1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/timing.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <optional>
#include "api/field_trials_view.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "api/video/video_frame.h"
#include "api/video/video_timing.h"
#include "modules/video_coding/timing/decode_time_percentile_filter.h"
#include "modules/video_coding/timing/timestamp_extrapolator.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/synchronization/mutex.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Default pacing that is used for the low-latency renderer path.
constexpr TimeDelta kZeroPlayoutDelayDefaultMinPacing = TimeDelta::Millis(8);
constexpr TimeDelta kLowLatencyStreamMaxPlayoutDelayThreshold =
TimeDelta::Millis(500);
void CheckDelaysValid(TimeDelta min_delay, TimeDelta max_delay) {
if (min_delay > max_delay) {
RTC_LOG(LS_ERROR)
<< "Playout delays set incorrectly: min playout delay (" << min_delay
<< ") > max playout delay (" << max_delay
<< "). This is undefined behaviour. Application writers should "
"ensure that the min delay is always less than or equals max "
"delay. If trying to use the playout delay header extensions "
"described in "
"https://webrtc.googlesource.com/src/+/refs/heads/main/docs/"
"native-code/rtp-hdrext/playout-delay/, be careful that a playout "
"delay hint or A/V sync settings may have caused this conflict.";
}
}
} // namespace
VCMTiming::VCMTiming(Clock* clock, const FieldTrialsView& field_trials)
: clock_(clock),
ts_extrapolator_(
std::make_unique<TimestampExtrapolator>(clock_->CurrentTime())),
decode_time_filter_(std::make_unique<DecodeTimePercentileFilter>()),
render_delay_(kDefaultRenderDelay),
min_playout_delay_(TimeDelta::Zero()),
max_playout_delay_(TimeDelta::Seconds(10)),
jitter_delay_(TimeDelta::Zero()),
current_delay_(TimeDelta::Zero()),
prev_frame_timestamp_(0),
num_decoded_frames_(0),
zero_playout_delay_min_pacing_("min_pacing",
kZeroPlayoutDelayDefaultMinPacing),
last_decode_scheduled_(Timestamp::Zero()) {
ParseFieldTrial({&zero_playout_delay_min_pacing_},
field_trials.Lookup("WebRTC-ZeroPlayoutDelay"));
}
void VCMTiming::Reset() {
MutexLock lock(&mutex_);
ts_extrapolator_->Reset(clock_->CurrentTime());
decode_time_filter_ = std::make_unique<DecodeTimePercentileFilter>();
render_delay_ = kDefaultRenderDelay;
min_playout_delay_ = TimeDelta::Zero();
jitter_delay_ = TimeDelta::Zero();
current_delay_ = TimeDelta::Zero();
prev_frame_timestamp_ = 0;
}
void VCMTiming::set_render_delay(TimeDelta render_delay) {
MutexLock lock(&mutex_);
render_delay_ = render_delay;
}
TimeDelta VCMTiming::min_playout_delay() const {
MutexLock lock(&mutex_);
return min_playout_delay_;
}
void VCMTiming::set_min_playout_delay(TimeDelta min_playout_delay) {
MutexLock lock(&mutex_);
if (min_playout_delay_ != min_playout_delay) {
CheckDelaysValid(min_playout_delay, max_playout_delay_);
min_playout_delay_ = min_playout_delay;
}
}
void VCMTiming::set_playout_delay(const VideoPlayoutDelay& playout_delay) {
MutexLock lock(&mutex_);
// No need to call `CheckDelaysValid` as the same invariant (min <= max)
// is guaranteed by the `VideoPlayoutDelay` type.
min_playout_delay_ = playout_delay.min();
max_playout_delay_ = playout_delay.max();
}
void VCMTiming::SetJitterDelay(TimeDelta jitter_delay) {
MutexLock lock(&mutex_);
if (jitter_delay != jitter_delay_) {
jitter_delay_ = jitter_delay;
// When in initial state, set current delay to minimum delay.
if (current_delay_.IsZero()) {
current_delay_ = jitter_delay_;
}
}
}
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
MutexLock lock(&mutex_);
TimeDelta target_delay = TargetDelayInternal();
if (current_delay_.IsZero()) {
// Not initialized, set current delay to target.
current_delay_ = target_delay;
} else if (target_delay != current_delay_) {
TimeDelta delay_diff = target_delay - current_delay_;
// Never change the delay with more than 100 ms every second. If we're
// changing the delay in too large steps we will get noticeable freezes. By
// limiting the change we can increase the delay in smaller steps, which
// will be experienced as the video is played in slow motion. When lowering
// the delay the video will be played at a faster pace.
TimeDelta max_change = TimeDelta::Zero();
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
// wrap
max_change =
TimeDelta::Millis(kDelayMaxChangeMsPerS *
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
prev_frame_timestamp_) /
90000);
} else {
max_change =
TimeDelta::Millis(kDelayMaxChangeMsPerS *
(frame_timestamp - prev_frame_timestamp_) / 90000);
}
if (max_change <= TimeDelta::Zero()) {
// Any changes less than 1 ms are truncated and will be postponed.
