1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
// Utilities for mixing rule testing.
// http://webaudio.github.io/web-audio-api/#channel-up-mixing-and-down-mixing
/**
* Create an n-channel buffer, with all sample data zero except for a shifted
* impulse. The impulse position depends on the channel index. For example, for
* a 4-channel buffer:
* channel 0: 1 0 0 0 0 0 0 0
* channel 1: 0 1 0 0 0 0 0 0
* channel 2: 0 0 1 0 0 0 0 0
* channel 3: 0 0 0 1 0 0 0 0
* @param {AudioContext} context Associated AudioContext.
* @param {Number} numberOfChannels Number of channels of test buffer.
* @param {Number} frameLength Buffer length in frames.
* @return {AudioBuffer}
*/
function createShiftedImpulseBuffer(context, numberOfChannels, frameLength) {
let shiftedImpulseBuffer =
context.createBuffer(numberOfChannels, frameLength, context.sampleRate);
for (let channel = 0; channel < numberOfChannels; ++channel) {
let data = shiftedImpulseBuffer.getChannelData(channel);
data[channel] = 1;
}
return shiftedImpulseBuffer;
}
/**
* Create a string that displays the content of AudioBuffer.
* @param {AudioBuffer} audioBuffer AudioBuffer object to stringify.
* @param {Number} frameLength Number of frames to be printed.
* @param {Number} frameOffset Starting frame position for printing.
* @return {String}
*/
function stringifyBuffer(audioBuffer, frameLength, frameOffset) {
frameOffset = (frameOffset || 0);
let stringifiedBuffer = '';
for (let channel = 0; channel < audioBuffer.numberOfChannels; ++channel) {
let channelData = audioBuffer.getChannelData(channel);
for (let i = 0; i < frameLength; ++i)
stringifiedBuffer += channelData[i + frameOffset] + ' ';
stringifiedBuffer += '\n';
}
return stringifiedBuffer;
}
/**
* Compute number of channels from the connection.
* http://webaudio.github.io/web-audio-api/#dfn-computednumberofchannels
* @param {String} connections A string specifies the connection. For
* example, the string "128" means 3
* connections, having 1, 2, and 8 channels
* respectively.
* @param {Number} channelCount Channel count.
* @param {String} channelCountMode Channel count mode.
* @return {Number} Computed number of channels.
*/
function computeNumberOfChannels(connections, channelCount, channelCountMode) {
if (channelCountMode == 'explicit')
return channelCount;
// Must have at least one channel.
let computedNumberOfChannels = 1;
// Compute "computedNumberOfChannels" based on all the connections.
for (let i = 0; i < connections.length; ++i) {
let connectionNumberOfChannels = parseInt(connections[i]);
computedNumberOfChannels =
Math.max(computedNumberOfChannels, connectionNumberOfChannels);
}
if (channelCountMode == 'clamped-max')
computedNumberOfChannels = Math.min(computedNumberOfChannels, channelCount);
return computedNumberOfChannels;
}
/**
* Apply up/down-mixing (in-place summing) based on 'speaker' interpretation.
* @param {AudioBuffer} input Input audio buffer.
* @param {AudioBuffer} output Output audio buffer.
*/
function speakersSum(input, output) {
if (input.length != output.length) {
throw '[mixing-rules.js] speakerSum(): buffer lengths mismatch (input: ' +
input.length + ', output: ' + output.length + ')';
}
if (input.numberOfChannels === output.numberOfChannels) {
for (let channel = 0; channel < output.numberOfChannels; ++channel) {
let inputChannel = input.getChannelData(channel);
let outputChannel = output.getChannelData(channel);
for (let i = 0; i < outputChannel.length; i++)
outputChannel[i] += inputChannel[i];
}
} else if (input.numberOfChannels < output.numberOfChannels) {
processUpMix(input, output);
} else {
processDownMix(input, output);
}
}
/**
* In-place summing to |output| based on 'discrete' channel interpretation.
* @param {AudioBuffer} input Input audio buffer.
* @param {AudioBuffer} output Output audio buffer.
