1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsBayesianFilter.h"
#include <cmath> // for std::abs(float/double)
#include <cstdlib> // for std::abs(int/long)
#include <math.h>
#include <prmem.h>
#include "mozilla/ArenaAllocatorExtensions.h" // for ArenaStrdup
#include "mozilla/Attributes.h"
#include "mozilla/Components.h"
#include "mozilla/Logging.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "nsIInputStream.h"
#include "nsIStreamListener.h"
#include "nsNetUtil.h"
#include "nsIMsgMessageService.h"
#include "nsMsgUtils.h" // for GetMessageServiceFromURI
#include "prnetdb.h"
#include "nsIMsgWindow.h"
#include "nsAppDirectoryServiceDefs.h"
#include "nsUnicharUtils.h"
#include "nsDirectoryServiceUtils.h"
#include "nsIMIMEHeaderParam.h"
#include "nsNetCID.h"
#include "nsIMsgMailNewsUrl.h"
#include "nsIStringEnumerator.h"
#include "nsIObserverService.h"
#include "nsIChannel.h"
#include "nsIMailChannel.h"
#include "nsDependentSubstring.h"
#include "nsMemory.h"
#include "nsUnicodeProperties.h"
using namespace mozilla;
using mozilla::intl::Script;
using mozilla::intl::UnicodeProperties;
// needed to mark attachment flag on the db hdr
#include "nsIMsgHdr.h"
// needed to strip html out of the body
#include "nsIParserUtils.h"
#include "nsIDocumentEncoder.h"
#include "nsIncompleteGamma.h"
#include "nsIMsgTraitService.h"
using mozilla::Preferences;
static mozilla::LazyLogModule BayesianFilterLogModule("BayesianFilter");
#define kDefaultJunkThreshold .99 // we override this value via a pref
static const char* kBayesianFilterTokenDelimiters = " \t\n\r\f.";
static unsigned int kMinLengthForToken =
3; // lower bound on the number of characters in a word before we treat it
// as a token
static unsigned int kMaxLengthForToken =
12; // upper bound on the number of characters in a word to be declared as
// a token
#define FORGED_RECEIVED_HEADER_HINT "may be forged"_ns
#ifndef M_LN2
# define M_LN2 0.69314718055994530942
#endif
#ifndef M_E
# define M_E 2.7182818284590452354
#endif
// provide base implementation of hash lookup of a string
struct BaseToken : public PLDHashEntryHdr {
const char* mWord;
};
// token for a particular message
// mCount, mAnalysisLink are initialized to zero by the hash code
struct Token : public BaseToken {
uint32_t mCount;
uint32_t mAnalysisLink; // index in mAnalysisStore of the AnalysisPerToken
// object for the first trait for this token
// Helper to support Tokenizer::copyTokens()
void clone(const Token& other) {
mWord = other.mWord;
mCount = other.mCount;
mAnalysisLink = other.mAnalysisLink;
}
};
// token stored in a training file for a group of messages
// mTraitLink is initialized to 0 by the hash code
struct CorpusToken : public BaseToken {
uint32_t mTraitLink; // index in mTraitStore of the TraitPerToken
// object for the first trait for this token
};
// set the value of a TraitPerToken object
TraitPerToken::TraitPerToken(uint32_t aTraitId, uint32_t aCount)
: mId(aTraitId), mCount(aCount), mNextLink(0) {}
// shorthand representations of trait ids for junk and good
static const uint32_t kJunkTrait = nsIJunkMailPlugin::JUNK_TRAIT;
static const uint32_t kGoodTrait = nsIJunkMailPlugin::GOOD_TRAIT;
// set the value of an AnalysisPerToken object
AnalysisPerToken::AnalysisPerToken(uint32_t aTraitIndex, double aDistance,
double aProbability)
: mTraitIndex(aTraitIndex),
mDistance(aDistance),
mProbability(aProbability),
mNextLink(0) {}
// the initial size of the AnalysisPerToken linked list storage
const uint32_t kAnalysisStoreCapacity = 2048;
// the initial size of the TraitPerToken linked list storage
const uint32_t kTraitStoreCapacity = 16384;
// Size of Auto arrays representing per trait information
const uint32_t kTraitAutoCapacity = 10;
TokenEnumeration::TokenEnumeration(PLDHashTable* table)
: mIterator(table->Iter()) {}
inline bool TokenEnumeration::hasMoreTokens() { return !mIterator.Done(); }
inline BaseToken* TokenEnumeration::nextToken() {
auto token = static_cast<BaseToken*>(mIterator.Get());
mIterator.Next();
return token;
}
// member variables
static const PLDHashTableOps gTokenTableOps = {
PLDHashTable::HashStringKey, PLDHashTable::MatchStringKey,
PLDHashTable::MoveEntryStub, PLDHashTable::ClearEntryStub, nullptr};
TokenHash::TokenHash(uint32_t aEntrySize)
: mTokenTable(&gTokenTableOps, aEntrySize, 128) {
mEntrySize = aEntrySize;
}
TokenHash::~TokenHash() {}
nsresult TokenHash::clearTokens() {
// we re-use the tokenizer when classifying multiple messages,
// so this gets called after every message classification.
mTokenTable.ClearAndPrepareForLength(128);
mWordPool.Clear();
return NS_OK;
}
char* TokenHash::copyWord(const char* word, uint32_t len) {
return ArenaStrdup(Substring(word, len), mWordPool);
}
inline BaseToken* TokenHash::get(const char* word) {
PLDHashEntryHdr* entry = mTokenTable.Search(word);
if (entry) return static_cast<BaseToken*>(entry);
return NULL;
}
BaseToken* TokenHash::add(const char* word) {
if (!word || !*word) {
NS_ERROR("Trying to add a null word");
return nullptr;
}
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug, ("add word: %s", word));
PLDHashEntryHdr* entry = mTokenTable.Add(word, mozilla::fallible);
BaseToken* token = static_cast<BaseToken*>(entry);
if (token) {
if (token->mWord == NULL) {
uint32_t len = strlen(word);
NS_ASSERTION(len != 0, "adding zero length word to tokenizer");
if (!len)
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("adding zero length word to tokenizer"));
token->mWord = copyWord(word, len);
NS_ASSERTION(token->mWord, "copyWord failed");
if (!token->mWord) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Error,
("copyWord failed: %s (%d)", word, len));
mTokenTable.RawRemove(entry);
return NULL;
}
}
}
return token;
}
inline uint32_t TokenHash::countTokens() { return mTokenTable.EntryCount(); }
inline TokenEnumeration TokenHash::getTokens() {
return TokenEnumeration(&mTokenTable);
}
Tokenizer::Tokenizer()
: TokenHash(sizeof(Token)),
mBodyDelimiters(kBayesianFilterTokenDelimiters),
mHeaderDelimiters(kBayesianFilterTokenDelimiters),
mCustomHeaderTokenization(false),
mMaxLengthForToken(kMaxLengthForToken),
mIframeToDiv(false) {
/*
* RSS feeds store their summary as alternate content of an iframe. But due
* to bug 365953, this is not seen by the serializer. As a workaround, allow
* the tokenizer to replace the iframe with div for tokenization.
*/
mIframeToDiv =
Preferences::GetBool("mailnews.bayesian_spam_filter.iframe_to_div");
/*
* the list of delimiters used to tokenize the message and body
* defaults to the value in kBayesianFilterTokenDelimiters, but may be
* set with the following preferences for the body and header
* separately.
*
* \t, \n, \v, \f, \r, and \\ will be escaped to their normal
* C-library values, all other two-letter combinations beginning with \
* will be ignored.
*/
Preferences::GetCString("mailnews.bayesian_spam_filter.body_delimiters",
mBodyDelimiters);
if (!mBodyDelimiters.IsEmpty())
UnescapeCString(mBodyDelimiters);
else // prefBranch empties the result when it fails :(
mBodyDelimiters.Assign(kBayesianFilterTokenDelimiters);
Preferences::GetCString("mailnews.bayesian_spam_filter.header_delimiters",
mHeaderDelimiters);
if (!mHeaderDelimiters.IsEmpty())
UnescapeCString(mHeaderDelimiters);
else
mHeaderDelimiters.Assign(kBayesianFilterTokenDelimiters);
/*
* Extensions may wish to enable or disable tokenization of certain headers.
* Define any headers to enable/disable in a string preference like this:
* "mailnews.bayesian_spam_filter.tokenizeheader.headername"
*
* where "headername" is the header to tokenize. For example, to tokenize the
* header "x-spam-status" use the preference:
*
* "mailnews.bayesian_spam_filter.tokenizeheader.x-spam-status"
*
* The value of the string preference will be interpreted in one of
* four ways, depending on the value:
*
* If "false" then do not tokenize that header
* If "full" then add the entire header value as a token,
* without breaking up into subtokens using delimiters
* If "standard" then tokenize the header using as delimiters the current
* value of the generic header delimiters
* Any other string is interpreted as a list of delimiters to use to parse
* the header. \t, \n, \v, \f, \r, and \\ will be escaped to their normal
* C-library values, all other two-letter combinations beginning with \
* will be ignored.
