1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
use core::mem::MaybeUninit;
use getrandom::{fill, fill_uninit};
#[cfg(all(feature = "wasm_js", target_arch = "wasm32", target_os = "unknown"))]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
fn test_zero() {
// Test that APIs are happy with zero-length requests
fill(&mut [0u8; 0]).unwrap();
let res = fill_uninit(&mut []).unwrap();
assert!(res.is_empty());
}
trait DiffBits: Sized {
fn diff_bits(ab: (&Self, &Self)) -> usize;
}
impl DiffBits for u8 {
fn diff_bits((a, b): (&Self, &Self)) -> usize {
(a ^ b).count_ones() as usize
}
}
impl DiffBits for u32 {
fn diff_bits((a, b): (&Self, &Self)) -> usize {
(a ^ b).count_ones() as usize
}
}
impl DiffBits for u64 {
fn diff_bits((a, b): (&Self, &Self)) -> usize {
(a ^ b).count_ones() as usize
}
}
// Return the number of bits in which s1 and s2 differ
fn num_diff_bits<T: DiffBits>(s1: &[T], s2: &[T]) -> usize {
assert_eq!(s1.len(), s2.len());
s1.iter().zip(s2.iter()).map(T::diff_bits).sum()
}
// TODO: use `[const { MaybeUninit::uninit() }; N]` after MSRV is bumped to 1.79+
// or `MaybeUninit::uninit_array`
fn uninit_vec(n: usize) -> Vec<MaybeUninit<u8>> {
vec![MaybeUninit::uninit(); n]
}
// Tests the quality of calling getrandom on two large buffers
#[test]
fn test_diff() {
const N: usize = 1000;
let mut v1 = [0u8; N];
let mut v2 = [0u8; N];
fill(&mut v1).unwrap();
fill(&mut v2).unwrap();
let mut t1 = uninit_vec(N);
let mut t2 = uninit_vec(N);
let r1 = fill_uninit(&mut t1).unwrap();
let r2 = fill_uninit(&mut t2).unwrap();
assert_eq!(r1.len(), N);
assert_eq!(r2.len(), N);
// Between 3.5 and 4.5 bits per byte should differ. Probability of failure:
// ~ 2^(-94) = 2 * CDF[BinomialDistribution[8000, 0.5], 3500]
let d1 = num_diff_bits(&v1, &v2);
assert!(d1 > 3500);
assert!(d1 < 4500);
let d2 = num_diff_bits(r1, r2);
assert!(d2 > 3500);
assert!(d2 < 4500);
}
#[test]
fn test_diff_u32() {
const N: usize = 1000 / 4;
let mut v1 = [0u32; N];
let mut v2 = [0u32; N];
for v in v1.iter_mut() {
*v = getrandom::u32().unwrap();
}
for v in v2.iter_mut() {
*v = getrandom::u32().unwrap();
}
// Between 3.5 and 4.5 bits per byte should differ. Probability of failure:
// ~ 2^(-94) = 2 * CDF[BinomialDistribution[8000, 0.5], 3500]
let d1 = num_diff_bits(&v1, &v2);
assert!(d1 > 3500);
assert!(d1 < 4500);
}
#[test]
fn test_diff_u64() {
const N: usize = 1000 / 8;
let mut v1 = [0u64; N];
let mut v2 = [0u64; N];
for v in v1.iter_mut() {
*v = getrandom::u64().unwrap();
}
for v in v2.iter_mut() {
*v = getrandom::u64().unwrap();
}
// Between 3.5 and 4.5 bits per byte should differ. Probability of failure:
// ~ 2^(-94) = 2 * CDF[BinomialDistribution[8000, 0.5], 3500]
let d1 = num_diff_bits(&v1, &v2);
assert!(d1 > 3500);
assert!(d1 < 4500);
}
#[test]
fn test_small() {
const N: usize = 64;
// For each buffer size, get at least 256 bytes and check that between
// 3 and 5 bits per byte differ. Probability of failure:
// ~ 2^(-91) = 64 * 2 * CDF[BinomialDistribution[8*256, 0.5], 3*256]
for size in 1..=N {
let mut num_bytes = 0;
let mut diff_bits = 0;
while num_bytes < 256 {
let mut buf1 = [0u8; N];
let mut buf2 = [0u8; N];
let s1 = &mut buf1[..size];
let s2 = &mut buf2[..size];
fill(s1).unwrap();
fill(s2).unwrap();
num_bytes += size;
diff_bits += num_diff_bits(s1, s2);
}
assert!(diff_bits > 3 * num_bytes);