*/
function discreteSum(input, output) {
if (input.length != output.length) {
throw '[mixing-rules.js] speakerSum(): buffer lengths mismatch (input: ' +
input.length + ', output: ' + output.length + ')';
}
let numberOfChannels =
Math.min(input.numberOfChannels, output.numberOfChannels)
for (let channel = 0; channel < numberOfChannels; ++channel) {
let inputChannel = input.getChannelData(channel);
let outputChannel = output.getChannelData(channel);
for (let i = 0; i < outputChannel.length; i++)
outputChannel[i] += inputChannel[i];
}
}
/**
* Perform up-mix by in-place summing to |output| buffer.
* @param {AudioBuffer} input Input audio buffer.
* @param {AudioBuffer} output Output audio buffer.
*/
function processUpMix(input, output) {
let numberOfInputChannels = input.numberOfChannels;
let numberOfOutputChannels = output.numberOfChannels;
let i, length = output.length;
// Up-mixing: 1 -> 2, 1 -> 4
// output.L += input
// output.R += input
// output.SL += 0 (in the case of 1 -> 4)
// output.SR += 0 (in the case of 1 -> 4)
if ((numberOfInputChannels === 1 && numberOfOutputChannels === 2) ||
(numberOfInputChannels === 1 && numberOfOutputChannels === 4)) {
let inputChannel = input.getChannelData(0);
let outputChannel0 = output.getChannelData(0);
let outputChannel1 = output.getChannelData(1);
for (i = 0; i < length; i++) {
outputChannel0[i] += inputChannel[i];
outputChannel1[i] += inputChannel[i];
}
return;
}
// Up-mixing: 1 -> 5.1
// output.L += 0
// output.R += 0
// output.C += input
// output.LFE += 0
// output.SL += 0
// output.SR += 0
if (numberOfInputChannels == 1 && numberOfOutputChannels == 6) {
let inputChannel = input.getChannelData(0);
let outputChannel2 = output.getChannelData(2);
for (i = 0; i < length; i++)
outputChannel2[i] += inputChannel[i];
return;
}
// Up-mixing: 2 -> 4, 2 -> 5.1
// output.L += input.L
// output.R += input.R
// output.C += 0 (in the case of 2 -> 5.1)
// output.LFE += 0 (in the case of 2 -> 5.1)
// output.SL += 0
// output.SR += 0
if ((numberOfInputChannels === 2 && numberOfOutputChannels === 4) ||
(numberOfInputChannels === 2 && numberOfOutputChannels === 6)) {
let inputChannel0 = input.getChannelData(0);
let inputChannel1 = input.getChannelData(1);
let outputChannel0 = output.getChannelData(0);
let outputChannel1 = output.getChannelData(1);
for (i = 0; i < length; i++) {
outputChannel0[i] += inputChannel0[i];
outputChannel1[i] += inputChannel1[i];
}
return;
}
// Up-mixing: 4 -> 5.1
// output.L += input.L
// output.R += input.R
// output.C += 0
// output.LFE += 0
// output.SL += input.SL
// output.SR += input.SR
if (numberOfInputChannels === 4 && numberOfOutputChannels === 6) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let inputChannel2 = input.getChannelData(2); // input.SL
let inputChannel3 = input.getChannelData(3); // input.SR
let outputChannel0 = output.getChannelData(0); // output.L
let outputChannel1 = output.getChannelData(1); // output.R
let outputChannel4 = output.getChannelData(4); // output.SL
let outputChannel5 = output.getChannelData(5); // output.SR
for (i = 0; i < length; i++) {
outputChannel0[i] += inputChannel0[i];
outputChannel1[i] += inputChannel1[i];
outputChannel4[i] += inputChannel2[i];
outputChannel5[i] += inputChannel3[i];
}
return;
}
// All other cases, fall back to the discrete sum.
discreteSum(input, output);
}
/**
* Perform down-mix by in-place summing to |output| buffer.
* @param {AudioBuffer} input Input audio buffer.
* @param {AudioBuffer} output Output audio buffer.
