1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  
     | 
    
      <!DOCTYPE html>
<html>
  <head>
    <title>
      Test Automation of PannerNode Positions
    </title>
    <script src="/resources/testharness.js"></script>
    <script src="/resources/testharnessreport.js"></script>
    <script src="../../resources/audit-util.js"></script>
    <script src="../../resources/audit.js"></script>
    <script src="../../resources/panner-formulas.js"></script>
  </head>
  <body>
    <script id="layout-test-code">
      let sampleRate = 48000;
      // These tests are quite slow, so don't run for many frames.  256 frames
      // should be enough to demonstrate that automations are working.
      let renderFrames = 256;
      let renderDuration = renderFrames / sampleRate;
      let context;
      let panner;
      let audit = Audit.createTaskRunner();
      // Set of tests for the panner node with automations applied to the
      // position of the source.
      let testConfigs = [
        {
          // Distance model parameters for the panner
          distanceModel: {model: 'inverse', rolloff: 1},
          // Initial location of the source
          startPosition: [0, 0, 1],
          // Final position of the source.  For this test, we only want to move
          // on the z axis which
          // doesn't change the azimuth angle.
          endPosition: [0, 0, 10000],
        },
        {
          distanceModel: {model: 'inverse', rolloff: 1},
          startPosition: [0, 0, 1],
          // An essentially random end position, but it should be such that
          // azimuth angle changes as
          // we move from the start to the end.
          endPosition: [20000, 30000, 10000],
          errorThreshold: [
            {
              // Error threshold for 1-channel case
              relativeThreshold: 4.8124e-7
            },
            {
              // Error threshold for 2-channel case
              relativeThreshold: 4.3267e-7
            }
          ],
        },
        {
          distanceModel: {model: 'exponential', rolloff: 1.5},
          startPosition: [0, 0, 1],
          endPosition: [20000, 30000, 10000],
          errorThreshold:
              [{relativeThreshold: 5.0783e-7}, {relativeThreshold: 5.2180e-7}]
        },
        {
          distanceModel: {model: 'linear', rolloff: 1},
          startPosition: [0, 0, 1],
          endPosition: [20000, 30000, 10000],
          errorThreshold: [
            {relativeThreshold: 6.5324e-6}, {relativeThreshold: 6.5756e-6}
          ]
        }
      ];
      for (let k = 0; k < testConfigs.length; ++k) {
        let config = testConfigs[k];
        let tester = function(c, channelCount) {
          return (task, should) => {
            runTest(should, c, channelCount).then(() => task.done());
          }
        };
        let baseTestName = config.distanceModel.model +
            ' rolloff: ' + config.distanceModel.rolloff;
        // Define tasks for both 1-channel and 2-channel
        audit.define(k + ': 1-channel ' + baseTestName, tester(config, 1));
        audit.define(k + ': 2-channel ' + baseTestName, tester(config, 2));
      }
      audit.run();
      function runTest(should, options, channelCount) {
        // Output has 5 channels: channels 0 and 1 are for the stereo output of
        // the panner node. Channels 2-5 are the for automation of the x,y,z
        // coordinate so that we have actual coordinates used for the panner
        // automation.
        context = new OfflineAudioContext(5, renderFrames, sampleRate);
        // Stereo source for the panner.
        let source = context.createBufferSource();
        source.buffer = createConstantBuffer(
            context, renderFrames, channelCount == 1 ? 1 : [1, 2]);
        panner = context.createPanner();
        panner.distanceModel = options.distanceModel.model;
        panner.rolloffFactor = options.distanceModel.rolloff;
        panner.panningModel = 'equalpower';
        // Source and gain node for the z-coordinate calculation.
        let dist = context.createBufferSource();
        dist.buffer = createConstantBuffer(context, 1, 1);
        dist.loop = true;
        let gainX = context.createGain();
        let gainY = context.createGain();
        let gainZ = context.createGain();
        dist.connect(gainX);
        dist.connect(gainY);
        dist.connect(gainZ);
        // Set the gain automation to match the z-coordinate automation of the
        // panner.
