| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 
 | /*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/video_coding/media_opt_util.h"
#include <math.h>
#include <algorithm>
#include "modules/video_coding/fec_rate_table.h"
#include "modules/video_coding/internal_defines.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
// Max value of loss rates in off-line model
static const int kPacketLossMax = 129;
namespace media_optimization {
VCMProtectionParameters::VCMProtectionParameters()
    : rtt(0),
      lossPr(0.0f),
      bitRate(0.0f),
      packetsPerFrame(0.0f),
      packetsPerFrameKey(0.0f),
      frameRate(0.0f),
      keyFrameSize(0.0f),
      fecRateDelta(0),
      fecRateKey(0),
      codecWidth(0),
      codecHeight(0),
      numLayers(1) {}
VCMProtectionMethod::VCMProtectionMethod()
    : _effectivePacketLoss(0),
      _protectionFactorK(0),
      _protectionFactorD(0),
      _scaleProtKey(2.0f),
      _maxPayloadSize(1460),
      _corrFecCost(1.0),
      _type(kNone) {}
VCMProtectionMethod::~VCMProtectionMethod() {}
enum VCMProtectionMethodEnum VCMProtectionMethod::Type() const {
  return _type;
}
uint8_t VCMProtectionMethod::RequiredPacketLossER() {
  return _effectivePacketLoss;
}
uint8_t VCMProtectionMethod::RequiredProtectionFactorK() {
  return _protectionFactorK;
}
uint8_t VCMProtectionMethod::RequiredProtectionFactorD() {
  return _protectionFactorD;
}
bool VCMProtectionMethod::RequiredUepProtectionK() {
  return _useUepProtectionK;
}
bool VCMProtectionMethod::RequiredUepProtectionD() {
  return _useUepProtectionD;
}
int VCMProtectionMethod::MaxFramesFec() const {
  return 1;
}
VCMNackFecMethod::VCMNackFecMethod(int64_t lowRttNackThresholdMs,
                                   int64_t highRttNackThresholdMs)
    : VCMFecMethod(),
      _lowRttNackMs(lowRttNackThresholdMs),
      _highRttNackMs(highRttNackThresholdMs),
      _maxFramesFec(1) {
  RTC_DCHECK(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1);
  RTC_DCHECK(highRttNackThresholdMs == -1 ||
             lowRttNackThresholdMs <= highRttNackThresholdMs);
  RTC_DCHECK(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1);
  _type = kNackFec;
}
VCMNackFecMethod::~VCMNackFecMethod() {
  //
}
bool VCMNackFecMethod::ProtectionFactor(
    const VCMProtectionParameters* parameters) {
  // Hybrid Nack FEC has three operational modes:
  // 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate
  //    (_protectionFactorD) to zero. -1 means no FEC.
  // 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors.
  //    -1 means always allow NACK.
  // 3. Medium RTT values - Hybrid mode: We will only nack the
  //    residual following the decoding of the FEC (refer to JB logic). FEC
  //    delta protection factor will be adjusted based on the RTT.
  // Otherwise: we count on FEC; if the RTT is below a threshold, then we
  // nack the residual, based on a decision made in the JB.
  // Compute the protection factors
  VCMFecMethod::ProtectionFactor(parameters);
  if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs) {
    _protectionFactorD = 0;
    VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
    // When in Hybrid mode (RTT range), adjust FEC rates based on the
    // RTT (NACK effectiveness) - adjustment factor is in the range [0,1].
  } else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs) {
    // TODO(mikhal): Disabling adjustment temporarily.