*/
function processDownMix(input, output) {
let numberOfInputChannels = input.numberOfChannels;
let numberOfOutputChannels = output.numberOfChannels;
let i, length = output.length;
// Down-mixing: 2 -> 1
// output += 0.5 * (input.L + input.R)
if (numberOfInputChannels === 2 && numberOfOutputChannels === 1) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let outputChannel0 = output.getChannelData(0);
for (i = 0; i < length; i++)
outputChannel0[i] += 0.5 * (inputChannel0[i] + inputChannel1[i]);
return;
}
// Down-mixing: 4 -> 1
// output += 0.25 * (input.L + input.R + input.SL + input.SR)
if (numberOfInputChannels === 4 && numberOfOutputChannels === 1) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let inputChannel2 = input.getChannelData(2); // input.SL
let inputChannel3 = input.getChannelData(3); // input.SR
let outputChannel0 = output.getChannelData(0);
for (i = 0; i < length; i++) {
outputChannel0[i] += 0.25 *
(inputChannel0[i] + inputChannel1[i] + inputChannel2[i] +
inputChannel3[i]);
}
return;
}
// Down-mixing: 5.1 -> 1
// output += sqrt(1/2) * (input.L + input.R) + input.C
// + 0.5 * (input.SL + input.SR)
if (numberOfInputChannels === 6 && numberOfOutputChannels === 1) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let inputChannel2 = input.getChannelData(2); // input.C
let inputChannel4 = input.getChannelData(4); // input.SL
let inputChannel5 = input.getChannelData(5); // input.SR
let outputChannel0 = output.getChannelData(0);
let scaleSqrtHalf = Math.sqrt(0.5);
for (i = 0; i < length; i++) {
outputChannel0[i] +=
scaleSqrtHalf * (inputChannel0[i] + inputChannel1[i]) +
inputChannel2[i] + 0.5 * (inputChannel4[i] + inputChannel5[i]);
}
return;
}
// Down-mixing: 4 -> 2
// output.L += 0.5 * (input.L + input.SL)
// output.R += 0.5 * (input.R + input.SR)
if (numberOfInputChannels == 4 && numberOfOutputChannels == 2) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let inputChannel2 = input.getChannelData(2); // input.SL
let inputChannel3 = input.getChannelData(3); // input.SR
let outputChannel0 = output.getChannelData(0); // output.L
let outputChannel1 = output.getChannelData(1); // output.R
for (i = 0; i < length; i++) {
outputChannel0[i] += 0.5 * (inputChannel0[i] + inputChannel2[i]);
outputChannel1[i] += 0.5 * (inputChannel1[i] + inputChannel3[i]);
}
return;
}
// Down-mixing: 5.1 -> 2
// output.L += input.L + sqrt(1/2) * (input.C + input.SL)
// output.R += input.R + sqrt(1/2) * (input.C + input.SR)
if (numberOfInputChannels == 6 && numberOfOutputChannels == 2) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let inputChannel2 = input.getChannelData(2); // input.C
let inputChannel4 = input.getChannelData(4); // input.SL
let inputChannel5 = input.getChannelData(5); // input.SR
let outputChannel0 = output.getChannelData(0); // output.L
let outputChannel1 = output.getChannelData(1); // output.R
let scaleSqrtHalf = Math.sqrt(0.5);
for (i = 0; i < length; i++) {
outputChannel0[i] += inputChannel0[i] +
scaleSqrtHalf * (inputChannel2[i] + inputChannel4[i]);
outputChannel1[i] += inputChannel1[i] +
scaleSqrtHalf * (inputChannel2[i] + inputChannel5[i]);
}
return;
}
// Down-mixing: 5.1 -> 4
// output.L += input.L + sqrt(1/2) * input.C
// output.R += input.R + sqrt(1/2) * input.C
// output.SL += input.SL
// output.SR += input.SR
if (numberOfInputChannels === 6 && numberOfOutputChannels === 4) {
let inputChannel0 = input.getChannelData(0); // input.L
let inputChannel1 = input.getChannelData(1); // input.R
let inputChannel2 = input.getChannelData(2); // input.C
let inputChannel4 = input.getChannelData(4); // input.SL
let inputChannel5 = input.getChannelData(5); // input.SR
let outputChannel0 = output.getChannelData(0); // output.L
let outputChannel1 = output.getChannelData(1); // output.R
let outputChannel2 = output.getChannelData(2); // output.SL
let outputChannel3 = output.getChannelData(3); // output.SR
let scaleSqrtHalf = Math.sqrt(0.5);
for (i = 0; i < length; i++) {
outputChannel0[i] += inputChannel0[i] + scaleSqrtHalf * inputChannel2[i];
outputChannel1[i] += inputChannel1[i] + scaleSqrtHalf * inputChannel2[i];
outputChannel2[i] += inputChannel4[i];
outputChannel3[i] += inputChannel5[i];
}
return;
}
// All other cases, fall back to the discrete sum.
discreteSum(input, output);
}
|