1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Modified from the Chromium original:
// src/media/base/sinc_resampler_unittest.cc
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include "common_audio/resampler/sinc_resampler.h"
#include <math.h>
#include <algorithm>
#include <memory>
#include <tuple>
#include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
#include "rtc_base/system/arch.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
namespace webrtc {
static const double kSampleRateRatio = 192000.0 / 44100.0;
static const double kKernelInterpolationFactor = 0.5;
// Helper class to ensure ChunkedResample() functions properly.
class MockSource : public SincResamplerCallback {
public:
MOCK_METHOD(void, Run, (size_t frames, float* destination), (override));
};
ACTION(ClearBuffer) {
memset(arg1, 0, arg0 * sizeof(float));
}
ACTION(FillBuffer) {
// Value chosen arbitrarily such that SincResampler resamples it to something
// easily representable on all platforms; e.g., using kSampleRateRatio this
// becomes 1.81219.
memset(arg1, 64, arg0 * sizeof(float));
}
// Test requesting multiples of ChunkSize() frames results in the proper number
// of callbacks.
TEST(SincResamplerTest, ChunkedResample) {
MockSource mock_source;
// Choose a high ratio of input to output samples which will result in quick
// exhaustion of SincResampler's internal buffers.
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
static const int kChunks = 2;
size_t max_chunk_size = resampler.ChunkSize() * kChunks;
std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
// Verify requesting ChunkSize() frames causes a single callback.
EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
::testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, Run(_, _))
.Times(kChunks)
.WillRepeatedly(ClearBuffer());
resampler.Resample(max_chunk_size, resampled_destination.get());
}
// Test flush resets the internal state properly.
TEST(SincResamplerTest, Flush) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
std::unique_ptr<float[]> resampled_destination(
new float[resampler.ChunkSize()]);
// Fill the resampler with junk data.
EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
ASSERT_NE(resampled_destination[0], 0);
// Flush and request more data, which should all be zeros now.
resampler.Flush();
::testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
ASSERT_FLOAT_EQ(resampled_destination[i], 0);
}
// Test flush resets the internal state properly.
TEST(SincResamplerTest, DISABLED_SetRatioBench) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
int64_t start = rtc::TimeNanos();
for (int i = 1; i < 10000; ++i)
resampler.SetRatio(1.0 / i);
double total_time_c_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
}
// Ensure various optimized Convolve() methods return the same value. Only run
// this test if other optimized methods exist, otherwise the default Convolve()
// will be tested by the parameterized SincResampler tests below.
TEST(SincResamplerTest, Convolve) {
#if defined(WEBRTC_ARCH_X86_FAMILY)
ASSERT_TRUE(GetCPUInfo(kSSE2));
#elif defined(WEBRTC_ARCH_ARM_V7)
ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
#endif
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
// The optimized Convolve methods are slightly more precise than Convolve_C(),
// so comparison must be done using an epsilon.
static const double kEpsilon = 0.00000005;
// Use a kernel from SincResampler as input and kernel data, this has the
// benefit of already being properly sized and aligned for Convolve_SSE().
double result = resampler.Convolve_C(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
double result2 = resampler.convolve_proc_(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
// Test Convolve() w/ unaligned input pointer.
result = resampler.Convolve_C(
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
result2 = resampler.convolve_proc_(
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
}
// Benchmark for the various Convolve() methods. Make sure to build with
// branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
// Original benchmarks were run with --convolve-iterations=50000000.
TEST(SincResamplerTest, ConvolveBenchmark) {
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
&mock_source);
// Retrieve benchmark iterations from command line.
// TODO(ajm): Reintroduce this as a command line option.
const int kConvolveIterations = 1000000;
printf("Benchmarking %d iterations:\n", kConvolveIterations);
// Benchmark Convolve_C().
int64_t start = rtc::TimeNanos();
for (int i = 0; i < kConvolveIterations; ++i) {
resampler.Convolve_C(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
}
double total_time_c_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
#if defined(WEBRTC_ARCH_X86_FAMILY)
ASSERT_TRUE(GetCPUInfo(kSSE2));
#elif defined(WEBRTC_ARCH_ARM_V7)
ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
#endif
// Benchmark with unaligned input pointer.
start = rtc::TimeNanos();
for (int j = 0; j < kConvolveIterations; ++j) {
resampler.convolve_proc_(
resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
}
double total_time_optimized_unaligned_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf(
"convolve_proc_(unaligned) took %.2fms; which is %.2fx "
"faster than Convolve_C.\n",
total_time_optimized_unaligned_us / 1000,
total_time_c_us / total_time_optimized_unaligned_us);
// Benchmark with aligned input pointer.