    // uint16_t rttIndex = (uint16_t) parameters->rtt;
    float adjustRtt = 1.0f;  // (float)VCMNackFecTable[rttIndex] / 100.0f;
    // Adjust FEC with NACK on (for delta frame only)
    // table depends on RTT relative to rttMax (NACK Threshold)
    _protectionFactorD = rtc::saturated_cast<uint8_t>(
        adjustRtt * rtc::saturated_cast<float>(_protectionFactorD));
    // update FEC rates after applying adjustment
    VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
  }
  return true;
}
int VCMNackFecMethod::ComputeMaxFramesFec(
    const VCMProtectionParameters* parameters) {
  if (parameters->numLayers > 2) {
    // For more than 2 temporal layers we will only have FEC on the base layer,
    // and the base layers will be pretty far apart. Therefore we force one
    // frame FEC.
    return 1;
  }
  // We set the max number of frames to base the FEC on so that on average
  // we will have complete frames in one RTT. Note that this is an upper
  // bound, and that the actual number of frames used for FEC is decided by the
  // RTP module based on the actual number of packets and the protection factor.
  float base_layer_framerate =
      parameters->frameRate /
      rtc::saturated_cast<float>(1 << (parameters->numLayers - 1));
  int max_frames_fec = std::max(
      rtc::saturated_cast<int>(
          2.0f * base_layer_framerate * parameters->rtt / 1000.0f + 0.5f),
      1);
  // `kUpperLimitFramesFec` is the upper limit on how many frames we
  // allow any FEC to be based on.
  if (max_frames_fec > kUpperLimitFramesFec) {
    max_frames_fec = kUpperLimitFramesFec;
  }
  return max_frames_fec;
}
int VCMNackFecMethod::MaxFramesFec() const {
  return _maxFramesFec;
}
bool VCMNackFecMethod::BitRateTooLowForFec(
    const VCMProtectionParameters* parameters) {
  // Bitrate below which we turn off FEC, regardless of reported packet loss.
  // The condition should depend on resolution and content. For now, use
  // threshold on bytes per frame, with some effect for the frame size.
  // The condition for turning off FEC is also based on other factors,
  // such as `_numLayers`, `_maxFramesFec`, and `_rtt`.
  int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8;
  int max_bytes_per_frame = kMaxBytesPerFrameForFec;
  int num_pixels = parameters->codecWidth * parameters->codecHeight;
  if (num_pixels <= 352 * 288) {
    max_bytes_per_frame = kMaxBytesPerFrameForFecLow;
  } else if (num_pixels > 640 * 480) {
    max_bytes_per_frame = kMaxBytesPerFrameForFecHigh;
  }
  // TODO(marpan): add condition based on maximum frames used for FEC,
  // and expand condition based on frame size.
  // Max round trip time threshold in ms.
  const int64_t kMaxRttTurnOffFec = 200;
  if (estimate_bytes_per_frame < max_bytes_per_frame &&
      parameters->numLayers < 3 && parameters->rtt < kMaxRttTurnOffFec) {
    return true;
  }
  return false;
}
bool VCMNackFecMethod::EffectivePacketLoss(
    const VCMProtectionParameters* parameters) {
  // Set the effective packet loss for encoder (based on FEC code).
  // Compute the effective packet loss and residual packet loss due to FEC.
  VCMFecMethod::EffectivePacketLoss(parameters);
  return true;
}
bool VCMNackFecMethod::UpdateParameters(
    const VCMProtectionParameters* parameters) {
  ProtectionFactor(parameters);
  EffectivePacketLoss(parameters);
  _maxFramesFec = ComputeMaxFramesFec(parameters);
  if (BitRateTooLowForFec(parameters)) {
    _protectionFactorK = 0;
    _protectionFactorD = 0;
  }
  // Protection/fec rates obtained above are defined relative to total number
  // of packets (total rate: source + fec) FEC in RTP module assumes
  // protection factor is defined relative to source number of packets so we
  // should convert the factor to reduce mismatch between mediaOpt's rate and
  // the actual one
  _protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK);
  _protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD);
  return true;
}
VCMNackMethod::VCMNackMethod() : VCMProtectionMethod() {
  _type = kNack;
}
VCMNackMethod::~VCMNackMethod() {
  //
}
bool VCMNackMethod::EffectivePacketLoss(
    const VCMProtectionParameters* parameter) {
  // Effective Packet Loss, NA in current version.