*
* Header names in the preference should be all lower case
*
* Extensions may also set the maximum length of a token (default is
* kMaxLengthForToken) by setting the int preference:
* "mailnews.bayesian_spam_filter.maxlengthfortoken"
*/
nsTArray<nsCString> headers;
// get customized maximum token length
mMaxLengthForToken = Preferences::GetUint(
"mailnews.bayesian_spam_filter.maxlengthfortoken", kMaxLengthForToken);
nsCOMPtr<nsIPrefService> prefs = Preferences::GetService();
nsCOMPtr<nsIPrefBranch> prefBranch;
prefs->GetBranch("mailnews.bayesian_spam_filter.tokenizeheader.",
getter_AddRefs(prefBranch));
prefBranch->GetChildList("", headers);
mCustomHeaderTokenization = true;
for (auto& header : headers) {
nsCString value;
prefBranch->GetCharPref(header.get(), value);
if (value.EqualsLiteral("false")) {
mDisabledHeaders.AppendElement(header);
continue;
}
mEnabledHeaders.AppendElement(header);
if (value.EqualsLiteral("standard"))
value.SetIsVoid(true); // Void means use default delimiter
else if (value.EqualsLiteral("full"))
value.Truncate(); // Empty means add full header
else
UnescapeCString(value);
mEnabledHeadersDelimiters.AppendElement(value);
}
}
Tokenizer::~Tokenizer() {}
inline Token* Tokenizer::get(const char* word) {
return static_cast<Token*>(TokenHash::get(word));
}
Token* Tokenizer::add(const char* word, uint32_t count) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("add word: %s (count=%d)", word, count));
Token* token = static_cast<Token*>(TokenHash::add(word));
if (token) {
token->mCount += count; // hash code initializes this to zero
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("adding word to tokenizer: %s (count=%d) (mCount=%d)", word, count,
token->mCount));
}
return token;
}
static bool isDecimalNumber(const char* word) {
const char* p = word;
if (*p == '-') ++p;
char c;
while ((c = *p++)) {
if (!isdigit((unsigned char)c)) return false;
}
return true;
}
static bool isASCII(const char* word) {
const unsigned char* p = (const unsigned char*)word;
unsigned char c;
while ((c = *p++)) {
if (c > 127) return false;
}
return true;
}
inline bool isUpperCase(char c) { return ('A' <= c) && (c <= 'Z'); }
static char* toLowerCase(char* str) {
char c, *p = str;
while ((c = *p++)) {
if (isUpperCase(c)) p[-1] = c + ('a' - 'A');
}
return str;
}
void Tokenizer::addTokenForHeader(const char* aTokenPrefix, nsACString& aValue,
bool aTokenizeValue,
const char* aDelimiters) {
if (aValue.Length()) {
ToLowerCase(aValue);
if (!aTokenizeValue) {
nsCString tmpStr;
tmpStr.Assign(aTokenPrefix);
tmpStr.Append(':');
tmpStr.Append(aValue);
add(tmpStr.get());
} else {
char* word;
nsCString str(aValue);
char* next = str.BeginWriting();
const char* delimiters =
!aDelimiters ? mHeaderDelimiters.get() : aDelimiters;
while ((word = NS_strtok(delimiters, &next)) != NULL) {
if (strlen(word) < kMinLengthForToken) continue;
if (isDecimalNumber(word)) continue;
if (isASCII(word)) {
nsCString tmpStr;
tmpStr.Assign(aTokenPrefix);
tmpStr.Append(':');
tmpStr.Append(word);
add(tmpStr.get());
}
}
}
}
}
void Tokenizer::tokenizeAttachments(
nsTArray<RefPtr<nsIPropertyBag2>>& attachments) {
for (auto attachment : attachments) {
nsCString contentType;
ToLowerCase(contentType);
attachment->GetPropertyAsAUTF8String(u"contentType"_ns, contentType);
addTokenForHeader("attachment/content-type", contentType);
nsCString displayName;
attachment->GetPropertyAsAUTF8String(u"displayName"_ns, displayName);
ToLowerCase(displayName);
addTokenForHeader("attachment/filename", displayName);
}
}
void Tokenizer::tokenizeHeaders(nsTArray<nsCString>& aHeaderNames,
nsTArray<nsCString>& aHeaderValues) {
nsCString headerValue;
nsAutoCString
headerName; // we'll be normalizing all header names to lower case
for (uint32_t i = 0; i < aHeaderNames.Length(); i++) {
headerName = aHeaderNames[i];
ToLowerCase(headerName);
headerValue = aHeaderValues[i];
bool headerProcessed = false;
if (mCustomHeaderTokenization) {
// Process any exceptions set from preferences
for (uint32_t i = 0; i < mEnabledHeaders.Length(); i++)
if (headerName.Equals(mEnabledHeaders[i])) {
if (mEnabledHeadersDelimiters[i].IsVoid())
// tokenize with standard delimiters for all headers
addTokenForHeader(headerName.get(), headerValue, true);
else if (mEnabledHeadersDelimiters[i].IsEmpty())
// do not break the header into tokens
addTokenForHeader(headerName.get(), headerValue);
else
// use the delimiter in mEnabledHeadersDelimiters
addTokenForHeader(headerName.get(), headerValue, true,
mEnabledHeadersDelimiters[i].get());
headerProcessed = true;
break; // we found the header, no need to look for more custom values
}
for (uint32_t i = 0; i < mDisabledHeaders.Length(); i++) {
if (headerName.Equals(mDisabledHeaders[i])) {
headerProcessed = true;
break;
}
}
if (headerProcessed) continue;
}
switch (headerName.First()) {
case 'c':
if (headerName.EqualsLiteral("content-type")) {
nsCOMPtr<nsIMIMEHeaderParam> mimehdrpar =
mozilla::components::MimeHeaderParam::Service();
// extract the charset parameter
nsCString parameterValue;
mimehdrpar->GetParameterInternal(headerValue, "charset", nullptr,
nullptr,
getter_Copies(parameterValue));
addTokenForHeader("charset", parameterValue);
// create a token containing just the content type
mimehdrpar->GetParameterInternal(headerValue, "type", nullptr,
nullptr,
getter_Copies(parameterValue));
if (!parameterValue.Length())
mimehdrpar->GetParameterInternal(
headerValue, nullptr /* use first unnamed param */, nullptr,
nullptr, getter_Copies(parameterValue));
addTokenForHeader("content-type/type", parameterValue);
// XXX: should we add a token for the entire content-type header as
// well or just these parts we have extracted?
}
break;
case 'r':
if (headerName.EqualsLiteral("received")) {
// look for the string "may be forged" in the received headers.
// sendmail sometimes adds this hint This does not compile on linux
// yet. Need to figure out why. Commenting out for now if
// (FindInReadable(FORGED_RECEIVED_HEADER_HINT, headerValue))
// addTokenForHeader(headerName.get(), FORGED_RECEIVED_HEADER_HINT);
}
// leave out reply-to
break;
case 's':
if (headerName.EqualsLiteral("subject")) {
// we want to tokenize the subject
addTokenForHeader(headerName.get(), headerValue, true);
}
// important: leave out sender field. Too strong of an indicator
break;
case 'x': // (2) X-Mailer / user-agent works best if it is untokenized,
// just fold the case and any leading/trailing white space
// all headers beginning with x-mozilla are being changed by us, so
// ignore
if (StringBeginsWith(headerName, "x-mozilla"_ns)) break;
// fall through
[[fallthrough]];
case 'u':
addTokenForHeader(headerName.get(), headerValue);
break;
default:
addTokenForHeader(headerName.get(), headerValue);
break;
} // end switch
}
}
void Tokenizer::tokenize_ascii_word(char* aWord) {
// always deal with normalized lower case strings
toLowerCase(aWord);
uint32_t wordLength = strlen(aWord);
// if the wordLength is within our accepted token limit, then add it
if (wordLength >= kMinLengthForToken && wordLength <= mMaxLengthForToken)
add(aWord);
else if (wordLength > mMaxLengthForToken) {
// don't skip over the word if it looks like an email address,
// there is value in adding tokens for addresses
nsDependentCString word(aWord,
wordLength); // CHEAP, no allocation occurs here...
// XXX: i think the 40 byte check is just for perf reasons...if the email
// address is longer than that then forget about it.
const char* atSign = strchr(aWord, '@');
if (wordLength < 40 && strchr(aWord, '.') && atSign &&
!strchr(atSign + 1, '@')) {
uint32_t numBytesToSep = atSign - aWord;
if (numBytesToSep <
wordLength - 1) // if the @ sign is the last character, it must not
// be an email address
{
// split the john@foo.com into john and foo.com, treat them as separate
// tokens
nsCString emailNameToken;
emailNameToken.AssignLiteral("email name:");
emailNameToken.Append(Substring(word, 0, numBytesToSep++));
add(emailNameToken.get());
nsCString emailAddrToken;
emailAddrToken.AssignLiteral("email addr:");
emailAddrToken.Append(
Substring(word, numBytesToSep, wordLength - numBytesToSep));
add(emailAddrToken.get());
return;
}
}
// there is value in generating a token indicating the number
// of characters we are skipping. We'll round to the nearest 10
nsCString skipToken;
skipToken.AssignLiteral("skip:");
skipToken.Append(word[0]);
skipToken.Append(' ');
skipToken.AppendInt((wordLength / 10) * 10);
add(skipToken.get());
}
}
// Copied from mozilla/intl/lwbrk/WordBreaker.cpp
#define ASCII_IS_ALPHA(c) \
((('a' <= (c)) && ((c) <= 'z')) || (('A' <= (c)) && ((c) <= 'Z')))
#define ASCII_IS_DIGIT(c) (('0' <= (c)) && ((c) <= '9'))
#define ASCII_IS_SPACE(c) \
((' ' == (c)) || ('\t' == (c)) || ('\r' == (c)) || ('\n' == (c)))
#define IS_ALPHABETICAL_SCRIPT(c) ((c) < 0x2E80)
// we change the beginning of IS_HAN from 0x4e00 to 0x3400 to relfect
// Unicode 3.0
#define IS_HAN(c) \
((0x3400 <= (c)) && ((c) <= 0x9fff)) || ((0xf900 <= (c)) && ((c) <= 0xfaff))
#define IS_KATAKANA(c) ((0x30A0 <= (c)) && ((c) <= 0x30FF))
#define IS_HIRAGANA(c) ((0x3040 <= (c)) && ((c) <= 0x309F))
#define IS_HALFWIDTHKATAKANA(c) ((0xFF60 <= (c)) && ((c) <= 0xFF9F))
// Return true if aChar belongs to a SEAsian script that is written without
// word spaces, so we need to use the "complex breaker" to find possible word
// boundaries. (https://en.wikipedia.org/wiki/Scriptio_continua)
// (How well this works depends on the level of platform support for finding
// possible line breaks - or possible word boundaries - in the particular
// script. Thai, at least, works pretty well on the major desktop OSes. If
// the script is not supported by the platform, we just won't find any useful
// boundaries.)
static bool IsScriptioContinua(char16_t aChar) {
Script sc = UnicodeProperties::GetScriptCode(aChar);
return sc == Script::THAI || sc == Script::MYANMAR || sc == Script::KHMER ||
sc == Script::JAVANESE || sc == Script::BALINESE ||
sc == Script::SUNDANESE || sc == Script::LAO;
}
// one subtract and one conditional jump should be faster than two conditional
// jump on most recent system.
#define IN_RANGE(x, low, high) ((uint16_t)((x) - (low)) <= (high) - (low))
#define IS_JA_HIRAGANA(x) IN_RANGE(x, 0x3040, 0x309F)
// swapping the range using xor operation to reduce conditional jump.
#define IS_JA_KATAKANA(x) \
(IN_RANGE(x ^ 0x0004, 0x30A0, 0x30FE) || (IN_RANGE(x, 0xFF66, 0xFF9F)))
#define IS_JA_KANJI(x) \
(IN_RANGE(x, 0x2E80, 0x2FDF) || IN_RANGE(x, 0x4E00, 0x9FAF))
#define IS_JA_KUTEN(x) (((x) == 0x3001) || ((x) == 0xFF64) || ((x) == 0xFF0E))
#define IS_JA_TOUTEN(x) (((x) == 0x3002) || ((x) == 0xFF61) || ((x) == 0xFF0C))
#define IS_JA_SPACE(x) ((x) == 0x3000)
#define IS_JA_FWLATAIN(x) IN_RANGE(x, 0xFF01, 0xFF5E)
#define IS_JA_FWNUMERAL(x) IN_RANGE(x, 0xFF10, 0xFF19)
#define IS_JAPANESE_SPECIFIC(x) \
(IN_RANGE(x, 0x3040, 0x30FF) || IN_RANGE(x, 0xFF01, 0xFF9F))
enum char_class {
others = 0,
space,
hiragana,
katakana,
kanji,
kuten,
touten,
kigou,
fwlatain,
ascii
};
static char_class getCharClass(char16_t c) {
char_class charClass = others;
if (IS_JA_HIRAGANA(c))
charClass = hiragana;
else if (IS_JA_KATAKANA(c))
charClass = katakana;
else if (IS_JA_KANJI(c))
charClass = kanji;
else if (IS_JA_KUTEN(c))
charClass = kuten;
else if (IS_JA_TOUTEN(c))
charClass = touten;
else if (IS_JA_FWLATAIN(c))
charClass = fwlatain;
return charClass;
}
static bool isJapanese(const char* word) {
nsString text = NS_ConvertUTF8toUTF16(word);
const char16_t* p = (const char16_t*)text.get();
char16_t c;
// it is japanese chunk if it contains any hiragana or katakana.
