| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 
 | /*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/audio_processing/agc/loudness_histogram.h"
#include <string.h>
#include <cmath>
#include "rtc_base/checks.h"
namespace webrtc {
static const double kHistBinCenters[] = {
    7.59621091765857e-02, 9.02036021061016e-02, 1.07115112009343e-01,
    1.27197217770508e-01, 1.51044347572047e-01, 1.79362373905283e-01,
    2.12989507320644e-01, 2.52921107370304e-01, 3.00339145144454e-01,
    3.56647189489147e-01, 4.23511952494003e-01, 5.02912623991786e-01,
    5.97199455365749e-01, 7.09163326739184e-01, 8.42118356728544e-01,
    1.00000000000000e+00, 1.18748153630660e+00, 1.41011239906908e+00,
    1.67448243801153e+00, 1.98841697800836e+00, 2.36120844786349e+00,
    2.80389143520905e+00, 3.32956930911896e+00, 3.95380207843188e+00,
    4.69506696634852e+00, 5.57530533426190e+00, 6.62057214370769e+00,
    7.86180718043869e+00, 9.33575086877358e+00, 1.10860317842269e+01,
    1.31644580546776e+01, 1.56325508754123e+01, 1.85633655299256e+01,
    2.20436538184971e+01, 2.61764319021997e+01, 3.10840295702492e+01,
    3.69117111886792e+01, 4.38319755100383e+01, 5.20496616180135e+01,
    6.18080121423973e+01, 7.33958732149108e+01, 8.71562442838066e+01,
    1.03496430860848e+02, 1.22900100720889e+02, 1.45941600416277e+02,
    1.73302955873365e+02, 2.05794060286978e+02, 2.44376646872353e+02,
    2.90192756065437e+02, 3.44598539797631e+02, 4.09204403447902e+02,
    4.85922673669740e+02, 5.77024203055553e+02, 6.85205587130498e+02,
    8.13668983291589e+02, 9.66216894324125e+02, 1.14736472207740e+03,
    1.36247442287647e+03, 1.61791322085579e+03, 1.92124207711260e+03,
    2.28143949334655e+03, 2.70916727454970e+03, 3.21708611729384e+03,
    3.82023036499473e+03, 4.53645302286906e+03, 5.38695420497926e+03,
    6.39690865534207e+03, 7.59621091765857e+03, 9.02036021061016e+03,
    1.07115112009343e+04, 1.27197217770508e+04, 1.51044347572047e+04,
    1.79362373905283e+04, 2.12989507320644e+04, 2.52921107370304e+04,
    3.00339145144454e+04, 3.56647189489147e+04};
static const double kProbQDomain = 1024.0;
// Loudness of -15 dB (smallest expected loudness) in log domain,
// loudness_db = 13.5 * log10(rms);
static const double kLogDomainMinBinCenter = -2.57752062648587;
// Loudness step of 1 dB in log domain
static const double kLogDomainStepSizeInverse = 5.81954605750359;
static const int kTransientWidthThreshold = 7;
static const double kLowProbabilityThreshold = 0.2;
static const int kLowProbThresholdQ10 =
    static_cast<int>(kLowProbabilityThreshold * kProbQDomain);
LoudnessHistogram::LoudnessHistogram()
    : num_updates_(0),
      audio_content_q10_(0),
      bin_count_q10_(),
      activity_probability_(),
      hist_bin_index_(),
      buffer_index_(0),
      buffer_is_full_(false),
      len_circular_buffer_(0),
      len_high_activity_(0) {
  static_assert(
      kHistSize == sizeof(kHistBinCenters) / sizeof(kHistBinCenters[0]),
      "histogram bin centers incorrect size");
}
LoudnessHistogram::LoudnessHistogram(int window_size)
    : num_updates_(0),
      audio_content_q10_(0),
      bin_count_q10_(),
      activity_probability_(new int[window_size]),
      hist_bin_index_(new int[window_size]),
      buffer_index_(0),
      buffer_is_full_(false),
      len_circular_buffer_(window_size),
      len_high_activity_(0) {}
LoudnessHistogram::~LoudnessHistogram() {}
void LoudnessHistogram::Update(double rms, double activity_probaility) {
  // If circular histogram is activated then remove the oldest entry.
  if (len_circular_buffer_ > 0)
    RemoveOldestEntryAndUpdate();
  // Find the corresponding bin.
  int hist_index = GetBinIndex(rms);
  // To Q10 domain.
  int prob_q10 =
      static_cast<int16_t>(floor(activity_probaility * kProbQDomain));
  InsertNewestEntryAndUpdate(prob_q10, hist_index);
}
// Doing nothing if buffer is not full, yet.
void LoudnessHistogram::RemoveOldestEntryAndUpdate() {
  RTC_DCHECK_GT(len_circular_buffer_, 0);
  // Do nothing if circular buffer is not full.
  if (!buffer_is_full_)
    return;
  int oldest_prob = activity_probability_[buffer_index_];
  int oldest_hist_index = hist_bin_index_[buffer_index_];
  UpdateHist(-oldest_prob, oldest_hist_index);
}
void LoudnessHistogram::RemoveTransient() {
  // Don't expect to be here if high-activity region is longer than
  // `kTransientWidthThreshold` or there has not been any transient.