  _effectivePacketLoss = 0;
  return true;
}
bool VCMNackMethod::UpdateParameters(
    const VCMProtectionParameters* parameters) {
  // Compute the effective packet loss
  EffectivePacketLoss(parameters);
  // nackCost  = (bitRate - nackCost) * (lossPr)
  return true;
}
VCMFecMethod::VCMFecMethod()
    : VCMProtectionMethod(),
      rate_control_settings_(RateControlSettings::ParseFromFieldTrials()) {
  _type = kFec;
}
VCMFecMethod::~VCMFecMethod() = default;
uint8_t VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta,
                                       uint8_t packetFrameKey) const {
  uint8_t boostRateKey = 2;
  // Default: ratio scales the FEC protection up for I frames
  uint8_t ratio = 1;
  if (packetFrameDelta > 0) {
    ratio = (int8_t)(packetFrameKey / packetFrameDelta);
  }
  ratio = VCM_MAX(boostRateKey, ratio);
  return ratio;
}
uint8_t VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const {
  return rtc::saturated_cast<uint8_t>(
      VCM_MIN(255, (0.5 + 255.0 * codeRateRTP /
                              rtc::saturated_cast<float>(255 - codeRateRTP))));
}
// Update FEC with protectionFactorD
void VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD) {
  _protectionFactorD = protectionFactorD;
}
// Update FEC with protectionFactorK
void VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK) {
  _protectionFactorK = protectionFactorK;
}
bool VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters) {
  // FEC PROTECTION SETTINGS: varies with packet loss and bitrate
  // No protection if (filtered) packetLoss is 0
  uint8_t packetLoss = rtc::saturated_cast<uint8_t>(255 * parameters->lossPr);
  if (packetLoss == 0) {
    _protectionFactorK = 0;
    _protectionFactorD = 0;
    return true;
  }
  // Parameters for FEC setting:
  // first partition size, thresholds, table pars, spatial resoln fac.
  // First partition protection: ~ 20%
  uint8_t firstPartitionProt = rtc::saturated_cast<uint8_t>(255 * 0.20);
  // Minimum protection level needed to generate one FEC packet for one
  // source packet/frame (in RTP sender)
  uint8_t minProtLevelFec = 85;
  // Threshold on packetLoss and bitRrate/frameRate (=average #packets),
  // above which we allocate protection to cover at least first partition.
  uint8_t lossThr = 0;
  uint8_t packetNumThr = 1;
  // Parameters for range of rate index of table.
  const uint8_t ratePar1 = 5;
  const uint8_t ratePar2 = 49;
  // Spatial resolution size, relative to a reference size.
  float spatialSizeToRef = rtc::saturated_cast<float>(parameters->codecWidth *
                                                      parameters->codecHeight) /
                           (rtc::saturated_cast<float>(704 * 576));
  // resolnFac: This parameter will generally increase/decrease the FEC rate
  // (for fixed bitRate and packetLoss) based on system size.
  // Use a smaller exponent (< 1) to control/soften system size effect.
  const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f);
  const int bitRatePerFrame = BitsPerFrame(parameters);
  // Average number of packets per frame (source and fec):
  const uint8_t avgTotPackets = rtc::saturated_cast<uint8_t>(
      1.5f + rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0f /
                 rtc::saturated_cast<float>(8.0 * _maxPayloadSize));
  // FEC rate parameters: for P and I frame
  uint8_t codeRateDelta = 0;
  uint8_t codeRateKey = 0;
  // Get index for table: the FEC protection depends on an effective rate.