start = rtc::TimeNanos();
for (int j = 0; j < kConvolveIterations; ++j) {
resampler.convolve_proc_(
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), kKernelInterpolationFactor);
}
double total_time_optimized_aligned_us =
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
printf(
"convolve_proc_ (aligned) took %.2fms; which is %.2fx "
"faster than Convolve_C and %.2fx faster than "
"convolve_proc_ (unaligned).\n",
total_time_optimized_aligned_us / 1000,
total_time_c_us / total_time_optimized_aligned_us,
total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
}
typedef std::tuple<int, int, double, double> SincResamplerTestData;
class SincResamplerTest
: public ::testing::TestWithParam<SincResamplerTestData> {
public:
SincResamplerTest()
: input_rate_(std::get<0>(GetParam())),
output_rate_(std::get<1>(GetParam())),
rms_error_(std::get<2>(GetParam())),
low_freq_error_(std::get<3>(GetParam())) {}
virtual ~SincResamplerTest() {}
protected:
int input_rate_;
int output_rate_;
double rms_error_;
double low_freq_error_;
};
// Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest, Resample) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
const size_t input_samples =
static_cast<size_t>(kTestDurationSecs * input_rate_);
const size_t output_samples =
static_cast<size_t>(kTestDurationSecs * output_rate_);
// Nyquist frequency for the input sampling rate.
const double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq, 0);
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
&resampler_source);
// Force an update to the sample rate ratio to ensure dynamic sample rate
// changes are working correctly.
std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
memcpy(kernel.get(), resampler.get_kernel_for_testing(),
SincResampler::kKernelStorageSize);
resampler.SetRatio(M_PI);
ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
SincResampler::kKernelStorageSize));
resampler.SetRatio(io_ratio);
ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
SincResampler::kKernelStorageSize));
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
// Generate resampled signal.
resampler.Resample(output_samples, resampled_destination.get());
// Generate pure signal.
SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
input_nyquist_freq, 0);
pure_source.Run(output_samples, pure_destination.get());
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
// we refer to as low and high.
static const double kLowFrequencyNyquistRange = 0.7;
static const double kHighFrequencyNyquistRange = 0.9;
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
double sum_of_squares = 0;
double low_freq_max_error = 0;
double high_freq_max_error = 0;
int minimum_rate = std::min(input_rate_, output_rate_);
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
for (size_t i = 0; i < output_samples; ++i) {
double error = fabs(resampled_destination[i] - pure_destination[i]);
if (pure_source.Frequency(i) < low_frequency_range) {
if (error > low_freq_max_error)
low_freq_max_error = error;
} else if (pure_source.Frequency(i) < high_frequency_range) {
if (error > high_freq_max_error)
high_freq_max_error = error;
}
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
sum_of_squares += error * error;
}
double rms_error = sqrt(sum_of_squares / output_samples);
// Convert each error to dbFS.
#define DBFS(x) 20 * log10(x)
rms_error = DBFS(rms_error);
low_freq_max_error = DBFS(low_freq_max_error);
high_freq_max_error = DBFS(high_freq_max_error);
EXPECT_LE(rms_error, rms_error_);
EXPECT_LE(low_freq_max_error, low_freq_error_);
// All conversions currently have a high frequency error around -6 dbFS.
static const double kHighFrequencyMaxError = -6.02;
EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
}
// Almost all conversions have an RMS error of around -14 dbFS.
static const double kResamplingRMSError = -14.58;
// Thresholds chosen arbitrarily based on what each resampling reported during
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
INSTANTIATE_TEST_SUITE_P(
SincResamplerTest,
SincResamplerTest,
::testing::Values(
// To 22.05kHz
std::make_tuple(8000, 22050, kResamplingRMSError, -62.73),
std::make_tuple(11025, 22050, kResamplingRMSError, -72.19),
std::make_tuple(16000, 22050, kResamplingRMSError, -62.54),
std::make_tuple(22050, 22050, kResamplingRMSError, -73.53),
std::make_tuple(32000, 22050, kResamplingRMSError, -46.45),
std::make_tuple(44100, 22050, kResamplingRMSError, -28.49),
std::make_tuple(48000, 22050, -15.01, -25.56),
std::make_tuple(96000, 22050, -18.49, -13.42),
std::make_tuple(192000, 22050, -20.50, -9.23),
// To 44.1kHz
std::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
std::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
std::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
std::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
std::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
std::make_tuple(44100, 44100, kResamplingRMSError, -73.52),
std::make_tuple(48000, 44100, -15.01, -64.04),
std::make_tuple(96000, 44100, -18.49, -25.51),
std::make_tuple(192000, 44100, -20.50, -13.31),
// To 48kHz
std::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
std::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
std::make_tuple(16000, 48000, kResamplingRMSError, -63.95),
std::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
std::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
std::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
std::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
std::make_tuple(96000, 48000, -18.40, -28.44),
std::make_tuple(192000, 48000, -20.43, -14.11),
// To 96kHz
std::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
std::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
std::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
std::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
std::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
std::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
std::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
std::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
std::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
// To 192kHz
std::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
std::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
std::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
std::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
std::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
std::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
std::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
std::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
std::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
} // namespace webrtc
|