  RTC_DCHECK_LE(len_high_activity_, kTransientWidthThreshold);
  int index =
      (buffer_index_ > 0) ? (buffer_index_ - 1) : len_circular_buffer_ - 1;
  while (len_high_activity_ > 0) {
    UpdateHist(-activity_probability_[index], hist_bin_index_[index]);
    activity_probability_[index] = 0;
    index = (index > 0) ? (index - 1) : (len_circular_buffer_ - 1);
    len_high_activity_--;
  }
}
void LoudnessHistogram::InsertNewestEntryAndUpdate(int activity_prob_q10,
                                                   int hist_index) {
  // Update the circular buffer if it is enabled.
  if (len_circular_buffer_ > 0) {
    // Removing transient.
    if (activity_prob_q10 <= kLowProbThresholdQ10) {
      // Lower than threshold probability, set it to zero.
      activity_prob_q10 = 0;
      // Check if this has been a transient.
      if (len_high_activity_ <= kTransientWidthThreshold)
        RemoveTransient();  // Remove this transient.
      len_high_activity_ = 0;
    } else if (len_high_activity_ <= kTransientWidthThreshold) {
      len_high_activity_++;
    }
    // Updating the circular buffer.
    activity_probability_[buffer_index_] = activity_prob_q10;
    hist_bin_index_[buffer_index_] = hist_index;
    // Increment the buffer index and check for wrap-around.
    buffer_index_++;
    if (buffer_index_ >= len_circular_buffer_) {
      buffer_index_ = 0;
      buffer_is_full_ = true;
    }
  }
  num_updates_++;
  if (num_updates_ < 0)
    num_updates_--;
  UpdateHist(activity_prob_q10, hist_index);
}
void LoudnessHistogram::UpdateHist(int activity_prob_q10, int hist_index) {
  bin_count_q10_[hist_index] += activity_prob_q10;
  audio_content_q10_ += activity_prob_q10;
}
double LoudnessHistogram::AudioContent() const {
  return audio_content_q10_ / kProbQDomain;
}
LoudnessHistogram* LoudnessHistogram::Create() {
  return new LoudnessHistogram;
}
LoudnessHistogram* LoudnessHistogram::Create(int window_size) {
  if (window_size < 0)
    return NULL;
  return new LoudnessHistogram(window_size);
}
void LoudnessHistogram::Reset() {
  // Reset the histogram, audio-content and number of updates.
  memset(bin_count_q10_, 0, sizeof(bin_count_q10_));
  audio_content_q10_ = 0;
  num_updates_ = 0;
  // Empty the circular buffer.
  buffer_index_ = 0;
  buffer_is_full_ = false;
  len_high_activity_ = 0;
}
int LoudnessHistogram::GetBinIndex(double rms) {
  // First exclude overload cases.
  if (rms <= kHistBinCenters[0]) {
    return 0;
  } else if (rms >= kHistBinCenters[kHistSize - 1]) {
    return kHistSize - 1;
  } else {
    // The quantizer is uniform in log domain. Alternatively we could do binary
    // search in linear domain.
    double rms_log = log(rms);
    int index = static_cast<int>(
        floor((rms_log - kLogDomainMinBinCenter) * kLogDomainStepSizeInverse));
    // The final decision is in linear domain.
    double b = 0.5 * (kHistBinCenters[index] + kHistBinCenters[index + 1]);
    if (rms > b) {
      return index + 1;
    }
    return index;
  }
}
double LoudnessHistogram::CurrentRms() const {
  double p;
  double mean_val = 0;
  if (audio_content_q10_ > 0) {
    double p_total_inverse = 1. / static_cast<double>(audio_content_q10_);
    for (int n = 0; n < kHistSize; n++) {
      p = static_cast<double>(bin_count_q10_[n]) * p_total_inverse;
      mean_val += p * kHistBinCenters[n];
    }
  } else {
    mean_val = kHistBinCenters[0];
  }
  return mean_val;
}
}  // namespace webrtc
 |