  // The range on the rate index corresponds to rates (bps)
  // from ~200k to ~8000k, for 30fps
  const uint16_t effRateFecTable =
      rtc::saturated_cast<uint16_t>(resolnFac * bitRatePerFrame);
  uint8_t rateIndexTable = rtc::saturated_cast<uint8_t>(
      VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) / ratePar1, ratePar2), 0));
  // Restrict packet loss range to 50:
  // current tables defined only up to 50%
  if (packetLoss >= kPacketLossMax) {
    packetLoss = kPacketLossMax - 1;
  }
  uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss;
  // Check on table index
  RTC_DCHECK_LT(indexTable, kFecRateTableSize);
  // Protection factor for P frame
  codeRateDelta = kFecRateTable[indexTable];
  if (packetLoss > lossThr && avgTotPackets > packetNumThr) {
    // Set a minimum based on first partition size.
    if (codeRateDelta < firstPartitionProt) {
      codeRateDelta = firstPartitionProt;
    }
  }
  // Check limit on amount of protection for P frame; 50% is max.
  if (codeRateDelta >= kPacketLossMax) {
    codeRateDelta = kPacketLossMax - 1;
  }
  // For Key frame:
  // Effectively at a higher rate, so we scale/boost the rate
  // The boost factor may depend on several factors: ratio of packet
  // number of I to P frames, how much protection placed on P frames, etc.
  const uint8_t packetFrameDelta =
      rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrame);
  const uint8_t packetFrameKey =
      rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrameKey);
  const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta, packetFrameKey);
  rateIndexTable = rtc::saturated_cast<uint8_t>(VCM_MAX(
      VCM_MIN(1 + (boostKey * effRateFecTable - ratePar1) / ratePar1, ratePar2),
      0));
  uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss;
  indexTableKey = VCM_MIN(indexTableKey, kFecRateTableSize);
  // Check on table index
  RTC_DCHECK_LT(indexTableKey, kFecRateTableSize);
  // Protection factor for I frame
  codeRateKey = kFecRateTable[indexTableKey];
  // Boosting for Key frame.
  int boostKeyProt = _scaleProtKey * codeRateDelta;
  if (boostKeyProt >= kPacketLossMax) {
    boostKeyProt = kPacketLossMax - 1;
  }
  // Make sure I frame protection is at least larger than P frame protection,
  // and at least as high as filtered packet loss.
  codeRateKey = rtc::saturated_cast<uint8_t>(
      VCM_MAX(packetLoss, VCM_MAX(boostKeyProt, codeRateKey)));
  // Check limit on amount of protection for I frame: 50% is max.
  if (codeRateKey >= kPacketLossMax) {
    codeRateKey = kPacketLossMax - 1;
  }
  _protectionFactorK = codeRateKey;
  _protectionFactorD = codeRateDelta;
  // Generally there is a rate mis-match between the FEC cost estimated
  // in mediaOpt and the actual FEC cost sent out in RTP module.
  // This is more significant at low rates (small # of source packets), where
  // the granularity of the FEC decreases. In this case, non-zero protection
  // in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC
  // is based on rounding off protectionFactor on actual source packet number).
  // The correction factor (_corrFecCost) attempts to corrects this, at least
  // for cases of low rates (small #packets) and low protection levels.
  float numPacketsFl =
      1.0f + (rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0 /
                  rtc::saturated_cast<float>(8.0 * _maxPayloadSize) +
              0.5);
  const float estNumFecGen =
      0.5f +
      rtc::saturated_cast<float>(_protectionFactorD * numPacketsFl / 255.0f);
  // We reduce cost factor (which will reduce overhead for FEC and
  // hybrid method) and not the protectionFactor.
  _corrFecCost = 1.0f;
  if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec) {
    _corrFecCost = 0.5f;
  }
  if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec) {
    _corrFecCost = 0.0f;
  }
  // DONE WITH FEC PROTECTION SETTINGS
  return true;
}
int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) {
  // When temporal layers are available FEC will only be applied on the base
  // layer.
  const float bitRateRatio =
      webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
          parameters->numLayers, 0,
          rate_control_settings_.Vp8BaseHeavyTl3RateAllocation());
  float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1);
  float bitRate = parameters->bitRate * bitRateRatio;
  float frameRate = parameters->frameRate * frameRateRatio;
  // TODO(mikhal): Update factor following testing.
  float adjustmentFactor = 1;
  if (frameRate < 1.0f)
    frameRate = 1.0f;
  // Average bits per frame (units of kbits)
  return rtc::saturated_cast<int>(adjustmentFactor * bitRate / frameRate);
}
bool VCMFecMethod::EffectivePacketLoss(
    const VCMProtectionParameters* parameters) {
  // Effective packet loss to encoder is based on RPL (residual packet loss)
  // this is a soft setting based on degree of FEC protection
  // RPL = received/input packet loss - average_FEC_recovery
  // note: received/input packet loss may be filtered based on FilteredLoss
  // Effective Packet Loss, NA in current version.
