1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/jitter_estimator.h"
#include <math.h>
#include <string.h>
#include <algorithm>
#include <optional>
#include "absl/strings/string_view.h"
#include "api/field_trials_view.h"
#include "api/units/data_size.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/video_coding/timing/frame_delay_variation_kalman_filter.h"
#include "modules/video_coding/timing/rtt_filter.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Number of frames to wait for before post processing estimate. Also used in
// the frame rate estimator ramp-up.
constexpr size_t kFrameProcessingStartupCount = 30;
// Number of frames to wait for before enabling the frame size filters.
constexpr size_t kFramesUntilSizeFiltering = 5;
// Initial value for frame size filters.
constexpr double kInitialAvgAndMaxFrameSizeBytes = 500.0;
// Time constant for average frame size filter.
constexpr double kPhi = 0.97;
// Time constant for max frame size filter.
constexpr double kPsi = 0.9999;
// Default constants for percentile frame size filter.
constexpr double kDefaultMaxFrameSizePercentile = 0.95;
constexpr int kDefaultFrameSizeWindow = 30 * 10;
// Outlier rejection constants.
constexpr double kNumStdDevDelayClamp = 3.5;
constexpr double kNumStdDevDelayOutlier = 15.0;
constexpr double kNumStdDevSizeOutlier = 3.0;
constexpr double kCongestionRejectionFactor = -0.25;
// Rampup constant for deviation noise filters.
constexpr size_t kAlphaCountMax = 400;
// Noise threshold constants.
// ~Less than 1% chance (look up in normal distribution table)...
constexpr double kNoiseStdDevs = 2.33;
// ...of getting 30 ms freezes
constexpr double kNoiseStdDevOffset = 30.0;
// Jitter estimate clamping limits.
constexpr TimeDelta kMinJitterEstimate = TimeDelta::Millis(1);
constexpr TimeDelta kMaxJitterEstimate = TimeDelta::Seconds(10);
// A constant describing the delay from the jitter buffer to the delay on the
// receiving side which is not accounted for by the jitter buffer nor the
// decoding delay estimate.
constexpr TimeDelta OPERATING_SYSTEM_JITTER = TimeDelta::Millis(10);
// Time constant for reseting the NACK count.
constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60);
// RTT mult activation.
constexpr size_t kNackLimit = 3;
// Frame rate estimate clamping limit.
constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200);
} // namespace
constexpr char JitterEstimator::Config::kFieldTrialsKey[];
JitterEstimator::Config JitterEstimator::Config::ParseAndValidate(
absl::string_view field_trial) {
Config config;
config.Parser()->Parse(field_trial);
// The `MovingPercentileFilter` RTC_CHECKs on the validity of the
// percentile and window length, so we'd better validate the field trial
// provided values here.
if (config.max_frame_size_percentile) {
double original = *config.max_frame_size_percentile;
config.max_frame_size_percentile = std::min(std::max(0.0, original), 1.0);
if (config.max_frame_size_percentile != original) {
RTC_LOG(LS_ERROR) << "Skipping invalid max_frame_size_percentile="
<< original;
}
}
if (config.frame_size_window && config.frame_size_window < 1) {
RTC_LOG(LS_ERROR) << "Skipping invalid frame_size_window="
<< *config.frame_size_window;
config.frame_size_window = 1;
}
// General sanity checks.
if (config.num_stddev_delay_clamp && config.num_stddev_delay_clamp < 0.0) {
RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_clamp="
<< *config.num_stddev_delay_clamp;
config.num_stddev_delay_clamp = 0.0;
}
if (config.num_stddev_delay_outlier &&
config.num_stddev_delay_outlier < 0.0) {
RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_outlier="
<< *config.num_stddev_delay_outlier;
config.num_stddev_delay_outlier = 0.0;
}
if (config.num_stddev_size_outlier && config.num_stddev_size_outlier < 0.0) {
RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_size_outlier="
<< *config.num_stddev_size_outlier;
config.num_stddev_size_outlier = 0.0;
}
return config;
}
JitterEstimator::JitterEstimator(Clock* clock,
const FieldTrialsView& field_trials)
: config_(Config::ParseAndValidate(
field_trials.Lookup(Config::kFieldTrialsKey))),
avg_frame_size_median_bytes_(static_cast<size_t>(
config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
max_frame_size_bytes_percentile_(
config_.max_frame_size_percentile.value_or(
kDefaultMaxFrameSizePercentile),
static_cast<size_t>(
config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
fps_counter_(30), // TODO(sprang): Use an estimator with limit based
// on time, rather than number of samples.