while ((c = *p++))
if (IS_JAPANESE_SPECIFIC(c)) return true;
return false;
}
static bool isFWNumeral(const char16_t* p1, const char16_t* p2) {
for (; p1 < p2; p1++)
if (!IS_JA_FWNUMERAL(*p1)) return false;
return true;
}
// The japanese tokenizer was added as part of Bug #277354
void Tokenizer::tokenize_japanese_word(char* chunk) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("entering tokenize_japanese_word(%s)", chunk));
nsString srcStr = NS_ConvertUTF8toUTF16(chunk);
const char16_t* p1 = srcStr.get();
const char16_t* p2 = p1;
if (!*p2) return;
char_class cc = getCharClass(*p2);
while (*(++p2)) {
if (cc == getCharClass(*p2)) continue;
nsCString token = NS_ConvertUTF16toUTF8(p1, p2 - p1);
if ((!isDecimalNumber(token.get())) && (!isFWNumeral(p1, p2))) {
nsCString tmpStr;
tmpStr.AppendLiteral("JA:");
tmpStr.Append(token);
add(tmpStr.get());
}
cc = getCharClass(*p2);
p1 = p2;
}
}
nsresult Tokenizer::stripHTML(const nsAString& inString, nsAString& outString) {
uint32_t flags = nsIDocumentEncoder::OutputLFLineBreak |
nsIDocumentEncoder::OutputNoScriptContent |
nsIDocumentEncoder::OutputNoFramesContent |
nsIDocumentEncoder::OutputBodyOnly;
nsCOMPtr<nsIParserUtils> utils = do_GetService(NS_PARSERUTILS_CONTRACTID);
return utils->ConvertToPlainText(inString, flags, 80, outString);
}
// Copied from WorfdBreker.cpp due to changes in bug 1728708.
enum WordBreakClass : uint8_t {
kWbClassSpace = 0,
kWbClassAlphaLetter,
kWbClassPunct,
kWbClassHanLetter,
kWbClassKatakanaLetter,
kWbClassHiraganaLetter,
kWbClassHWKatakanaLetter,
kWbClassScriptioContinua
};
WordBreakClass GetWordBreakClass(char16_t c) {
// begin of the hack
if (IS_ALPHABETICAL_SCRIPT(c)) {
if (IS_ASCII(c)) {
if (ASCII_IS_SPACE(c)) {
return WordBreakClass::kWbClassSpace;
}
if (ASCII_IS_ALPHA(c) || ASCII_IS_DIGIT(c) || (c == '_')) {
return WordBreakClass::kWbClassAlphaLetter;
}
return WordBreakClass::kWbClassPunct;
}
if (c == 0x00A0 /*NBSP*/) {
return WordBreakClass::kWbClassSpace;
}
if (mozilla::unicode::GetGenCategory(c) == nsUGenCategory::kPunctuation) {
return WordBreakClass::kWbClassPunct;
}
if (IsScriptioContinua(c)) {
return WordBreakClass::kWbClassScriptioContinua;
}
return WordBreakClass::kWbClassAlphaLetter;
}
if (IS_HAN(c)) {
return WordBreakClass::kWbClassHanLetter;
}
if (IS_KATAKANA(c)) {
return kWbClassKatakanaLetter;
}
if (IS_HIRAGANA(c)) {
return WordBreakClass::kWbClassHiraganaLetter;
}
if (IS_HALFWIDTHKATAKANA(c)) {
return WordBreakClass::kWbClassHWKatakanaLetter;
}
if (mozilla::unicode::GetGenCategory(c) == nsUGenCategory::kPunctuation) {
return WordBreakClass::kWbClassPunct;
}
if (IsScriptioContinua(c)) {
return WordBreakClass::kWbClassScriptioContinua;
}
return WordBreakClass::kWbClassAlphaLetter;
}
// Copied from nsSemanticUnitScanner.cpp which was removed in bug 1368418.
nsresult Tokenizer::ScannerNext(const char16_t* text, int32_t length,
int32_t pos, bool isLastBuffer, int32_t* begin,
int32_t* end, bool* _retval) {
// if we reach the end, just return
if (pos >= length) {
*begin = pos;
*end = pos;
*_retval = false;
return NS_OK;
}
WordBreakClass char_class = GetWordBreakClass(text[pos]);
// If we are in Chinese mode, return one Han letter at a time.
// We should not do this if we are in Japanese or Korean mode.
if (WordBreakClass::kWbClassHanLetter == char_class) {
*begin = pos;
*end = pos + 1;
*_retval = true;
return NS_OK;
}
int32_t next;
// Find the next "word".
next =
mozilla::intl::WordBreaker::Next(text, (uint32_t)length, (uint32_t)pos);
// If we don't have enough text to make decision, return.
if (next == NS_WORDBREAKER_NEED_MORE_TEXT) {
*begin = pos;
*end = isLastBuffer ? length : pos;
*_retval = isLastBuffer;
return NS_OK;
}
// If what we got is space or punct, look at the next break.
if (char_class == WordBreakClass::kWbClassSpace ||
char_class == WordBreakClass::kWbClassPunct) {
// If the next "word" is not letters,
// call itself recursively with the new pos.
return ScannerNext(text, length, next, isLastBuffer, begin, end, _retval);
}
// For the rest, return.
*begin = pos;
*end = next;
*_retval = true;
return NS_OK;
}
void Tokenizer::tokenize(const char* aText) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug, ("tokenize: %s", aText));
// strip out HTML tags before we begin processing
// uggh but first we have to blow up our string into UCS2
// since that's what the document encoder wants. UTF8/UCS2, I wish we all
// spoke the same language here..
nsString text = NS_ConvertUTF8toUTF16(aText);
nsString strippedUCS2;
// RSS feeds store their summary information as an iframe. But due to
// bug 365953, we can't see those in the plaintext serializer. As a
// workaround, allow an option to replace iframe with div in the message
// text. We disable by default, since most people won't be applying bayes
// to RSS
if (mIframeToDiv) {
text.ReplaceSubstring(u"<iframe"_ns, u"<div"_ns);
text.ReplaceSubstring(u"/iframe>"_ns, u"/div>"_ns);
}
stripHTML(text, strippedUCS2);
// convert 0x3000(full width space) into 0x0020
char16_t* substr_start = strippedUCS2.BeginWriting();
char16_t* substr_end = strippedUCS2.EndWriting();
while (substr_start != substr_end) {
if (*substr_start == 0x3000) *substr_start = 0x0020;
++substr_start;
}
nsCString strippedStr = NS_ConvertUTF16toUTF8(strippedUCS2);
char* strippedText = strippedStr.BeginWriting();
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("tokenize stripped html: %s", strippedText));
char* word;
char* next = strippedText;
while ((word = NS_strtok(mBodyDelimiters.get(), &next)) != NULL) {
if (!*word) continue;
if (isDecimalNumber(word)) continue;
if (isASCII(word))
tokenize_ascii_word(word);
else if (isJapanese(word))
tokenize_japanese_word(word);
else {
nsresult rv;
// Convert this word from UTF-8 into UCS2.
NS_ConvertUTF8toUTF16 uword(word);
ToLowerCase(uword);
const char16_t* utext = uword.get();
int32_t len = uword.Length(), pos = 0, begin, end;
bool gotUnit;
while (pos < len) {
rv = ScannerNext(utext, len, pos, true, &begin, &end, &gotUnit);
if (NS_SUCCEEDED(rv) && gotUnit) {
NS_ConvertUTF16toUTF8 utfUnit(utext + begin, end - begin);
add(utfUnit.get());
// Advance to end of current unit.
pos = end;
} else {
break;
}
}
}
}
}
// helper function to un-escape \n, \t, etc from a CString
void Tokenizer::UnescapeCString(nsCString& aCString) {
nsAutoCString result;
const char* readEnd = aCString.EndReading();
result.SetLength(aCString.Length());
char* writeStart = result.BeginWriting();
char* writeIter = writeStart;
bool inEscape = false;
for (const char* readIter = aCString.BeginReading(); readIter != readEnd;
readIter++) {
if (!inEscape) {
if (*readIter == '\\')
inEscape = true;
else
*(writeIter++) = *readIter;
} else {
inEscape = false;
switch (*readIter) {
case '\\':
*(writeIter++) = '\\';
break;
case 't':
*(writeIter++) = '\t';
break;
case 'n':
*(writeIter++) = '\n';
break;
case 'v':
*(writeIter++) = '\v';
break;
case 'f':
*(writeIter++) = '\f';
break;
case 'r':
*(writeIter++) = '\r';
break;
default:
// all other escapes are ignored
break;
}
}
}
result.Truncate(writeIter - writeStart);
aCString.Assign(result);
}
Token* Tokenizer::copyTokens() {
uint32_t count = countTokens();
if (count > 0) {
Token* tokens = new Token[count];
if (tokens) {
Token* tp = tokens;
TokenEnumeration e(&mTokenTable);
while (e.hasMoreTokens()) {
Token* src = static_cast<Token*>(e.nextToken());
tp->clone(*src);
++tp;
}
}
return tokens;
}
return NULL;
}
class TokenAnalyzer {
public:
virtual ~TokenAnalyzer() {}
virtual void analyzeTokens(Tokenizer& tokenizer) = 0;
void setTokenListener(nsIStreamListener* aTokenListener) {
mTokenListener = aTokenListener;
}
void setSource(const nsACString& sourceURI) { mTokenSource = sourceURI; }
nsCOMPtr<nsIStreamListener> mTokenListener;
nsCString mTokenSource;
};
/**
* This class downloads the raw content of an email message, buffering until
* complete segments are seen, that is until a linefeed is seen, although
* any of the valid token separators would do. This could be a further
* refinement.
*/
class TokenStreamListener : public nsIStreamListener {
public:
NS_DECL_ISUPPORTS
NS_DECL_NSIREQUESTOBSERVER
NS_DECL_NSISTREAMLISTENER
explicit TokenStreamListener(TokenAnalyzer* analyzer);
protected:
virtual ~TokenStreamListener();
TokenAnalyzer* mAnalyzer;
char* mBuffer;
uint32_t mBufferSize;
uint32_t mLeftOverCount;
Tokenizer mTokenizer;
bool mSetAttachmentFlag;
};
const uint32_t kBufferSize = 16384;
TokenStreamListener::TokenStreamListener(TokenAnalyzer* analyzer)
: mAnalyzer(analyzer),
mBuffer(NULL),
mBufferSize(kBufferSize),
mLeftOverCount(0),
mSetAttachmentFlag(false) {}
TokenStreamListener::~TokenStreamListener() {
delete[] mBuffer;
delete mAnalyzer;
}
NS_IMPL_ISUPPORTS(TokenStreamListener, nsIRequestObserver, nsIStreamListener)
/* void onStartRequest (in nsIRequest aRequest); */
NS_IMETHODIMP TokenStreamListener::OnStartRequest(nsIRequest* aRequest) {
mLeftOverCount = 0;
if (!mBuffer) {
mBuffer = new char[mBufferSize];
NS_ENSURE_TRUE(mBuffer, NS_ERROR_OUT_OF_MEMORY);
}
return NS_OK;
}
/* void onDataAvailable (in nsIRequest aRequest, in nsIInputStream aInputStream,
* in unsigned long long aOffset, in unsigned long aCount); */
NS_IMETHODIMP TokenStreamListener::OnDataAvailable(nsIRequest* aRequest,
nsIInputStream* aInputStream,
uint64_t aOffset,
uint32_t aCount) {
nsresult rv = NS_OK;
while (aCount > 0) {
uint32_t readCount, totalCount = (aCount + mLeftOverCount);
if (totalCount >= mBufferSize) {
readCount = mBufferSize - mLeftOverCount - 1;
} else {
readCount = aCount;
}
// mBuffer is supposed to be allocated in onStartRequest. But something
// is causing that to not happen, so as a last-ditch attempt we'll
// do it here.