  _effectivePacketLoss = 0;
  return true;
}
bool VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters) {
  // Compute the protection factor
  ProtectionFactor(parameters);
  // Compute the effective packet loss
  EffectivePacketLoss(parameters);
  // Protection/fec rates obtained above is defined relative to total number
  // of packets (total rate: source+fec) FEC in RTP module assumes protection
  // factor is defined relative to source number of packets so we should
  // convert the factor to reduce mismatch between mediaOpt suggested rate and
  // the actual rate
  _protectionFactorK = ConvertFECRate(_protectionFactorK);
  _protectionFactorD = ConvertFECRate(_protectionFactorD);
  return true;
}
VCMLossProtectionLogic::VCMLossProtectionLogic(int64_t nowMs)
    : _currentParameters(),
      _rtt(0),
      _lossPr(0.0f),
      _bitRate(0.0f),
      _frameRate(0.0f),
      _keyFrameSize(0.0f),
      _fecRateKey(0),
      _fecRateDelta(0),
      _lastPrUpdateT(0),
      _lossPr255(0.9999f),
      _lossPrHistory(),
      _shortMaxLossPr255(0),
      _packetsPerFrame(0.9999f),
      _packetsPerFrameKey(0.9999f),
      _codecWidth(704),
      _codecHeight(576),
      _numLayers(1) {
  Reset(nowMs);
}
VCMLossProtectionLogic::~VCMLossProtectionLogic() {
  Release();
}
void VCMLossProtectionLogic::SetMethod(
    enum VCMProtectionMethodEnum newMethodType) {
  if (_selectedMethod && _selectedMethod->Type() == newMethodType)
    return;
  switch (newMethodType) {
    case kNack:
      _selectedMethod.reset(new VCMNackMethod());
      break;
    case kFec:
      _selectedMethod.reset(new VCMFecMethod());
      break;
    case kNackFec:
      _selectedMethod.reset(new VCMNackFecMethod(kLowRttNackMs, -1));
      break;
    case kNone:
      _selectedMethod.reset();
      break;
  }
  UpdateMethod();
}
void VCMLossProtectionLogic::UpdateRtt(int64_t rtt) {
  _rtt = rtt;
}
void VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255,
                                                  int64_t now) {
  if (_lossPrHistory[0].timeMs >= 0 &&
      now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs) {
    if (lossPr255 > _shortMaxLossPr255) {
      _shortMaxLossPr255 = lossPr255;
    }
  } else {
    // Only add a new value to the history once a second
    if (_lossPrHistory[0].timeMs == -1) {
      // First, no shift
      _shortMaxLossPr255 = lossPr255;
    } else {
      // Shift
      for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--) {
        _lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255;
        _lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs;
      }
    }
    if (_shortMaxLossPr255 == 0) {
      _shortMaxLossPr255 = lossPr255;
    }
    _lossPrHistory[0].lossPr255 = _shortMaxLossPr255;
    _lossPrHistory[0].timeMs = now;
    _shortMaxLossPr255 = 0;
  }
}
uint8_t VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const {
  uint8_t maxFound = _shortMaxLossPr255;
  if (_lossPrHistory[0].timeMs == -1) {
    return maxFound;
  }
  for (int32_t i = 0; i < kLossPrHistorySize; i++) {
    if (_lossPrHistory[i].timeMs == -1) {
      break;
    }
    if (nowMs - _lossPrHistory[i].timeMs >
        kLossPrHistorySize * kLossPrShortFilterWinMs) {
      // This sample (and all samples after this) is too old
      break;
    }
    if (_lossPrHistory[i].lossPr255 > maxFound) {
      // This sample is the largest one this far into the history
      maxFound = _lossPrHistory[i].lossPr255;
    }
  }
  return maxFound;
}
uint8_t VCMLossProtectionLogic::FilteredLoss(int64_t nowMs,
                                             FilterPacketLossMode filter_mode,
                                             uint8_t lossPr255) {
  // Update the max window filter.