        // End the automation some time before the end of the rendering so we
        // can verify that automation has the correct end time and value.
        let endAutomationTime = 0.75 * renderDuration;
        gainX.gain.setValueAtTime(options.startPosition[0], 0);
        gainX.gain.linearRampToValueAtTime(
            options.endPosition[0], endAutomationTime);
        gainY.gain.setValueAtTime(options.startPosition[1], 0);
        gainY.gain.linearRampToValueAtTime(
            options.endPosition[1], endAutomationTime);
        gainZ.gain.setValueAtTime(options.startPosition[2], 0);
        gainZ.gain.linearRampToValueAtTime(
            options.endPosition[2], endAutomationTime);
        dist.start();
        // Splitter and merger to map the panner output and the z-coordinate
        // automation to the correct channels in the destination.
        let splitter = context.createChannelSplitter(2);
        let merger = context.createChannelMerger(5);
        source.connect(panner);
        // Split the output of the panner to separate channels
        panner.connect(splitter);
        // Merge the panner outputs and the z-coordinate output to the correct
        // destination channels.
        splitter.connect(merger, 0, 0);
        splitter.connect(merger, 1, 1);
        gainX.connect(merger, 0, 2);
        gainY.connect(merger, 0, 3);
        gainZ.connect(merger, 0, 4);
        merger.connect(context.destination);
        // Initialize starting point of the panner.
        panner.positionX.setValueAtTime(options.startPosition[0], 0);
        panner.positionY.setValueAtTime(options.startPosition[1], 0);
        panner.positionZ.setValueAtTime(options.startPosition[2], 0);
        // Automate z coordinate to move away from the listener
        panner.positionX.linearRampToValueAtTime(
            options.endPosition[0], 0.75 * renderDuration);
        panner.positionY.linearRampToValueAtTime(
            options.endPosition[1], 0.75 * renderDuration);
        panner.positionZ.linearRampToValueAtTime(
            options.endPosition[2], 0.75 * renderDuration);
        source.start();
        // Go!
        return context.startRendering().then(function(renderedBuffer) {
          // Get the panner outputs
          let data0 = renderedBuffer.getChannelData(0);
          let data1 = renderedBuffer.getChannelData(1);
          let xcoord = renderedBuffer.getChannelData(2);
          let ycoord = renderedBuffer.getChannelData(3);
          let zcoord = renderedBuffer.getChannelData(4);
          // We're doing a linear ramp on the Z axis with the equalpower panner,
          // so the equalpower panning gain remains constant.  We only need to
          // model the distance effect.
          // Compute the distance gain
          let distanceGain = new Float32Array(xcoord.length);
          ;
          if (panner.distanceModel === 'inverse') {
            for (let k = 0; k < distanceGain.length; ++k) {
              distanceGain[k] =
                  inverseDistance(panner, xcoord[k], ycoord[k], zcoord[k])
            }
          } else if (panner.distanceModel === 'linear') {
            for (let k = 0; k < distanceGain.length; ++k) {
              distanceGain[k] =
                  linearDistance(panner, xcoord[k], ycoord[k], zcoord[k])
            }
          } else if (panner.distanceModel === 'exponential') {
            for (let k = 0; k < distanceGain.length; ++k) {
              distanceGain[k] =
                  exponentialDistance(panner, xcoord[k], ycoord[k], zcoord[k])
            }
          }
          // Compute the expected result.  Since we're on the z-axis, the left
          // and right channels pass through the equalpower panner unchanged.
          // Only need to apply the distance gain.
          let buffer0 = source.buffer.getChannelData(0);
          let buffer1 =
              channelCount == 2 ? source.buffer.getChannelData(1) : buffer0;
          let azimuth = new Float32Array(buffer0.length);
          for (let k = 0; k < data0.length; ++k) {
            azimuth[k] = calculateAzimuth(
                [xcoord[k], ycoord[k], zcoord[k]],
                [
                  context.listener.positionX.value,
                  context.listener.positionY.value,
                  context.listener.positionZ.value
                ],
                [
                  context.listener.forwardX.value,
                  context.listener.forwardY.value,
                  context.listener.forwardZ.value
                ],
                [
                  context.listener.upX.value, context.listener.upY.value,
                  context.listener.upZ.value
                ]);
          }
          let expected = applyPanner(azimuth, buffer0, buffer1, channelCount);
          let expected0 = expected.left;
          let expected1 = expected.right;
          for (let k = 0; k < expected0.length; ++k) {
            expected0[k] *= distanceGain[k];
            expected1[k] *= distanceGain[k];
          }
          let info = options.distanceModel.model +
              ', rolloff: ' + options.distanceModel.rolloff;
          let prefix = channelCount + '-channel ' +
              '[' + options.startPosition[0] + ', ' + options.startPosition[1] +
              ', ' + options.startPosition[2] + '] -> [' +
              options.endPosition[0] + ', ' + options.endPosition[1] + ', ' +
              options.endPosition[2] + ']: ';
          let errorThreshold = 0;
          if (options.errorThreshold)
            errorThreshold = options.errorThreshold[channelCount - 1]
            should(data0, prefix + 'distanceModel: ' + info + ', left channel')
                .beCloseToArray(expected0, {absoluteThreshold: errorThreshold});
          should(data1, prefix + 'distanceModel: ' + info + ', right channel')
              .beCloseToArray(expected1, {absoluteThreshold: errorThreshold});
        });
      }
    </script>
  </body>
</html>
 
     |