if (!mBuffer) {
mBuffer = new char[mBufferSize];
NS_ENSURE_TRUE(mBuffer, NS_ERROR_OUT_OF_MEMORY);
}
char* buffer = mBuffer;
rv = aInputStream->Read(buffer + mLeftOverCount, readCount, &readCount);
if (NS_FAILED(rv)) break;
if (readCount == 0) {
rv = NS_ERROR_UNEXPECTED;
NS_WARNING("failed to tokenize");
break;
}
aCount -= readCount;
/* consume the tokens up to the last legal token delimiter in the buffer. */
totalCount = (readCount + mLeftOverCount);
buffer[totalCount] = '\0';
char* lastDelimiter = NULL;
char* scan = buffer + totalCount;
while (scan > buffer) {
if (strchr(mTokenizer.mBodyDelimiters.get(), *--scan)) {
lastDelimiter = scan;
break;
}
}
if (lastDelimiter) {
*lastDelimiter = '\0';
mTokenizer.tokenize(buffer);
uint32_t consumedCount = 1 + (lastDelimiter - buffer);
mLeftOverCount = totalCount - consumedCount;
if (mLeftOverCount)
memmove(buffer, buffer + consumedCount, mLeftOverCount);
} else {
/* didn't find a delimiter, keep the whole buffer around. */
mLeftOverCount = totalCount;
if (totalCount >= (mBufferSize / 2)) {
uint32_t newBufferSize = mBufferSize * 2;
char* newBuffer = new char[newBufferSize];
NS_ENSURE_TRUE(newBuffer, NS_ERROR_OUT_OF_MEMORY);
memcpy(newBuffer, mBuffer, mLeftOverCount);
delete[] mBuffer;
mBuffer = newBuffer;
mBufferSize = newBufferSize;
}
}
}
return rv;
}
/* void onStopRequest (in nsIRequest aRequest, in nsresult aStatusCode); */
NS_IMETHODIMP TokenStreamListener::OnStopRequest(nsIRequest* aRequest,
nsresult aStatusCode) {
nsCOMPtr<nsIMailChannel> mailChannel = do_QueryInterface(aRequest);
if (mailChannel) {
nsTArray<nsCString> headerNames;
nsTArray<nsCString> headerValues;
mailChannel->GetHeaderNames(headerNames);
mailChannel->GetHeaderValues(headerValues);
mTokenizer.tokenizeHeaders(headerNames, headerValues);
nsTArray<RefPtr<nsIPropertyBag2>> attachments;
mailChannel->GetAttachments(attachments);
mTokenizer.tokenizeAttachments(attachments);
}
if (mLeftOverCount) {
/* assume final buffer is complete. */
mBuffer[mLeftOverCount] = '\0';
mTokenizer.tokenize(mBuffer);
}
/* finally, analyze the tokenized message. */
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("analyze the tokenized message"));
if (mAnalyzer) mAnalyzer->analyzeTokens(mTokenizer);
return NS_OK;
}
/* Implementation file */
NS_IMPL_ISUPPORTS(nsBayesianFilter, nsIMsgFilterPlugin, nsIJunkMailPlugin,
nsIMsgCorpus, nsISupportsWeakReference, nsIObserver)
nsBayesianFilter::nsBayesianFilter() : mTrainingDataDirty(false) {
int32_t junkThreshold =
Preferences::GetInt("mail.adaptivefilters.junk_threshold");
mJunkProbabilityThreshold = (static_cast<double>(junkThreshold)) / 100.0;
if (mJunkProbabilityThreshold == 0 || mJunkProbabilityThreshold >= 1)
mJunkProbabilityThreshold = kDefaultJunkThreshold;
MOZ_LOG(BayesianFilterLogModule, LogLevel::Warning,
("junk probability threshold: %f", mJunkProbabilityThreshold));
mCorpus.readTrainingData();
// get parameters for training data flushing, from the prefs
mMinFlushInterval = Preferences::GetInt(
"mailnews.bayesian_spam_filter.flush.minimum_interval");
// it is not a good idea to allow a minimum interval of under 1 second
if (mMinFlushInterval <= 1000)
mMinFlushInterval = DEFAULT_MIN_INTERVAL_BETWEEN_WRITES;
mMaximumTokenCount = Preferences::GetInt(
"mailnews.bayesian_spam_filter.junk_maxtokens"); // 0 means do not limit
// token counts.
MOZ_LOG(BayesianFilterLogModule, LogLevel::Warning,
("maximum junk tokens: %d", mMaximumTokenCount));
// give a default capacity to the memory structure used to store
// per-message/per-trait token data
mAnalysisStore.SetCapacity(kAnalysisStoreCapacity);
// dummy 0th element. Index 0 means "end of list" so we need to
// start from 1
AnalysisPerToken analysisPT(0, 0.0, 0.0);
mAnalysisStore.AppendElement(analysisPT);
mNextAnalysisIndex = 1;
}
nsresult nsBayesianFilter::Init() {
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService)
observerService->AddObserver(this, "profile-before-change", true);
return NS_OK;
}
void nsBayesianFilter::TimerCallback(nsITimer* aTimer, void* aClosure) {
// we will flush the training data to disk after enough time has passed
// since the first time a message has been classified after the last flush
nsBayesianFilter* filter = static_cast<nsBayesianFilter*>(aClosure);
filter->mCorpus.writeTrainingData(filter->mMaximumTokenCount);
filter->mTrainingDataDirty = false;
}
nsBayesianFilter::~nsBayesianFilter() {
if (mTimer) {
mTimer->Cancel();
mTimer = nullptr;
}
// call shutdown when we are going away in case we need
// to flush the training set to disk
Shutdown();
}
// this object is used for one call to classifyMessage or classifyMessages().
// So if we're classifying multiple messages, this object will be used for each
// message. It's going to hold a reference to itself, basically, to stay in
// memory.
class MessageClassifier : public TokenAnalyzer {
public:
// full classifier with arbitrary traits
MessageClassifier(nsBayesianFilter* aFilter,
nsIJunkMailClassificationListener* aJunkListener,
nsIMsgTraitClassificationListener* aTraitListener,
nsIMsgTraitDetailListener* aDetailListener,
const nsTArray<uint32_t>& aProTraits,
const nsTArray<uint32_t>& aAntiTraits,
nsIMsgWindow* aMsgWindow,
const nsTArray<nsCString>& aMessageURIs)
: mFilter(aFilter),
mJunkMailPlugin(aFilter),
mJunkListener(aJunkListener),
mTraitListener(aTraitListener),
mDetailListener(aDetailListener),
mProTraits(aProTraits.Clone()),
mAntiTraits(aAntiTraits.Clone()),
mMsgWindow(aMsgWindow),
mMessageURIs(aMessageURIs.Clone()),
mCurMessageToClassify(0) {
MOZ_ASSERT(aProTraits.Length() == aAntiTraits.Length());
}
// junk-only classifier
MessageClassifier(nsBayesianFilter* aFilter,
nsIJunkMailClassificationListener* aJunkListener,
nsIMsgWindow* aMsgWindow,
const nsTArray<nsCString>& aMessageURIs)
: mFilter(aFilter),
mJunkMailPlugin(aFilter),
mJunkListener(aJunkListener),
mTraitListener(nullptr),
mDetailListener(nullptr),
mMsgWindow(aMsgWindow),
mMessageURIs(aMessageURIs.Clone()),
mCurMessageToClassify(0) {
mProTraits.AppendElement(kJunkTrait);
mAntiTraits.AppendElement(kGoodTrait);
}
virtual ~MessageClassifier() {}
virtual void analyzeTokens(Tokenizer& tokenizer) {
mFilter->classifyMessage(tokenizer, mTokenSource, mProTraits, mAntiTraits,
mJunkListener, mTraitListener, mDetailListener);
tokenizer.clearTokens();
classifyNextMessage();
}
virtual void classifyNextMessage() {
if (++mCurMessageToClassify < mMessageURIs.Length()) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Warning,
("classifyNextMessage(%s)",
mMessageURIs[mCurMessageToClassify].get()));
mFilter->tokenizeMessage(mMessageURIs[mCurMessageToClassify], mMsgWindow,
this);
} else {
// call all listeners with null parameters to signify end of batch
if (mJunkListener)
mJunkListener->OnMessageClassified(EmptyCString(),
nsIJunkMailPlugin::UNCLASSIFIED, 0);
if (mTraitListener) {
nsTArray<uint32_t> nullTraits;
nsTArray<uint32_t> nullPercents;
mTraitListener->OnMessageTraitsClassified(EmptyCString(), nullTraits,
nullPercents);
}
mTokenListener =
nullptr; // this breaks the circular ref that keeps this object alive
// so we will be destroyed as a result.
}
}
private:
nsBayesianFilter* mFilter;
nsCOMPtr<nsIJunkMailPlugin> mJunkMailPlugin;
nsCOMPtr<nsIJunkMailClassificationListener> mJunkListener;
nsCOMPtr<nsIMsgTraitClassificationListener> mTraitListener;
nsCOMPtr<nsIMsgTraitDetailListener> mDetailListener;
nsTArray<uint32_t> mProTraits;
nsTArray<uint32_t> mAntiTraits;
nsCOMPtr<nsIMsgWindow> mMsgWindow;
nsTArray<nsCString> mMessageURIs;
uint32_t mCurMessageToClassify; // 0-based index
};
nsresult nsBayesianFilter::tokenizeMessage(const nsACString& aMessageURI,
nsIMsgWindow* aMsgWindow,
TokenAnalyzer* aAnalyzer) {
nsCOMPtr<nsIMsgMessageService> msgService;
nsresult rv =
GetMessageServiceFromURI(aMessageURI, getter_AddRefs(msgService));
NS_ENSURE_SUCCESS(rv, rv);
aAnalyzer->setSource(aMessageURI);
nsCOMPtr<nsIURI> dummyNull;
return msgService->StreamMessage(
aMessageURI, aAnalyzer->mTokenListener, aMsgWindow, nullptr,
true /* convert data */, "filter"_ns, false, getter_AddRefs(dummyNull));
}
// a TraitAnalysis is the per-token representation of the statistical
// calculations, basically created to group information that is then
// sorted by mDistance
struct TraitAnalysis {
uint32_t mTokenIndex;
double mDistance;
double mProbability;
};
// comparator required to sort an nsTArray
class compareTraitAnalysis {
public:
bool Equals(const TraitAnalysis& a, const TraitAnalysis& b) const {
return a.mDistance == b.mDistance;
}
bool LessThan(const TraitAnalysis& a, const TraitAnalysis& b) const {
return a.mDistance < b.mDistance;
}
};
inline double dmax(double x, double y) { return (x > y ? x : y); }
inline double dmin(double x, double y) { return (x < y ? x : y); }
// Chi square functions are implemented by an incomplete gamma function.
// Note that chi2P's callers multiply the arguments by 2 but chi2P
// divides them by 2 again. Inlining chi2P gives the compiler a
// chance to notice this.
// Both chi2P and nsIncompleteGammaP set *error negative on domain
// errors and nsIncompleteGammaP sets it posivive on internal errors.
// This may be useful but the chi2P callers treat any error as fatal.