  UpdateMaxLossHistory(lossPr255, nowMs);
  // Update the recursive average filter.
  _lossPr255.Apply(rtc::saturated_cast<float>(nowMs - _lastPrUpdateT),
                   rtc::saturated_cast<float>(lossPr255));
  _lastPrUpdateT = nowMs;
  // Filtered loss: default is received loss (no filtering).
  uint8_t filtered_loss = lossPr255;
  switch (filter_mode) {
    case kNoFilter:
      break;
    case kAvgFilter:
      filtered_loss = rtc::saturated_cast<uint8_t>(_lossPr255.filtered() + 0.5);
      break;
    case kMaxFilter:
      filtered_loss = MaxFilteredLossPr(nowMs);
      break;
  }
  return filtered_loss;
}
void VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc) {
  _lossPr = rtc::saturated_cast<float>(packetLossEnc) / 255.0;
}
void VCMLossProtectionLogic::UpdateBitRate(float bitRate) {
  _bitRate = bitRate;
}
void VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets,
                                                   int64_t nowMs) {
  _packetsPerFrame.Apply(
      rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateT), nPackets);
  _lastPacketPerFrameUpdateT = nowMs;
}
void VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets,
                                                      int64_t nowMs) {
  _packetsPerFrameKey.Apply(
      rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateTKey),
      nPackets);
  _lastPacketPerFrameUpdateTKey = nowMs;
}
void VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize) {
  _keyFrameSize = keyFrameSize;
}
void VCMLossProtectionLogic::UpdateFrameSize(size_t width, size_t height) {
  _codecWidth = width;
  _codecHeight = height;
}
void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) {
  _numLayers = (numLayers == 0) ? 1 : numLayers;
}
bool VCMLossProtectionLogic::UpdateMethod() {
  if (!_selectedMethod)
    return false;
  _currentParameters.rtt = _rtt;
  _currentParameters.lossPr = _lossPr;
  _currentParameters.bitRate = _bitRate;
  _currentParameters.frameRate = _frameRate;  // rename actual frame rate?
  _currentParameters.keyFrameSize = _keyFrameSize;
  _currentParameters.fecRateDelta = _fecRateDelta;
  _currentParameters.fecRateKey = _fecRateKey;
  _currentParameters.packetsPerFrame = _packetsPerFrame.filtered();
  _currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered();
  _currentParameters.codecWidth = _codecWidth;
  _currentParameters.codecHeight = _codecHeight;
  _currentParameters.numLayers = _numLayers;
  return _selectedMethod->UpdateParameters(&_currentParameters);
}
VCMProtectionMethod* VCMLossProtectionLogic::SelectedMethod() const {
  return _selectedMethod.get();
}
VCMProtectionMethodEnum VCMLossProtectionLogic::SelectedType() const {
  return _selectedMethod ? _selectedMethod->Type() : kNone;
}
void VCMLossProtectionLogic::Reset(int64_t nowMs) {
  _lastPrUpdateT = nowMs;
  _lastPacketPerFrameUpdateT = nowMs;
  _lastPacketPerFrameUpdateTKey = nowMs;
  _lossPr255.Reset(0.9999f);
  _packetsPerFrame.Reset(0.9999f);
  _fecRateDelta = _fecRateKey = 0;
  for (int32_t i = 0; i < kLossPrHistorySize; i++) {
    _lossPrHistory[i].lossPr255 = 0;
    _lossPrHistory[i].timeMs = -1;
  }
  _shortMaxLossPr255 = 0;
  Release();
}
void VCMLossProtectionLogic::Release() {
  _selectedMethod.reset();
}
}  // namespace media_optimization
}  // namespace webrtc
 |