// Negative change will be due to reordering and should be ignored.
return;
}
delay_diff = std::max(delay_diff, -max_change);
delay_diff = std::min(delay_diff, max_change);
current_delay_ = current_delay_ + delay_diff;
}
prev_frame_timestamp_ = frame_timestamp;
}
void VCMTiming::UpdateCurrentDelay(Timestamp render_time,
Timestamp actual_decode_time) {
MutexLock lock(&mutex_);
TimeDelta target_delay = TargetDelayInternal();
TimeDelta delayed = (actual_decode_time - render_time) +
EstimatedMaxDecodeTime() + render_delay_;
// Only consider `delayed` as negative by more than a few microseconds.
if (delayed.ms() < 0) {
return;
}
if (current_delay_ + delayed <= target_delay) {
current_delay_ += delayed;
} else {
current_delay_ = target_delay;
}
}
void VCMTiming::StopDecodeTimer(TimeDelta decode_time, Timestamp now) {
MutexLock lock(&mutex_);
decode_time_filter_->AddTiming(decode_time.ms(), now.ms());
RTC_DCHECK_GE(decode_time, TimeDelta::Zero());
++num_decoded_frames_;
}
void VCMTiming::IncomingTimestamp(uint32_t rtp_timestamp, Timestamp now) {
MutexLock lock(&mutex_);
ts_extrapolator_->Update(now, rtp_timestamp);
}
Timestamp VCMTiming::RenderTime(uint32_t frame_timestamp, Timestamp now) const {
MutexLock lock(&mutex_);
return RenderTimeInternal(frame_timestamp, now);
}
void VCMTiming::SetLastDecodeScheduledTimestamp(
Timestamp last_decode_scheduled) {
MutexLock lock(&mutex_);
last_decode_scheduled_ = last_decode_scheduled;
}
Timestamp VCMTiming::RenderTimeInternal(uint32_t frame_timestamp,
Timestamp now) const {
if (UseLowLatencyRendering()) {
// Render as soon as possible or with low-latency renderer algorithm.
return Timestamp::Zero();
}
// Note that TimestampExtrapolator::ExtrapolateLocalTime is not a const
// method; it mutates the object's wraparound state.
std::optional<Timestamp> local_time =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (!local_time.has_value()) {
return now;
}
Timestamp estimated_complete_time = *local_time;
// Make sure the actual delay stays in the range of `min_playout_delay_`
// and `max_playout_delay_`.
TimeDelta actual_delay =
current_delay_.Clamped(min_playout_delay_, max_playout_delay_);
return estimated_complete_time + actual_delay;
}
TimeDelta VCMTiming::EstimatedMaxDecodeTime() const {
const int decode_time_ms = decode_time_filter_->RequiredDecodeTimeMs();
RTC_DCHECK_GE(decode_time_ms, 0);
return TimeDelta::Millis(decode_time_ms);
}
TimeDelta VCMTiming::MaxWaitingTime(Timestamp render_time,
Timestamp now,
bool too_many_frames_queued) const {
MutexLock lock(&mutex_);
if (render_time.IsZero() && zero_playout_delay_min_pacing_->us() > 0 &&
min_playout_delay_.IsZero() && max_playout_delay_ > TimeDelta::Zero()) {
// `render_time` == 0 indicates that the frame should be decoded and
// rendered as soon as possible. However, the decoder can be choked if too
// many frames are sent at once. Therefore, limit the interframe delay to
// |zero_playout_delay_min_pacing_| unless too many frames are queued in
// which case the frames are sent to the decoder at once.
if (too_many_frames_queued) {
return TimeDelta::Zero();
}
Timestamp earliest_next_decode_start_time =
last_decode_scheduled_ + zero_playout_delay_min_pacing_;
TimeDelta max_wait_time = now >= earliest_next_decode_start_time
? TimeDelta::Zero()
: earliest_next_decode_start_time - now;
return max_wait_time;
}
return render_time - now - EstimatedMaxDecodeTime() - render_delay_;
}
TimeDelta VCMTiming::TargetVideoDelay() const {
MutexLock lock(&mutex_);
return TargetDelayInternal();
}
TimeDelta VCMTiming::TargetDelayInternal() const {
return std::max(min_playout_delay_,
jitter_delay_ + EstimatedMaxDecodeTime() + render_delay_);
}
// TODO(crbug.com/webrtc/15197): Centralize delay arithmetic.
TimeDelta VCMTiming::StatsTargetDelayInternal() const {
TimeDelta stats_target_delay =
TargetDelayInternal() - (EstimatedMaxDecodeTime() + render_delay_);
return std::max(TimeDelta::Zero(), stats_target_delay);
}
VideoFrame::RenderParameters VCMTiming::RenderParameters() const {
MutexLock lock(&mutex_);
return {.use_low_latency_rendering = UseLowLatencyRendering(),
.max_composition_delay_in_frames = max_composition_delay_in_frames_};
}
bool VCMTiming::UseLowLatencyRendering() const {
// min_playout_delay_==0,
// max_playout_delay_<=kLowLatencyStreamMaxPlayoutDelayThreshold indicates
// that the low-latency path should be used, which means that frames should be
// decoded and rendered as soon as possible.
return min_playout_delay_.IsZero() &&
max_playout_delay_ <= kLowLatencyStreamMaxPlayoutDelayThreshold;
}
VCMTiming::VideoDelayTimings VCMTiming::GetTimings() const {
MutexLock lock(&mutex_);
return VideoDelayTimings{
.num_decoded_frames = num_decoded_frames_,
.minimum_delay = jitter_delay_,
.estimated_max_decode_time = EstimatedMaxDecodeTime(),
.render_delay = render_delay_,
.min_playout_delay = min_playout_delay_,
.max_playout_delay = max_playout_delay_,
.target_delay = StatsTargetDelayInternal(),
.current_delay = current_delay_};
}
void VCMTiming::SetTimingFrameInfo(const TimingFrameInfo& info) {
MutexLock lock(&mutex_);
timing_frame_info_.emplace(info);
}
std::optional<TimingFrameInfo> VCMTiming::GetTimingFrameInfo() {
MutexLock lock(&mutex_);
return timing_frame_info_;
}
void VCMTiming::SetMaxCompositionDelayInFrames(
std::optional<int> max_composition_delay_in_frames) {
MutexLock lock(&mutex_);
max_composition_delay_in_frames_ = max_composition_delay_in_frames;
}
} // namespace webrtc
|