// Note that converting unsigned ints to floating point can be slow on
// some platforms (like Intel) so use signed quantities for the numeric
// routines.
static inline double chi2P(double chi2, double nu, int32_t* error) {
// domain checks; set error and return a dummy value
if (chi2 < 0.0 || nu <= 0.0) {
*error = -1;
return 0.0;
}
// reversing the arguments is intentional
return nsIncompleteGammaP(nu / 2.0, chi2 / 2.0, error);
}
void nsBayesianFilter::classifyMessage(
Tokenizer& tokenizer, const nsACString& messageURI,
nsTArray<uint32_t>& aProTraits, nsTArray<uint32_t>& aAntiTraits,
nsIJunkMailClassificationListener* listener,
nsIMsgTraitClassificationListener* aTraitListener,
nsIMsgTraitDetailListener* aDetailListener) {
if (aProTraits.Length() != aAntiTraits.Length()) {
NS_ERROR("Each Pro trait needs a matching Anti trait");
return;
}
Token* tokens = tokenizer.copyTokens();
uint32_t tokenCount;
if (!tokens) {
// This can happen with problems with UTF conversion
NS_ERROR("Trying to classify a null or invalid message");
tokenCount = 0;
// don't return so that we still call the listeners
} else {
tokenCount = tokenizer.countTokens();
}
/* this part is similar to the Graham algorithm with some adjustments. */
uint32_t traitCount = aProTraits.Length();
// pro message counts per trait index
AutoTArray<uint32_t, kTraitAutoCapacity> numProMessages;
// anti message counts per trait index
AutoTArray<uint32_t, kTraitAutoCapacity> numAntiMessages;
// array of pro aliases per trait index
AutoTArray<nsTArray<uint32_t>, kTraitAutoCapacity> proAliasArrays;
// array of anti aliases per trait index
AutoTArray<nsTArray<uint32_t>, kTraitAutoCapacity> antiAliasArrays;
// construct the outgoing listener arrays
AutoTArray<uint32_t, kTraitAutoCapacity> traits;
AutoTArray<uint32_t, kTraitAutoCapacity> percents;
if (traitCount > kTraitAutoCapacity) {
traits.SetCapacity(traitCount);
percents.SetCapacity(traitCount);
numProMessages.SetCapacity(traitCount);
numAntiMessages.SetCapacity(traitCount);
proAliasArrays.SetCapacity(traitCount);
antiAliasArrays.SetCapacity(traitCount);
}
nsresult rv;
nsCOMPtr<nsIMsgTraitService> traitService(
do_GetService("@mozilla.org/msg-trait-service;1", &rv));
if (NS_FAILED(rv)) {
NS_ERROR("Failed to get trait service");
MOZ_LOG(BayesianFilterLogModule, LogLevel::Error,
("Failed to get trait service"));
}
// get aliases and message counts for the pro and anti traits
for (uint32_t traitIndex = 0; traitIndex < traitCount; traitIndex++) {
nsresult rv;
// pro trait
nsTArray<uint32_t> proAliases;
uint32_t proTrait = aProTraits[traitIndex];
if (traitService) {
rv = traitService->GetAliases(proTrait, proAliases);
if (NS_FAILED(rv)) {
NS_ERROR("trait service failed to get aliases");
MOZ_LOG(BayesianFilterLogModule, LogLevel::Error,
("trait service failed to get aliases"));
}
}
proAliasArrays.AppendElement(proAliases.Clone());
uint32_t proMessageCount = mCorpus.getMessageCount(proTrait);
for (uint32_t aliasIndex = 0; aliasIndex < proAliases.Length();
aliasIndex++)
proMessageCount += mCorpus.getMessageCount(proAliases[aliasIndex]);
numProMessages.AppendElement(proMessageCount);
// anti trait
nsTArray<uint32_t> antiAliases;
uint32_t antiTrait = aAntiTraits[traitIndex];
if (traitService) {
rv = traitService->GetAliases(antiTrait, antiAliases);
if (NS_FAILED(rv)) {
NS_ERROR("trait service failed to get aliases");
MOZ_LOG(BayesianFilterLogModule, LogLevel::Error,
("trait service failed to get aliases"));
}
}
antiAliasArrays.AppendElement(antiAliases.Clone());
uint32_t antiMessageCount = mCorpus.getMessageCount(antiTrait);
for (uint32_t aliasIndex = 0; aliasIndex < antiAliases.Length();
aliasIndex++)
antiMessageCount += mCorpus.getMessageCount(antiAliases[aliasIndex]);
numAntiMessages.AppendElement(antiMessageCount);
}
for (uint32_t i = 0; i < tokenCount; ++i) {
Token& token = tokens[i];
CorpusToken* t = mCorpus.get(token.mWord);
if (!t) continue;
for (uint32_t traitIndex = 0; traitIndex < traitCount; traitIndex++) {
uint32_t iProCount = mCorpus.getTraitCount(t, aProTraits[traitIndex]);
// add in any counts for aliases to proTrait
for (uint32_t aliasIndex = 0;
aliasIndex < proAliasArrays[traitIndex].Length(); aliasIndex++)
iProCount +=
mCorpus.getTraitCount(t, proAliasArrays[traitIndex][aliasIndex]);
double proCount = static_cast<double>(iProCount);
uint32_t iAntiCount = mCorpus.getTraitCount(t, aAntiTraits[traitIndex]);
// add in any counts for aliases to antiTrait
for (uint32_t aliasIndex = 0;
aliasIndex < antiAliasArrays[traitIndex].Length(); aliasIndex++)
iAntiCount +=
mCorpus.getTraitCount(t, antiAliasArrays[traitIndex][aliasIndex]);
double antiCount = static_cast<double>(iAntiCount);
double prob, denom;
// Prevent a divide by zero error by setting defaults for prob
// If there are no matching tokens at all, ignore.
if (antiCount == 0.0 && proCount == 0.0) continue;
// if only anti match, set probability to 0%
if (proCount == 0.0) prob = 0.0;
// if only pro match, set probability to 100%
else if (antiCount == 0.0)
prob = 1.0;
// not really needed, but just to be sure check the denom as well
else if ((denom = proCount * numAntiMessages[traitIndex] +
antiCount * numProMessages[traitIndex]) == 0.0)
continue;
else
prob = (proCount * numAntiMessages[traitIndex]) / denom;
double n = proCount + antiCount;
prob = (0.225 + n * prob) / (.45 + n);
double distance = std::abs(prob - 0.5);
if (distance >= .1) {
mozilla::DebugOnly<nsresult> rv =
setAnalysis(token, traitIndex, distance, prob);
NS_ASSERTION(NS_SUCCEEDED(rv), "Problem in setAnalysis");
}
}
}
for (uint32_t traitIndex = 0; traitIndex < traitCount; traitIndex++) {
AutoTArray<TraitAnalysis, 1024> traitAnalyses;
// copy valid tokens into an array to sort
for (uint32_t tokenIndex = 0; tokenIndex < tokenCount; tokenIndex++) {
uint32_t storeIndex = getAnalysisIndex(tokens[tokenIndex], traitIndex);
if (storeIndex) {
TraitAnalysis ta = {tokenIndex, mAnalysisStore[storeIndex].mDistance,
mAnalysisStore[storeIndex].mProbability};
traitAnalyses.AppendElement(ta);
}
}
// sort the array by the distances
traitAnalyses.Sort(compareTraitAnalysis());
uint32_t count = traitAnalyses.Length();
uint32_t first, last = count;
const uint32_t kMaxTokens = 150;
first = (count > kMaxTokens) ? count - kMaxTokens : 0;
// Setup the arrays to save details if needed
nsTArray<double> sArray;
nsTArray<double> hArray;
uint32_t usedTokenCount = (count > kMaxTokens) ? kMaxTokens : count;
if (aDetailListener) {
sArray.SetCapacity(usedTokenCount);
hArray.SetCapacity(usedTokenCount);
}
double H = 1.0, S = 1.0;
int32_t Hexp = 0, Sexp = 0;
uint32_t goodclues = 0;
int e;
// index from end to analyze most significant first
for (uint32_t ip1 = last; ip1 != first; --ip1) {
TraitAnalysis& ta = traitAnalyses[ip1 - 1];
if (ta.mDistance > 0.0) {
goodclues++;
double value = ta.mProbability;
S *= (1.0 - value);
H *= value;
if (S < 1e-200) {
S = frexp(S, &e);
Sexp += e;
}
if (H < 1e-200) {
H = frexp(H, &e);
Hexp += e;
}
MOZ_LOG(BayesianFilterLogModule, LogLevel::Warning,
("token probability (%s) is %f", tokens[ta.mTokenIndex].mWord,
ta.mProbability));
}
if (aDetailListener) {
sArray.AppendElement(log(S) + Sexp * M_LN2);
hArray.AppendElement(log(H) + Hexp * M_LN2);
}
}
S = log(S) + Sexp * M_LN2;
H = log(H) + Hexp * M_LN2;
double prob;
if (goodclues > 0) {
int32_t chi_error;
S = chi2P(-2.0 * S, 2.0 * goodclues, &chi_error);
if (!chi_error) H = chi2P(-2.0 * H, 2.0 * goodclues, &chi_error);
// if any error toss the entire calculation
if (!chi_error)
prob = (S - H + 1.0) / 2.0;
else
prob = 0.5;
} else
prob = 0.5;
if (aDetailListener) {
// Prepare output arrays
nsTArray<uint32_t> tokenPercents(usedTokenCount);
nsTArray<uint32_t> runningPercents(usedTokenCount);
nsTArray<nsString> tokenStrings(usedTokenCount);
double clueCount = 1.0;
for (uint32_t tokenIndex = 0; tokenIndex < usedTokenCount; tokenIndex++) {
TraitAnalysis& ta = traitAnalyses[last - 1 - tokenIndex];
int32_t chi_error;
S = chi2P(-2.0 * sArray[tokenIndex], 2.0 * clueCount, &chi_error);
if (!chi_error)
H = chi2P(-2.0 * hArray[tokenIndex], 2.0 * clueCount, &chi_error);
clueCount += 1.0;
double runningProb;
if (!chi_error)
runningProb = (S - H + 1.0) / 2.0;
else
runningProb = 0.5;
runningPercents.AppendElement(
static_cast<uint32_t>(runningProb * 100. + .5));
tokenPercents.AppendElement(
static_cast<uint32_t>(ta.mProbability * 100. + .5));
tokenStrings.AppendElement(
NS_ConvertUTF8toUTF16(tokens[ta.mTokenIndex].mWord));
}
aDetailListener->OnMessageTraitDetails(messageURI, aProTraits[traitIndex],
tokenStrings, tokenPercents,
runningPercents);
}
uint32_t proPercent = static_cast<uint32_t>(prob * 100. + .5);
// directly classify junk to maintain backwards compatibility
if (aProTraits[traitIndex] == kJunkTrait) {
bool isJunk = (prob >= mJunkProbabilityThreshold);
MOZ_LOG(BayesianFilterLogModule, LogLevel::Info,
("%s is junk probability = (%f) HAM SCORE:%f SPAM SCORE:%f",
PromiseFlatCString(messageURI).get(), prob, H, S));
// the algorithm in "A Plan For Spam" assumes that you have a large good
// corpus and a large junk corpus.
// that won't be the case with users who first use the junk mail trait
// so, we do certain things to encourage them to train.
//
// if there are no good tokens, assume the message is junk
// this will "encourage" the user to train
// and if there are no bad tokens, assume the message is not junk
// this will also "encourage" the user to train
// see bug #194238
if (listener && !mCorpus.getMessageCount(kGoodTrait))
isJunk = true;
else if (listener && !mCorpus.getMessageCount(kJunkTrait))
isJunk = false;
if (listener)
listener->OnMessageClassified(
messageURI,
isJunk ? nsMsgJunkStatus(nsIJunkMailPlugin::JUNK)
: nsMsgJunkStatus(nsIJunkMailPlugin::GOOD),
proPercent);
}
if (aTraitListener) {
traits.AppendElement(aProTraits[traitIndex]);
percents.AppendElement(proPercent);
}
}
if (aTraitListener)
aTraitListener->OnMessageTraitsClassified(messageURI, traits, percents);
delete[] tokens;
// reuse mAnalysisStore without clearing memory
mNextAnalysisIndex = 1;
// but shrink it back to the default size
if (mAnalysisStore.Length() > kAnalysisStoreCapacity)
mAnalysisStore.RemoveElementsAt(
kAnalysisStoreCapacity,
mAnalysisStore.Length() - kAnalysisStoreCapacity);
mAnalysisStore.Compact();
}
void nsBayesianFilter::classifyMessage(
Tokenizer& tokens, const nsACString& messageURI,
nsIJunkMailClassificationListener* aJunkListener) {
AutoTArray<uint32_t, 1> proTraits;
AutoTArray<uint32_t, 1> antiTraits;
proTraits.AppendElement(kJunkTrait);
antiTraits.AppendElement(kGoodTrait);
classifyMessage(tokens, messageURI, proTraits, antiTraits, aJunkListener,
nullptr, nullptr);
}
NS_IMETHODIMP
nsBayesianFilter::Observe(nsISupports* aSubject, const char* aTopic,
const char16_t* someData) {
if (!strcmp(aTopic, "profile-before-change")) Shutdown();
return NS_OK;
}
/* void shutdown (); */
NS_IMETHODIMP nsBayesianFilter::Shutdown() {
if (mTrainingDataDirty) mCorpus.writeTrainingData(mMaximumTokenCount);
mTrainingDataDirty = false;
return NS_OK;
}
/* readonly attribute boolean shouldDownloadAllHeaders; */
NS_IMETHODIMP nsBayesianFilter::GetShouldDownloadAllHeaders(
bool* aShouldDownloadAllHeaders) {
// bayesian filters work on the whole msg body currently.
