = neteq_->GetLifetimeStatistics();
  EXPECT_EQ(expected_delay,
            rtc::checked_cast<int>(stats.jitter_buffer_delay_ms));
  EXPECT_EQ(expected_emitted_count, stats.jitter_buffer_emitted_count);
  EXPECT_EQ(expected_target_delay,
            rtc::checked_cast<int>(stats.jitter_buffer_target_delay_ms));
}
TEST_F(NetEqDecodingTestFaxMode, TestJitterBufferDelayWithoutLoss) {
  TestJitterBufferDelay(false);
}
TEST_F(NetEqDecodingTestFaxMode, TestJitterBufferDelayWithLoss) {
  TestJitterBufferDelay(true);
}
TEST_F(NetEqDecodingTestFaxMode, TestJitterBufferDelayWithAcceleration) {
  const int kPacketLenMs = 10;  // All packets are of 10 ms size.
  const size_t kSamples = kPacketLenMs * 16;
  const size_t kPayloadBytes = kSamples * 2;
  RTPHeader rtp_info;
  rtp_info.ssrc = 0x1234;     // Just an arbitrary SSRC.
  rtp_info.payloadType = 94;  // PCM16b WB codec.
  rtp_info.markerBit = 0;
  const uint8_t payload[kPayloadBytes] = {0};
  int expected_target_delay = neteq_->TargetDelayMs() * kSamples;
  neteq_->InsertPacket(rtp_info, payload);
  bool muted;
  neteq_->GetAudio(&out_frame_, &muted);
  rtp_info.sequenceNumber += 1;
  rtp_info.timestamp += kSamples;
  neteq_->InsertPacket(rtp_info, payload);
  rtp_info.sequenceNumber += 1;
  rtp_info.timestamp += kSamples;
  neteq_->InsertPacket(rtp_info, payload);
  expected_target_delay += neteq_->TargetDelayMs() * 2 * kSamples;
  // We have two packets in the buffer and kAccelerate operation will
  // extract 20 ms of data.
  neteq_->GetAudio(&out_frame_, &muted, nullptr, NetEq::Operation::kAccelerate);
  // Check jitter buffer delay.
  NetEqLifetimeStatistics stats = neteq_->GetLifetimeStatistics();
  EXPECT_EQ(10 * kSamples * 3, stats.jitter_buffer_delay_ms);
  EXPECT_EQ(kSamples * 3, stats.jitter_buffer_emitted_count);
  EXPECT_EQ(expected_target_delay,
            rtc::checked_cast<int>(stats.jitter_buffer_target_delay_ms));
}
namespace test {
TEST(NetEqNoTimeStretchingMode, RunTest) {
  NetEq::Config config;
  config.for_test_no_time_stretching = true;
  auto codecs = NetEqTest::StandardDecoderMap();
  std::map<int, RTPExtensionType> rtp_ext_map = {
      {1, kRtpExtensionAudioLevel},
      {3, kRtpExtensionAbsoluteSendTime},
      {5, kRtpExtensionTransportSequenceNumber},
      {7, kRtpExtensionVideoContentType},
      {8, kRtpExtensionVideoTiming}};
  std::unique_ptr<NetEqInput> input = CreateNetEqRtpDumpInput(
      webrtc::test::ResourcePath("audio_coding/neteq_universal_new", "rtp"),
      rtp_ext_map, absl::nullopt /*No SSRC filter*/);
  std::unique_ptr<TimeLimitedNetEqInput> input_time_limit(
      new TimeLimitedNetEqInput(std::move(input), 20000));
  std::unique_ptr<AudioSink> output(new VoidAudioSink);
  NetEqTest::Callbacks callbacks;
  NetEqTest test(config, CreateBuiltinAudioDecoderFactory(), codecs,
                 /*text_log=*/nullptr, /*neteq_factory=*/nullptr,
                 /*input=*/std::move(input_time_limit), std::move(output),
                 callbacks);
  test.Run();
  const auto stats = test.SimulationStats();
  EXPECT_EQ(0, stats.accelerate_rate);
  EXPECT_EQ(0, stats.preemptive_rate);
}
}  // namespace test
}  // namespace webrtc
 |