1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file defines some bit utilities.
#ifndef BASE_BITS_H_
#define BASE_BITS_H_
#include <stddef.h>
#include <stdint.h>
#include <type_traits>
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "build/build_config.h"
#if defined(COMPILER_MSVC)
#include <intrin.h>
#endif
namespace base {
namespace bits {
// Returns true iff |value| is a power of 2.
template <typename T,
typename = typename std::enable_if<std::is_integral<T>::value>>
constexpr inline bool IsPowerOfTwo(T value) {
// From "Hacker's Delight": Section 2.1 Manipulating Rightmost Bits.
//
// Only positive integers with a single bit set are powers of two. If only one
// bit is set in x (e.g. 0b00000100000000) then |x-1| will have that bit set
// to zero and all bits to its right set to 1 (e.g. 0b00000011111111). Hence
// |x & (x-1)| is 0 iff x is a power of two.
return value > 0 && (value & (value - 1)) == 0;
}
// Round up |size| to a multiple of alignment, which must be a power of two.
inline size_t Align(size_t size, size_t alignment) {
DCHECK(IsPowerOfTwo(alignment));
return (size + alignment - 1) & ~(alignment - 1);
}
// Round down |size| to a multiple of alignment, which must be a power of two.
inline size_t AlignDown(size_t size, size_t alignment) {
DCHECK(IsPowerOfTwo(alignment));
return size & ~(alignment - 1);
}
// CountLeadingZeroBits(value) returns the number of zero bits following the
// most significant 1 bit in |value| if |value| is non-zero, otherwise it
// returns {sizeof(T) * 8}.
// Example: 00100010 -> 2
//
// CountTrailingZeroBits(value) returns the number of zero bits preceding the
// least significant 1 bit in |value| if |value| is non-zero, otherwise it
// returns {sizeof(T) * 8}.
// Example: 00100010 -> 1
//
// C does not have an operator to do this, but fortunately the various
// compilers have built-ins that map to fast underlying processor instructions.
#if defined(COMPILER_MSVC)
template <typename T, unsigned bits = sizeof(T) * 8>
ALWAYS_INLINE
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 4,
unsigned>::type
CountLeadingZeroBits(T x) {
static_assert(bits > 0, "invalid instantiation");
unsigned long index;
return LIKELY(_BitScanReverse(&index, static_cast<uint32_t>(x)))
? (31 - index - (32 - bits))
: bits;
}
template <typename T, unsigned bits = sizeof(T) * 8>
ALWAYS_INLINE
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) == 8,
unsigned>::type
CountLeadingZeroBits(T x) {
static_assert(bits > 0, "invalid instantiation");
unsigned long index;
// MSVC only supplies _BitScanReverse64 when building for a 64-bit target.
#if defined(ARCH_CPU_64_BITS)
return LIKELY(_BitScanReverse64(&index, static_cast<uint64_t>(x)))
? (63 - index)
: 64;
#else
uint32_t left = static_cast<uint32_t>(x >> 32);
if (LIKELY(_BitScanReverse(&index, left)))
return 31 - index;
uint32_t right = static_cast<uint32_t>(x);
if (LIKELY(_BitScanReverse(&index, right)))
return 63 - index;
return 64;
#endif
}
template <typename T, unsigned bits = sizeof(T) * 8>
ALWAYS_INLINE
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 4,
unsigned>::type
CountTrailingZeroBits(T x) {
static_assert(bits > 0, "invalid instantiation");
unsigned long index;
return LIKELY(_BitScanForward(&index, static_cast<uint32_t>(x))) ? index
: bits;
}
template <typename T, unsigned bits = sizeof(T) * 8>
ALWAYS_INLINE
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) == 8,
unsigned>::type
CountTrailingZeroBits(T x) {
static_assert(bits > 0, "invalid instantiation");
unsigned long index;
// MSVC only supplies _BitScanForward64 when building for a 64-bit target.
#if defined(ARCH_CPU_64_BITS)
return LIKELY(_BitScanForward64(&index, static_cast<uint64_t>(x))) ? index
: 64;
#else
uint32_t right = static_cast<uint32_t>(x);
if (LIKELY(_BitScanForward(&index, right)))
return index;
uint32_t left = static_cast<uint32_t>(x >> 32);
if (LIKELY(_BitScanForward(&index, left)))
return 32 + index;
return 64;
#endif
}
ALWAYS_INLINE uint32_t CountLeadingZeroBits32(uint32_t x) {
return CountLeadingZeroBits(x);
}
ALWAYS_INLINE uint64_t CountLeadingZeroBits64(uint64_t x) {
return CountLeadingZeroBits(x);
}
#elif defined(COMPILER_GCC)
// __builtin_clz has undefined behaviour for an input of 0, even though there's
// clearly a return value that makes sense, and even though some processor clz
// instructions have defined behaviour for 0. We could drop to raw __asm__ to
// do better, but we'll avoid doing that unless we see proof that we need to.
template <typename T, unsigned bits = sizeof(T) * 8>
ALWAYS_INLINE
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
unsigned>::type
CountLeadingZeroBits(T value) {
static_assert(bits > 0, "invalid instantiation");
return LIKELY(value)
? bits == 64
? __builtin_clzll(static_cast<uint64_t>(value))
: __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits)
: bits;
}
template <typename T, unsigned bits = sizeof(T) * 8>
ALWAYS_INLINE
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
unsigned>::type
CountTrailingZeroBits(T value) {
return LIKELY(value) ? bits == 64
? __builtin_ctzll(static_cast<uint64_t>(value))
: __builtin_ctz(static_cast<uint32_t>(value))
: bits;
}
ALWAYS_INLINE uint32_t CountLeadingZeroBits32(uint32_t x) {
return CountLeadingZeroBits(x);
}
ALWAYS_INLINE uint64_t CountLeadingZeroBits64(uint64_t x) {
return CountLeadingZeroBits(x);
}
#endif
ALWAYS_INLINE size_t CountLeadingZeroBitsSizeT(size_t x) {
return CountLeadingZeroBits(x);
}
ALWAYS_INLINE size_t CountTrailingZeroBitsSizeT(size_t x) {
return CountTrailingZeroBits(x);
}
// Returns the integer i such as 2^i <= n < 2^(i+1)
inline int Log2Floor(uint32_t n) {
return 31 - CountLeadingZeroBits(n);
}
// Returns the integer i such as 2^(i-1) < n <= 2^i
inline int Log2Ceiling(uint32_t n) {
// When n == 0, we want the function to return -1.
// When n == 0, (n - 1) will underflow to 0xFFFFFFFF, which is
// why the statement below starts with (n ? 32 : -1).
return (n ? 32 : -1) - CountLeadingZeroBits(n - 1);
}
} // namespace bits
} // namespace base
#endif // BASE_BITS_H_
|