*aShouldDownloadAllHeaders = false;
return NS_OK;
}
/* void classifyMessage (in string aMsgURL, in nsIJunkMailClassificationListener
* aListener); */
NS_IMETHODIMP nsBayesianFilter::ClassifyMessage(
const nsACString& aMessageURL, nsIMsgWindow* aMsgWindow,
nsIJunkMailClassificationListener* aListener) {
AutoTArray<nsCString, 1> urls = {PromiseFlatCString(aMessageURL)};
MessageClassifier* analyzer =
new MessageClassifier(this, aListener, aMsgWindow, urls);
NS_ENSURE_TRUE(analyzer, NS_ERROR_OUT_OF_MEMORY);
TokenStreamListener* tokenListener = new TokenStreamListener(analyzer);
NS_ENSURE_TRUE(tokenListener, NS_ERROR_OUT_OF_MEMORY);
analyzer->setTokenListener(tokenListener);
return tokenizeMessage(aMessageURL, aMsgWindow, analyzer);
}
/* void classifyMessages(in Array<ACString> aMsgURIs,
* in nsIMsgWindow aMsgWindow,
* in nsIJunkMailClassificationListener aListener); */
NS_IMETHODIMP nsBayesianFilter::ClassifyMessages(
const nsTArray<nsCString>& aMsgURLs, nsIMsgWindow* aMsgWindow,
nsIJunkMailClassificationListener* aListener) {
TokenAnalyzer* analyzer =
new MessageClassifier(this, aListener, aMsgWindow, aMsgURLs);
NS_ENSURE_TRUE(analyzer, NS_ERROR_OUT_OF_MEMORY);
TokenStreamListener* tokenListener = new TokenStreamListener(analyzer);
NS_ENSURE_TRUE(tokenListener, NS_ERROR_OUT_OF_MEMORY);
analyzer->setTokenListener(tokenListener);
return tokenizeMessage(aMsgURLs[0], aMsgWindow, analyzer);
}
nsresult nsBayesianFilter::setAnalysis(Token& token, uint32_t aTraitIndex,
double aDistance, double aProbability) {
uint32_t nextLink = token.mAnalysisLink;
uint32_t lastLink = 0;
uint32_t linkCount = 0, maxLinks = 100;
// try to find an existing element. Limit the search to maxLinks
// as a precaution
for (linkCount = 0; nextLink && linkCount < maxLinks; linkCount++) {
AnalysisPerToken& rAnalysis = mAnalysisStore[nextLink];
if (rAnalysis.mTraitIndex == aTraitIndex) {
rAnalysis.mDistance = aDistance;
rAnalysis.mProbability = aProbability;
return NS_OK;
}
lastLink = nextLink;
nextLink = rAnalysis.mNextLink;
}
if (linkCount >= maxLinks) return NS_ERROR_FAILURE;
// trait does not exist, so add it
AnalysisPerToken analysis(aTraitIndex, aDistance, aProbability);
if (mAnalysisStore.Length() == mNextAnalysisIndex)
mAnalysisStore.InsertElementAt(mNextAnalysisIndex, analysis);
else if (mAnalysisStore.Length() > mNextAnalysisIndex)
mAnalysisStore.ReplaceElementsAt(mNextAnalysisIndex, 1, analysis);
else // we can only insert at the end of the array
return NS_ERROR_FAILURE;
if (lastLink)
// the token had at least one link, so update the last link to point to
// the new item
mAnalysisStore[lastLink].mNextLink = mNextAnalysisIndex;
else
// need to update the token's first link
token.mAnalysisLink = mNextAnalysisIndex;
mNextAnalysisIndex++;
return NS_OK;
}
uint32_t nsBayesianFilter::getAnalysisIndex(Token& token,
uint32_t aTraitIndex) {
uint32_t nextLink;
uint32_t linkCount = 0, maxLinks = 100;
for (nextLink = token.mAnalysisLink; nextLink && linkCount < maxLinks;
linkCount++) {
AnalysisPerToken& rAnalysis = mAnalysisStore[nextLink];
if (rAnalysis.mTraitIndex == aTraitIndex) return nextLink;
nextLink = rAnalysis.mNextLink;
}
NS_ASSERTION(linkCount < maxLinks, "corrupt analysis store");
// Trait not found, indicate by zero
return 0;
}
NS_IMETHODIMP nsBayesianFilter::ClassifyTraitsInMessage(
const nsACString& aMsgURI, const nsTArray<uint32_t>& aProTraits,
const nsTArray<uint32_t>& aAntiTraits,
nsIMsgTraitClassificationListener* aTraitListener, nsIMsgWindow* aMsgWindow,
nsIJunkMailClassificationListener* aJunkListener) {
AutoTArray<nsCString, 1> uris = {PromiseFlatCString(aMsgURI)};
return ClassifyTraitsInMessages(uris, aProTraits, aAntiTraits, aTraitListener,
aMsgWindow, aJunkListener);
}
NS_IMETHODIMP nsBayesianFilter::ClassifyTraitsInMessages(
const nsTArray<nsCString>& aMsgURIs, const nsTArray<uint32_t>& aProTraits,
const nsTArray<uint32_t>& aAntiTraits,
nsIMsgTraitClassificationListener* aTraitListener, nsIMsgWindow* aMsgWindow,
nsIJunkMailClassificationListener* aJunkListener) {
MOZ_ASSERT(aProTraits.Length() == aAntiTraits.Length());
MessageClassifier* analyzer =
new MessageClassifier(this, aJunkListener, aTraitListener, nullptr,
aProTraits, aAntiTraits, aMsgWindow, aMsgURIs);
TokenStreamListener* tokenListener = new TokenStreamListener(analyzer);
analyzer->setTokenListener(tokenListener);
return tokenizeMessage(aMsgURIs[0], aMsgWindow, analyzer);
}
class MessageObserver : public TokenAnalyzer {
public:
MessageObserver(nsBayesianFilter* filter,
const nsTArray<uint32_t>& aOldClassifications,
const nsTArray<uint32_t>& aNewClassifications,
nsIJunkMailClassificationListener* aJunkListener,
nsIMsgTraitClassificationListener* aTraitListener)
: mFilter(filter),
mJunkMailPlugin(filter),
mJunkListener(aJunkListener),
mTraitListener(aTraitListener),
mOldClassifications(aOldClassifications.Clone()),
mNewClassifications(aNewClassifications.Clone()) {}
virtual void analyzeTokens(Tokenizer& tokenizer) {
mFilter->observeMessage(tokenizer, mTokenSource, mOldClassifications,
mNewClassifications, mJunkListener, mTraitListener);
// release reference to listener, which will allow us to go away as well.
mTokenListener = nullptr;
}
private:
nsBayesianFilter* mFilter;
nsCOMPtr<nsIJunkMailPlugin> mJunkMailPlugin;
nsCOMPtr<nsIJunkMailClassificationListener> mJunkListener;
nsCOMPtr<nsIMsgTraitClassificationListener> mTraitListener;
nsTArray<uint32_t> mOldClassifications;
nsTArray<uint32_t> mNewClassifications;
};
NS_IMETHODIMP nsBayesianFilter::SetMsgTraitClassification(
const nsACString& aMsgURI, const nsTArray<uint32_t>& aOldTraits,
const nsTArray<uint32_t>& aNewTraits,
nsIMsgTraitClassificationListener* aTraitListener, nsIMsgWindow* aMsgWindow,
nsIJunkMailClassificationListener* aJunkListener) {
MessageObserver* analyzer = new MessageObserver(
this, aOldTraits, aNewTraits, aJunkListener, aTraitListener);
NS_ENSURE_TRUE(analyzer, NS_ERROR_OUT_OF_MEMORY);
TokenStreamListener* tokenListener = new TokenStreamListener(analyzer);
NS_ENSURE_TRUE(tokenListener, NS_ERROR_OUT_OF_MEMORY);
analyzer->setTokenListener(tokenListener);
return tokenizeMessage(aMsgURI, aMsgWindow, analyzer);
}
// set new message classifications for a message
void nsBayesianFilter::observeMessage(
Tokenizer& tokenizer, const nsACString& messageURL,
nsTArray<uint32_t>& oldClassifications,
nsTArray<uint32_t>& newClassifications,
nsIJunkMailClassificationListener* aJunkListener,
nsIMsgTraitClassificationListener* aTraitListener) {
bool trainingDataWasDirty = mTrainingDataDirty;
// Uhoh...if the user is re-training then the message may already be
// classified and we are classifying it again with the same classification.
// the old code would have removed the tokens for this message then added them
// back. But this really hurts the message occurrence count for tokens if you
// just removed training.dat and are re-training. See Bug #237095 for more
// details. What can we do here? Well we can skip the token removal step if
// the classifications are the same and assume the user is just re-training.
// But this then allows users to re-classify the same message on the same
// training set over and over again leading to data skew. But that's all I can
// think to do right now to address this.....