clock_(clock) {
Reset();
}
JitterEstimator::~JitterEstimator() = default;
// Resets the JitterEstimate.
void JitterEstimator::Reset() {
avg_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
max_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
var_frame_size_bytes2_ = 100;
avg_frame_size_median_bytes_.Reset();
max_frame_size_bytes_percentile_.Reset();
last_update_time_ = std::nullopt;
prev_estimate_ = std::nullopt;
prev_frame_size_ = std::nullopt;
avg_noise_ms_ = 0.0;
var_noise_ms2_ = 4.0;
alpha_count_ = 1;
filter_jitter_estimate_ = TimeDelta::Zero();
latest_nack_ = Timestamp::Zero();
nack_count_ = 0;
startup_frame_size_sum_bytes_ = 0;
startup_frame_size_count_ = 0;
startup_count_ = 0;
rtt_filter_.Reset();
fps_counter_.Reset();
kalman_filter_ = FrameDelayVariationKalmanFilter();
}
// Updates the estimates with the new measurements.
void JitterEstimator::UpdateEstimate(TimeDelta frame_delay,
DataSize frame_size) {
if (frame_size.IsZero()) {
return;
}
// Can't use DataSize since this can be negative.
double delta_frame_bytes =
frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes();
if (startup_frame_size_count_ < kFramesUntilSizeFiltering) {
startup_frame_size_sum_bytes_ += frame_size.bytes();
startup_frame_size_count_++;
} else if (startup_frame_size_count_ == kFramesUntilSizeFiltering) {
// Give the frame size filter.
avg_frame_size_bytes_ = startup_frame_size_sum_bytes_ /
static_cast<double>(startup_frame_size_count_);
startup_frame_size_count_++;
}
double avg_frame_size_bytes =
kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes();
double deviation_size_bytes = 2 * sqrt(var_frame_size_bytes2_);
if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) {
// Only update the average frame size if this sample wasn't a key frame.
avg_frame_size_bytes_ = avg_frame_size_bytes;
}
double delta_bytes = frame_size.bytes() - avg_frame_size_bytes;
var_frame_size_bytes2_ = std::max(
kPhi * var_frame_size_bytes2_ + (1 - kPhi) * (delta_bytes * delta_bytes),
1.0);
// Update non-linear IIR estimate of max frame size.
max_frame_size_bytes_ =
std::max<double>(kPsi * max_frame_size_bytes_, frame_size.bytes());
// Maybe update percentile estimates of frame sizes.
if (config_.avg_frame_size_median) {
avg_frame_size_median_bytes_.Insert(frame_size.bytes());
}
if (config_.MaxFrameSizePercentileEnabled()) {
max_frame_size_bytes_percentile_.Insert(frame_size.bytes());
}
if (!prev_frame_size_) {
prev_frame_size_ = frame_size;
return;
}
prev_frame_size_ = frame_size;
// Cap frame_delay based on the current time deviation noise.
double num_stddev_delay_clamp =
config_.num_stddev_delay_clamp.value_or(kNumStdDevDelayClamp);
TimeDelta max_time_deviation =
TimeDelta::Millis(num_stddev_delay_clamp * sqrt(var_noise_ms2_) + 0.5);
frame_delay.Clamp(-max_time_deviation, max_time_deviation);
double delay_deviation_ms =
frame_delay.ms() -
kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes);
// Outlier rejection: these conditions depend on filtered versions of the
// delay and frame size _means_, respectively, together with a configurable
// number of standard deviations. If a sample is large with respect to the
// corresponding mean and dispersion (defined by the number of
// standard deviations and the sample standard deviation), it is deemed an
// outlier. This "empirical rule" is further described in
// https://en.wikipedia.org/wiki/68-95-99.7_rule. Note that neither of the
// estimated means are true sample means, which implies that they are possibly
// not normally distributed. Hence, this rejection method is just a heuristic.
double num_stddev_delay_outlier =
config_.num_stddev_delay_outlier.value_or(kNumStdDevDelayOutlier);
// Delay outlier rejection is two-sided.
bool abs_delay_is_not_outlier =
fabs(delay_deviation_ms) <
num_stddev_delay_outlier * sqrt(var_noise_ms2_);
// The reasoning above means, in particular, that we should use the sample
// mean-style `avg_frame_size_bytes_` estimate, as opposed to the
// median-filtered version, even if configured to use latter for the
// calculation in `CalculateEstimate()`.