assert!(diff_bits < 5 * num_bytes);
}
}
// Tests the quality of calling getrandom repeatedly on small buffers
#[test]
fn test_small_uninit() {
const N: usize = 64;
// For each buffer size, get at least 256 bytes and check that between
// 3 and 5 bits per byte differ. Probability of failure:
// ~ 2^(-91) = 64 * 2 * CDF[BinomialDistribution[8*256, 0.5], 3*256]
for size in 1..=N {
let mut num_bytes = 0;
let mut diff_bits = 0;
while num_bytes < 256 {
let mut buf1 = uninit_vec(N);
let mut buf2 = uninit_vec(N);
let s1 = &mut buf1[..size];
let s2 = &mut buf2[..size];
let r1 = fill_uninit(s1).unwrap();
let r2 = fill_uninit(s2).unwrap();
assert_eq!(r1.len(), size);
assert_eq!(r2.len(), size);
num_bytes += size;
diff_bits += num_diff_bits(r1, r2);
}
assert!(diff_bits > 3 * num_bytes);
assert!(diff_bits < 5 * num_bytes);
}
}
#[test]
fn test_huge() {
let mut huge = [0u8; 100_000];
fill(&mut huge).unwrap();
}
#[test]
fn test_huge_uninit() {
const N: usize = 100_000;
let mut huge = uninit_vec(N);
let res = fill_uninit(&mut huge).unwrap();
assert_eq!(res.len(), N);
}
#[test]
#[cfg_attr(
target_arch = "wasm32",
ignore = "The thread API always fails/panics on WASM"
)]
fn test_multithreading() {
extern crate std;
use std::{sync::mpsc::channel, thread, vec};
let mut txs = vec![];
for _ in 0..20 {
let (tx, rx) = channel();
txs.push(tx);
thread::spawn(move || {
// wait until all the tasks are ready to go.
rx.recv().unwrap();
let mut v = [0u8; 1000];
for _ in 0..100 {
fill(&mut v).unwrap();
thread::yield_now();
}
});
}
// start all the tasks
for tx in txs.iter() {
tx.send(()).unwrap();
}
}
#[cfg(getrandom_backend = "custom")]
mod custom {
use getrandom::Error;
struct Xoshiro128PlusPlus {
s: [u32; 4],
}
impl Xoshiro128PlusPlus {
fn new(mut seed: u64) -> Self {
const PHI: u64 = 0x9e3779b97f4a7c15;
let mut s = [0u32; 4];
for val in s.iter_mut() {
seed = seed.wrapping_add(PHI);
let mut z = seed;
z = (z ^ (z >> 30)).wrapping_mul(0xbf58476d1ce4e5b9);
z = (z ^ (z >> 27)).wrapping_mul(0x94d049bb133111eb);
z = z ^ (z >> 31);
*val = z as u32;
}
Self { s }
}
fn next_u32(&mut self) -> u32 {
let res = self.s[0]
.wrapping_add(self.s[3])
.rotate_left(7)
.wrapping_add(self.s[0]);
let t = self.s[1] << 9;
self.s[2] ^= self.s[0];
self.s[3] ^= self.s[1];
self.s[1] ^= self.s[2];
self.s[0] ^= self.s[3];
self.s[2] ^= t;
self.s[3] = self.s[3].rotate_left(11);
res
}
}
// This implementation uses current timestamp as a PRNG seed.
//
// WARNING: this custom implementation is for testing purposes ONLY!
#[no_mangle]
unsafe extern "Rust" fn __getrandom_v03_custom(dest: *mut u8, len: usize) -> Result<(), Error> {
use std::time::{SystemTime, UNIX_EPOCH};
assert_ne!(len, 0);
if len == 142 {
return Err(Error::new_custom(142));
}
let dest_u32 = dest.cast::<u32>();
let ts = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let mut rng = Xoshiro128PlusPlus::new(ts.as_nanos() as u64);
for i in 0..len / 4 {
let val = rng.next_u32();
core::ptr::write_unaligned(dest_u32.add(i), val);
}
if len % 4 != 0 {
let start = 4 * (len / 4);
for i in start..len {
let val = rng.next_u32();
core::ptr::write_unaligned(dest.add(i), val as u8);
}
}
Ok(())
}
// Test that enabling the custom feature indeed uses the custom implementation
#[test]
fn test_custom() {
let mut buf = [0u8; 142];
let res = getrandom::fill(&mut buf);
assert!(res.is_err());
}
}
|