uint32_t oldLength = oldClassifications.Length();
for (uint32_t index = 0; index < oldLength; index++) {
uint32_t trait = oldClassifications.ElementAt(index);
// skip removing if trait is also in the new set
if (newClassifications.Contains(trait)) continue;
// remove the tokens from the token set it is currently in
uint32_t messageCount;
messageCount = mCorpus.getMessageCount(trait);
if (messageCount > 0) {
mCorpus.setMessageCount(trait, messageCount - 1);
mCorpus.forgetTokens(tokenizer, trait, 1);
mTrainingDataDirty = true;
}
}
nsMsgJunkStatus newClassification = nsIJunkMailPlugin::UNCLASSIFIED;
uint32_t junkPercent =
0; // 0 here is no possibility of meeting the classification
uint32_t newLength = newClassifications.Length();
for (uint32_t index = 0; index < newLength; index++) {
uint32_t trait = newClassifications.ElementAt(index);
mCorpus.setMessageCount(trait, mCorpus.getMessageCount(trait) + 1);
mCorpus.rememberTokens(tokenizer, trait, 1);
mTrainingDataDirty = true;
if (aJunkListener) {
if (trait == kJunkTrait) {
junkPercent = nsIJunkMailPlugin::IS_SPAM_SCORE;
newClassification = nsIJunkMailPlugin::JUNK;
} else if (trait == kGoodTrait) {
junkPercent = nsIJunkMailPlugin::IS_HAM_SCORE;
newClassification = nsIJunkMailPlugin::GOOD;
}
}
}
if (aJunkListener)
aJunkListener->OnMessageClassified(messageURL, newClassification,
junkPercent);
if (aTraitListener) {
// construct the outgoing listener arrays
AutoTArray<uint32_t, kTraitAutoCapacity> traits;
AutoTArray<uint32_t, kTraitAutoCapacity> percents;
uint32_t newLength = newClassifications.Length();
if (newLength > kTraitAutoCapacity) {
traits.SetCapacity(newLength);
percents.SetCapacity(newLength);
}
traits.AppendElements(newClassifications);
for (uint32_t index = 0; index < newLength; index++)
percents.AppendElement(100); // This is 100 percent, or certainty
aTraitListener->OnMessageTraitsClassified(messageURL, traits, percents);
}
if (mTrainingDataDirty && !trainingDataWasDirty) {
// if training data became dirty just now, schedule flush
// mMinFlushInterval msec from now
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("starting training data flush timer %i msec", mMinFlushInterval));
nsresult rv = NS_NewTimerWithFuncCallback(
getter_AddRefs(mTimer), nsBayesianFilter::TimerCallback, (void*)this,
mMinFlushInterval, nsITimer::TYPE_ONE_SHOT,
"nsBayesianFilter::TimerCallback", nullptr);
if (NS_FAILED(rv)) {
NS_WARNING("Could not start nsBayesianFilter timer");
}
}
}
NS_IMETHODIMP nsBayesianFilter::GetUserHasClassified(bool* aResult) {
*aResult = ((mCorpus.getMessageCount(kGoodTrait) +
mCorpus.getMessageCount(kJunkTrait)) &&
mCorpus.countTokens());
return NS_OK;
}
// Set message classification (only allows junk and good)
NS_IMETHODIMP nsBayesianFilter::SetMessageClassification(
const nsACString& aMsgURL, nsMsgJunkStatus aOldClassification,
nsMsgJunkStatus aNewClassification, nsIMsgWindow* aMsgWindow,
nsIJunkMailClassificationListener* aListener) {
AutoTArray<uint32_t, 1> oldClassifications;
AutoTArray<uint32_t, 1> newClassifications;
// convert between classifications and trait
if (aOldClassification == nsIJunkMailPlugin::JUNK)
oldClassifications.AppendElement(kJunkTrait);
else if (aOldClassification == nsIJunkMailPlugin::GOOD)
oldClassifications.AppendElement(kGoodTrait);
if (aNewClassification == nsIJunkMailPlugin::JUNK)
newClassifications.AppendElement(kJunkTrait);
else if (aNewClassification == nsIJunkMailPlugin::GOOD)
newClassifications.AppendElement(kGoodTrait);
MessageObserver* analyzer = new MessageObserver(
this, oldClassifications, newClassifications, aListener, nullptr);
NS_ENSURE_TRUE(analyzer, NS_ERROR_OUT_OF_MEMORY);
TokenStreamListener* tokenListener = new TokenStreamListener(analyzer);
NS_ENSURE_TRUE(tokenListener, NS_ERROR_OUT_OF_MEMORY);
analyzer->setTokenListener(tokenListener);
return tokenizeMessage(aMsgURL, aMsgWindow, analyzer);
}
NS_IMETHODIMP nsBayesianFilter::ResetTrainingData() {
return mCorpus.resetTrainingData();
}
NS_IMETHODIMP nsBayesianFilter::DetailMessage(
const nsACString& aMsgURI, uint32_t aProTrait, uint32_t aAntiTrait,
nsIMsgTraitDetailListener* aDetailListener, nsIMsgWindow* aMsgWindow) {
AutoTArray<uint32_t, 1> proTraits = {aProTrait};
AutoTArray<uint32_t, 1> antiTraits = {aAntiTrait};
AutoTArray<nsCString, 1> uris = {PromiseFlatCString(aMsgURI)};
MessageClassifier* analyzer =
new MessageClassifier(this, nullptr, nullptr, aDetailListener, proTraits,
antiTraits, aMsgWindow, uris);
NS_ENSURE_TRUE(analyzer, NS_ERROR_OUT_OF_MEMORY);
TokenStreamListener* tokenListener = new TokenStreamListener(analyzer);
NS_ENSURE_TRUE(tokenListener, NS_ERROR_OUT_OF_MEMORY);
analyzer->setTokenListener(tokenListener);
return tokenizeMessage(aMsgURI, aMsgWindow, analyzer);
}
// nsIMsgCorpus implementation
NS_IMETHODIMP nsBayesianFilter::CorpusCounts(uint32_t aTrait,
uint32_t* aMessageCount,
uint32_t* aTokenCount) {
NS_ENSURE_ARG_POINTER(aTokenCount);
*aTokenCount = mCorpus.countTokens();
if (aTrait && aMessageCount) *aMessageCount = mCorpus.getMessageCount(aTrait);
return NS_OK;
}
NS_IMETHODIMP nsBayesianFilter::ClearTrait(uint32_t aTrait) {
return mCorpus.ClearTrait(aTrait);
}
NS_IMETHODIMP
nsBayesianFilter::UpdateData(nsIFile* aFile, bool aIsAdd,
const nsTArray<uint32_t>& aFromTraits,
const nsTArray<uint32_t>& aToTraits) {
MOZ_ASSERT(aFromTraits.Length() == aToTraits.Length());
return mCorpus.UpdateData(aFile, aIsAdd, aFromTraits, aToTraits);
}
NS_IMETHODIMP
nsBayesianFilter::GetTokenCount(const nsACString& aWord, uint32_t aTrait,
uint32_t* aCount) {
NS_ENSURE_ARG_POINTER(aCount);
CorpusToken* t = mCorpus.get(PromiseFlatCString(aWord).get());
uint32_t count = mCorpus.getTraitCount(t, aTrait);
*aCount = count;
return NS_OK;
}
/* Corpus Store */
/*
Format of the training file for version 1:
[0xFEEDFACE]
[number good messages][number bad messages]
[number good tokens]
[count][length of word]word
...
[number bad tokens]
[count][length of word]word
...
Format of the trait file for version 1:
[0xFCA93601] (the 01 is the version)
for each trait to write
[id of trait to write] (0 means end of list)
[number of messages per trait]
for each token with non-zero count
[count]
[length of word]word
*/
CorpusStore::CorpusStore()
: TokenHash(sizeof(CorpusToken)),
mNextTraitIndex(1) // skip 0 since index=0 will mean end of linked list
{
getTrainingFile(getter_AddRefs(mTrainingFile));
mTraitStore.SetCapacity(kTraitStoreCapacity);
TraitPerToken traitPT(0, 0);
mTraitStore.AppendElement(traitPT); // dummy 0th element
}
CorpusStore::~CorpusStore() {}
inline int writeUInt32(FILE* stream, uint32_t value) {
value = PR_htonl(value);
return fwrite(&value, sizeof(uint32_t), 1, stream);
}
inline int readUInt32(FILE* stream, uint32_t* value) {
int n = fread(value, sizeof(uint32_t), 1, stream);
if (n == 1) {
*value = PR_ntohl(*value);
}
return n;
}
void CorpusStore::forgetTokens(Tokenizer& aTokenizer, uint32_t aTraitId,
uint32_t aCount) {
// if we are forgetting the tokens for a message, should only
// subtract 1 from the occurrence count for that token in the training set
// because we assume we only bumped the training set count once per messages
// containing the token.
TokenEnumeration tokens = aTokenizer.getTokens();
while (tokens.hasMoreTokens()) {
CorpusToken* token = static_cast<CorpusToken*>(tokens.nextToken());
remove(token->mWord, aTraitId, aCount);
}
}
void CorpusStore::rememberTokens(Tokenizer& aTokenizer, uint32_t aTraitId,
uint32_t aCount) {
TokenEnumeration tokens = aTokenizer.getTokens();
while (tokens.hasMoreTokens()) {
CorpusToken* token = static_cast<CorpusToken*>(tokens.nextToken());
if (!token) {
NS_ERROR("null token");
continue;
}
add(token->mWord, aTraitId, aCount);
}
}
bool CorpusStore::writeTokens(FILE* stream, bool shrink, uint32_t aTraitId) {
uint32_t tokenCount = countTokens();
uint32_t newTokenCount = 0;
// calculate the tokens for this trait to write
TokenEnumeration tokens = getTokens();
for (uint32_t i = 0; i < tokenCount; ++i) {
CorpusToken* token = static_cast<CorpusToken*>(tokens.nextToken());
uint32_t count = getTraitCount(token, aTraitId);
// Shrinking the token database is accomplished by dividing all token counts
// by 2. If shrinking, we'll ignore counts < 2, otherwise only ignore counts
// of < 1
if ((shrink && count > 1) || (!shrink && count)) newTokenCount++;
}
if (writeUInt32(stream, newTokenCount) != 1) return false;
if (newTokenCount > 0) {
TokenEnumeration tokens = getTokens();
for (uint32_t i = 0; i < tokenCount; ++i) {
CorpusToken* token = static_cast<CorpusToken*>(tokens.nextToken());
uint32_t wordCount = getTraitCount(token, aTraitId);
if (shrink) wordCount /= 2;
if (!wordCount) continue; // Don't output zero count words
if (writeUInt32(stream, wordCount) != 1) return false;
uint32_t tokenLength = strlen(token->mWord);
if (writeUInt32(stream, tokenLength) != 1) return false;
if (fwrite(token->mWord, tokenLength, 1, stream) != 1) return false;
}
}
return true;
}
bool CorpusStore::readTokens(FILE* stream, int64_t fileSize, uint32_t aTraitId,
bool aIsAdd) {
uint32_t tokenCount;
if (readUInt32(stream, &tokenCount) != 1) return false;
int64_t fpos = ftell(stream);
if (fpos < 0) return false;
uint32_t bufferSize = 4096;
char* buffer = new char[bufferSize];
if (!buffer) return false;
for (uint32_t i = 0; i < tokenCount; ++i) {
uint32_t count;
if (readUInt32(stream, &count) != 1) break;
uint32_t size;
if (readUInt32(stream, &size) != 1) break;
fpos += 8;
if (fpos + size > fileSize) {
delete[] buffer;
return false;
}
if (size >= bufferSize) {
delete[] buffer;
while (size >= bufferSize) {
if (bufferSize > UINT32_MAX / 2) return false;
bufferSize *= 2;
}
buffer = new char[bufferSize];
if (!buffer) return false;
}
if (fread(buffer, size, 1, stream) != 1) break;
fpos += size;
buffer[size] = '\0';
if (aIsAdd)
add(buffer, aTraitId, count);
else
remove(buffer, aTraitId, count);
}
delete[] buffer;
return true;
}
nsresult CorpusStore::getTrainingFile(nsIFile** aTrainingFile) {
// should we cache the profile manager's directory?
nsCOMPtr<nsIFile> profileDir;
nsresult rv = NS_GetSpecialDirectory(NS_APP_USER_PROFILE_50_DIR,
getter_AddRefs(profileDir));
NS_ENSURE_SUCCESS(rv, rv);
rv = profileDir->Append(u"training.dat"_ns);
NS_ENSURE_SUCCESS(rv, rv);
return profileDir->QueryInterface(NS_GET_IID(nsIFile), (void**)aTrainingFile);
}
nsresult CorpusStore::getTraitFile(nsIFile** aTraitFile) {
// should we cache the profile manager's directory?