// Size outlier rejection is one-sided.
double num_stddev_size_outlier =
config_.num_stddev_size_outlier.value_or(kNumStdDevSizeOutlier);
bool size_is_positive_outlier =
frame_size.bytes() >
avg_frame_size_bytes_ +
num_stddev_size_outlier * sqrt(var_frame_size_bytes2_);
// Only update the Kalman filter if the sample is not considered an extreme
// outlier. Even if it is an extreme outlier from a delay point of view, if
// the frame size also is large the deviation is probably due to an incorrect
// line slope.
if (abs_delay_is_not_outlier || size_is_positive_outlier) {
// Prevent updating with frames which have been congested by a large frame,
// and therefore arrives almost at the same time as that frame.
// This can occur when we receive a large frame (key frame) which has been
// delayed. The next frame is of normal size (delta frame), and thus deltaFS
// will be << 0. This removes all frame samples which arrives after a key
// frame.
double congestion_rejection_factor =
config_.congestion_rejection_factor.value_or(
kCongestionRejectionFactor);
double filtered_max_frame_size_bytes =
config_.MaxFrameSizePercentileEnabled()
? max_frame_size_bytes_percentile_.GetFilteredValue()
: max_frame_size_bytes_;
bool is_not_congested =
delta_frame_bytes >
congestion_rejection_factor * filtered_max_frame_size_bytes;
if (is_not_congested || config_.estimate_noise_when_congested) {
// Update the variance of the deviation from the line given by the Kalman
// filter.
EstimateRandomJitter(delay_deviation_ms);
}
if (is_not_congested) {
// Neither a delay outlier nor a congested frame, so we can safely update
// the Kalman filter with the sample.
kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes,
filtered_max_frame_size_bytes,
var_noise_ms2_);
}
} else {
// Delay outliers affect the noise estimate through a value equal to the
// outlier rejection threshold.
double num_stddev = (delay_deviation_ms >= 0) ? num_stddev_delay_outlier
: -num_stddev_delay_outlier;
EstimateRandomJitter(num_stddev * sqrt(var_noise_ms2_));
}
// Post process the total estimated jitter
if (startup_count_ >= kFrameProcessingStartupCount) {
PostProcessEstimate();
} else {
startup_count_++;
}
}
// Updates the nack/packet ratio.
void JitterEstimator::FrameNacked() {
if (nack_count_ < kNackLimit) {
nack_count_++;
}
latest_nack_ = clock_->CurrentTime();
}
void JitterEstimator::UpdateRtt(TimeDelta rtt) {
rtt_filter_.Update(rtt);
}
JitterEstimator::Config JitterEstimator::GetConfigForTest() const {
return config_;
}
// Estimates the random jitter by calculating the variance of the sample
// distance from the line given by the Kalman filter.
void JitterEstimator::EstimateRandomJitter(double d_dT) {
Timestamp now = clock_->CurrentTime();
if (last_update_time_.has_value()) {
fps_counter_.AddSample((now - *last_update_time_).us());
}
last_update_time_ = now;
if (alpha_count_ == 0) {
RTC_DCHECK_NOTREACHED();
return;
}
double alpha =
static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_);
alpha_count_++;
if (alpha_count_ > kAlphaCountMax)
alpha_count_ = kAlphaCountMax;
// In order to avoid a low frame rate stream to react slower to changes,
// scale the alpha weight relative a 30 fps stream.
Frequency fps = GetFrameRate();
if (fps > Frequency::Zero()) {
constexpr Frequency k30Fps = Frequency::Hertz(30);
double rate_scale = k30Fps / fps;
// At startup, there can be a lot of noise in the fps estimate.
// Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
// at sample #kFrameProcessingStartupCount.
if (alpha_count_ < kFrameProcessingStartupCount) {
rate_scale = (alpha_count_ * rate_scale +
(kFrameProcessingStartupCount - alpha_count_)) /
kFrameProcessingStartupCount;
}
alpha = pow(alpha, rate_scale);
}
double avg_noise_ms = alpha * avg_noise_ms_ + (1 - alpha) * d_dT;
double var_noise_ms2 = alpha * var_noise_ms2_ + (1 - alpha) *
(d_dT - avg_noise_ms_) *
(d_dT - avg_noise_ms_);
avg_noise_ms_ = avg_noise_ms;
var_noise_ms2_ = var_noise_ms2;
if (var_noise_ms2_ < 1.0) {
// The variance should never be zero, since we might get stuck and consider
// all samples as outliers.
var_noise_ms2_ = 1.0;
}
}
double JitterEstimator::NoiseThreshold() const {
double noise_threshold_ms =
kNoiseStdDevs * sqrt(var_noise_ms2_) - kNoiseStdDevOffset;
if (noise_threshold_ms < 1.0) {
noise_threshold_ms = 1.0;
}
return noise_threshold_ms;
}
// Calculates the current jitter estimate from the filtered estimates.
TimeDelta JitterEstimator::CalculateEstimate() {
// Using median- and percentile-filtered versions of the frame sizes may be
// more robust than using sample mean-style estimates.
double filtered_avg_frame_size_bytes =
config_.avg_frame_size_median
? avg_frame_size_median_bytes_.GetFilteredValue()
: avg_frame_size_bytes_;
double filtered_max_frame_size_bytes =
config_.MaxFrameSizePercentileEnabled()
? max_frame_size_bytes_percentile_.GetFilteredValue()
: max_frame_size_bytes_;
double worst_case_frame_size_deviation_bytes =
filtered_max_frame_size_bytes - filtered_avg_frame_size_bytes;
double ret_ms = kalman_filter_.GetFrameDelayVariationEstimateSizeBased(
worst_case_frame_size_deviation_bytes) +
NoiseThreshold();
TimeDelta ret = TimeDelta::Millis(ret_ms);
// A very low estimate (or negative) is neglected.
if (ret < kMinJitterEstimate) {
ret = prev_estimate_.value_or(kMinJitterEstimate);
// Sanity check to make sure that no other method has set `prev_estimate_`
// to a value lower than `kMinJitterEstimate`.
RTC_DCHECK_GE(ret, kMinJitterEstimate);
} else if (ret > kMaxJitterEstimate) { // Sanity
ret = kMaxJitterEstimate;
}
prev_estimate_ = ret;
return ret;
}
void JitterEstimator::PostProcessEstimate() {
filter_jitter_estimate_ = CalculateEstimate();
}
// Returns the current filtered estimate if available,
// otherwise tries to calculate an estimate.
TimeDelta JitterEstimator::GetJitterEstimate(
double rtt_multiplier,
std::optional<TimeDelta> rtt_mult_add_cap) {
TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
Timestamp now = clock_->CurrentTime();
if (now - latest_nack_ > kNackCountTimeout)
nack_count_ = 0;
if (filter_jitter_estimate_ > jitter)
jitter = filter_jitter_estimate_;
if (nack_count_ >= kNackLimit) {
if (rtt_mult_add_cap.has_value()) {
jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier,
rtt_mult_add_cap.value());
} else {
jitter += rtt_filter_.Rtt() * rtt_multiplier;
}
}
static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5);
static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10);
Frequency fps = GetFrameRate();
// Ignore jitter for very low fps streams.
if (fps < kJitterScaleLowThreshold) {
if (fps.IsZero()) {
return std::max(TimeDelta::Zero(), jitter);
}
return TimeDelta::Zero();
}
// Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
// kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
if (fps < kJitterScaleHighThreshold) {
jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
(fps - kJitterScaleLowThreshold) * jitter;
}
return std::max(TimeDelta::Zero(), jitter);
}
Frequency JitterEstimator::GetFrameRate() const {
TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean());
if (mean_frame_period <= TimeDelta::Zero())
return Frequency::Zero();
Frequency fps = 1 / mean_frame_period;
// Sanity check.
RTC_DCHECK_GE(fps, Frequency::Zero());
return std::min(fps, kMaxFramerateEstimate);
}
} // namespace webrtc
|