nsCOMPtr<nsIFile> profileDir;
nsresult rv = NS_GetSpecialDirectory(NS_APP_USER_PROFILE_50_DIR,
getter_AddRefs(profileDir));
NS_ENSURE_SUCCESS(rv, rv);
rv = profileDir->Append(u"traits.dat"_ns);
NS_ENSURE_SUCCESS(rv, rv);
return profileDir->QueryInterface(NS_GET_IID(nsIFile), (void**)aTraitFile);
}
static const char kMagicCookie[] = {'\xFE', '\xED', '\xFA', '\xCE'};
// random string used to identify trait file and version (last byte is version)
static const char kTraitCookie[] = {'\xFC', '\xA9', '\x36', '\x01'};
void CorpusStore::writeTrainingData(uint32_t aMaximumTokenCount) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("writeTrainingData() entered"));
if (!mTrainingFile) return;
/*
* For backwards compatibility, write the good and junk tokens to
* training.dat; additional traits are added to a different file
*/
// open the file, and write out training data
FILE* stream;
nsresult rv = mTrainingFile->OpenANSIFileDesc("wb", &stream);
if (NS_FAILED(rv)) return;
// If the number of tokens exceeds our limit, set the shrink flag
bool shrink = false;
if ((aMaximumTokenCount > 0) && // if 0, do not limit tokens
(countTokens() > aMaximumTokenCount)) {
shrink = true;
MOZ_LOG(BayesianFilterLogModule, LogLevel::Warning,
("shrinking token data file"));
}
// We implement shrink by dividing counts by two
uint32_t shrinkFactor = shrink ? 2 : 1;
if (!((fwrite(kMagicCookie, sizeof(kMagicCookie), 1, stream) == 1) &&
(writeUInt32(stream, getMessageCount(kGoodTrait) / shrinkFactor)) &&
(writeUInt32(stream, getMessageCount(kJunkTrait) / shrinkFactor)) &&
writeTokens(stream, shrink, kGoodTrait) &&
writeTokens(stream, shrink, kJunkTrait))) {
NS_WARNING("failed to write training data.");
fclose(stream);
// delete the training data file, since it is potentially corrupt.
mTrainingFile->Remove(false);
} else {
fclose(stream);
}
/*
* Write the remaining data to a second file traits.dat
*/
if (!mTraitFile) {
getTraitFile(getter_AddRefs(mTraitFile));
if (!mTraitFile) return;
}
// open the file, and write out training data
rv = mTraitFile->OpenANSIFileDesc("wb", &stream);
if (NS_FAILED(rv)) return;
uint32_t numberOfTraits = mMessageCounts.Length();
bool error;
while (1) // break on error or done
{
if ((error = (fwrite(kTraitCookie, sizeof(kTraitCookie), 1, stream) != 1)))
break;
for (uint32_t index = 0; index < numberOfTraits; index++) {
uint32_t trait = mMessageCountsId[index];
if (trait == 1 || trait == 2)
continue; // junk traits are stored in training.dat
if ((error = (writeUInt32(stream, trait) != 1))) break;
if ((error = (writeUInt32(stream, mMessageCounts[index] / shrinkFactor) !=
1)))
break;
if ((error = !writeTokens(stream, shrink, trait))) break;
}
break;
}
// we add a 0 at the end to represent end of trait list
error = writeUInt32(stream, 0) != 1;
fclose(stream);
if (error) {
NS_WARNING("failed to write trait data.");
// delete the trait data file, since it is probably corrupt.
mTraitFile->Remove(false);
}
if (shrink) {
// We'll clear the tokens, and read them back in from the file.
// Yes this is slower than in place, but this is a rare event.
if (countTokens()) {
clearTokens();
for (uint32_t index = 0; index < numberOfTraits; index++)
mMessageCounts[index] = 0;
}
readTrainingData();
}
}
void CorpusStore::readTrainingData() {
/*
* To maintain backwards compatibility, good and junk traits
* are stored in a file "training.dat"
*/
if (!mTrainingFile) return;
bool exists;
nsresult rv = mTrainingFile->Exists(&exists);
if (NS_FAILED(rv) || !exists) return;
FILE* stream;
rv = mTrainingFile->OpenANSIFileDesc("rb", &stream);
if (NS_FAILED(rv)) return;
int64_t fileSize;
rv = mTrainingFile->GetFileSize(&fileSize);
if (NS_FAILED(rv)) return;
// FIXME: should make sure that the tokenizers are empty.
char cookie[4];
uint32_t goodMessageCount = 0, junkMessageCount = 0;
if (!((fread(cookie, sizeof(cookie), 1, stream) == 1) &&
(memcmp(cookie, kMagicCookie, sizeof(cookie)) == 0) &&
(readUInt32(stream, &goodMessageCount) == 1) &&
(readUInt32(stream, &junkMessageCount) == 1) &&
readTokens(stream, fileSize, kGoodTrait, true) &&
readTokens(stream, fileSize, kJunkTrait, true))) {
NS_WARNING("failed to read training data.");
MOZ_LOG(BayesianFilterLogModule, LogLevel::Error,
("failed to read training data."));
}
setMessageCount(kGoodTrait, goodMessageCount);
setMessageCount(kJunkTrait, junkMessageCount);
fclose(stream);
/*
* Additional traits are stored in traits.dat
*/
if (!mTraitFile) {
getTraitFile(getter_AddRefs(mTraitFile));
if (!mTraitFile) return;
}
rv = mTraitFile->Exists(&exists);
if (NS_FAILED(rv) || !exists) return;
nsTArray<uint32_t> empty;
rv = UpdateData(mTraitFile, true, empty, empty);
if (NS_FAILED(rv)) {
NS_WARNING("failed to read training data.");
MOZ_LOG(BayesianFilterLogModule, LogLevel::Error,
("failed to read training data."));
}
return;
}
nsresult CorpusStore::resetTrainingData() {
// clear out our in memory training tokens...
if (countTokens()) clearTokens();
uint32_t length = mMessageCounts.Length();
for (uint32_t index = 0; index < length; index++) mMessageCounts[index] = 0;
if (mTrainingFile) mTrainingFile->Remove(false);
if (mTraitFile) mTraitFile->Remove(false);
return NS_OK;
}
inline CorpusToken* CorpusStore::get(const char* word) {
return static_cast<CorpusToken*>(TokenHash::get(word));
}
nsresult CorpusStore::updateTrait(CorpusToken* token, uint32_t aTraitId,
int32_t aCountChange) {
NS_ENSURE_ARG_POINTER(token);
uint32_t nextLink = token->mTraitLink;
uint32_t lastLink = 0;
uint32_t linkCount, maxLinks = 100; // sanity check
for (linkCount = 0; nextLink && linkCount < maxLinks; linkCount++) {
TraitPerToken& traitPT = mTraitStore[nextLink];
if (traitPT.mId == aTraitId) {
// be careful with signed versus unsigned issues here
if (static_cast<int32_t>(traitPT.mCount) + aCountChange > 0)
traitPT.mCount += aCountChange;
else
traitPT.mCount = 0;
// we could delete zero count traits here, but let's not. It's rare
// anyway.
return NS_OK;
}
lastLink = nextLink;
nextLink = traitPT.mNextLink;
}
if (linkCount >= maxLinks) return NS_ERROR_FAILURE;
// trait does not exist, so add it
if (aCountChange > 0) // don't set a negative count
{
TraitPerToken traitPT(aTraitId, aCountChange);
if (mTraitStore.Length() == mNextTraitIndex)
mTraitStore.InsertElementAt(mNextTraitIndex, traitPT);
else if (mTraitStore.Length() > mNextTraitIndex)
mTraitStore.ReplaceElementsAt(mNextTraitIndex, 1, traitPT);
else
return NS_ERROR_FAILURE;
if (lastLink)
// the token had a parent, so update it
mTraitStore[lastLink].mNextLink = mNextTraitIndex;
else
// need to update the token's root link
token->mTraitLink = mNextTraitIndex;
mNextTraitIndex++;
}
return NS_OK;
}
uint32_t CorpusStore::getTraitCount(CorpusToken* token, uint32_t aTraitId) {
uint32_t nextLink;
if (!token || !(nextLink = token->mTraitLink)) return 0;
uint32_t linkCount, maxLinks = 100; // sanity check
for (linkCount = 0; nextLink && linkCount < maxLinks; linkCount++) {
TraitPerToken& traitPT = mTraitStore[nextLink];
if (traitPT.mId == aTraitId) return traitPT.mCount;
nextLink = traitPT.mNextLink;
}
NS_ASSERTION(linkCount < maxLinks, "Corrupt trait count store");
// trait not found (or error), so count is zero
return 0;
}
CorpusToken* CorpusStore::add(const char* word, uint32_t aTraitId,
uint32_t aCount) {
CorpusToken* token = static_cast<CorpusToken*>(TokenHash::add(word));
if (token) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("adding word to corpus store: %s (Trait=%d) (deltaCount=%d)", word,
aTraitId, aCount));
updateTrait(token, aTraitId, aCount);
}
return token;
}
void CorpusStore::remove(const char* word, uint32_t aTraitId, uint32_t aCount) {
MOZ_LOG(BayesianFilterLogModule, LogLevel::Debug,
("remove word: %s (TraitId=%d) (Count=%d)", word, aTraitId, aCount));
CorpusToken* token = get(word);
if (token) updateTrait(token, aTraitId, -static_cast<int32_t>(aCount));
}
uint32_t CorpusStore::getMessageCount(uint32_t aTraitId) {
size_t index = mMessageCountsId.IndexOf(aTraitId);
if (index == mMessageCountsId.NoIndex) return 0;
return mMessageCounts.ElementAt(index);
}
void CorpusStore::setMessageCount(uint32_t aTraitId, uint32_t aCount) {
size_t index = mMessageCountsId.IndexOf(aTraitId);
if (index == mMessageCountsId.NoIndex) {
mMessageCounts.AppendElement(aCount);
mMessageCountsId.AppendElement(aTraitId);
} else {
mMessageCounts[index] = aCount;
}
}
nsresult CorpusStore::UpdateData(nsIFile* aFile, bool aIsAdd,
const nsTArray<uint32_t>& aFromTraits,
const nsTArray<uint32_t>& aToTraits) {
NS_ENSURE_ARG_POINTER(aFile);
MOZ_ASSERT(aFromTraits.Length() == aToTraits.Length());
int64_t fileSize;
nsresult rv = aFile->GetFileSize(&fileSize);
NS_ENSURE_SUCCESS(rv, rv);
FILE* stream;
rv = aFile->OpenANSIFileDesc("rb", &stream);
NS_ENSURE_SUCCESS(rv, rv);
bool error;
do // break on error or done
{
char cookie[4];
if ((error = (fread(cookie, sizeof(cookie), 1, stream) != 1))) break;
if ((error = memcmp(cookie, kTraitCookie, sizeof(cookie)))) break;
uint32_t fileTrait;
while (!(error = (readUInt32(stream, &fileTrait) != 1)) && fileTrait) {
uint32_t count;
if ((error = (readUInt32(stream, &count) != 1))) break;
uint32_t localTrait = fileTrait;
// remap the trait
for (uint32_t i = 0; i < aFromTraits.Length(); i++) {
if (aFromTraits[i] == fileTrait) localTrait = aToTraits[i];
}
uint32_t messageCount = getMessageCount(localTrait);
if (aIsAdd)
messageCount += count;
else if (count > messageCount)
messageCount = 0;
else
messageCount -= count;
setMessageCount(localTrait, messageCount);
if ((error = !readTokens(stream, fileSize, localTrait, aIsAdd))) break;
}
break;
} while (0);
fclose(stream);
if (error) return NS_ERROR_FAILURE;
return NS_OK;
}
nsresult CorpusStore::ClearTrait(uint32_t aTrait) {
// clear message counts
setMessageCount(aTrait, 0);
TokenEnumeration tokens = getTokens();
while (tokens.hasMoreTokens()) {
CorpusToken* token = static_cast<CorpusToken*>(tokens.nextToken());
int32_t wordCount = static_cast<int32_t>(getTraitCount(token, aTrait));
updateTrait(token, aTrait, -wordCount);
}
return NS_OK;
}
|