File: simulcast_rate_allocator.cc

package info (click to toggle)
thunderbird 1%3A143.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 4,703,968 kB
  • sloc: cpp: 7,770,492; javascript: 5,943,842; ansic: 3,918,754; python: 1,418,263; xml: 653,354; asm: 474,045; java: 183,079; sh: 111,238; makefile: 20,410; perl: 14,359; objc: 13,059; yacc: 4,583; pascal: 3,405; lex: 1,720; ruby: 999; exp: 762; sql: 715; awk: 580; php: 436; lisp: 430; sed: 69; csh: 10
file content (349 lines) | stat: -rw-r--r-- 13,772 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/utility/simulcast_rate_allocator.h"

#include <stdio.h>

#include <algorithm>
#include <cstdint>
#include <numeric>
#include <tuple>
#include <vector>

#include "api/environment/environment.h"
#include "api/units/data_rate.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video/video_bitrate_allocator.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_codec_type.h"
#include "api/video_codecs/simulcast_stream.h"
#include "api/video_codecs/video_codec.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/rate_control_settings.h"

namespace webrtc {
namespace {
// Ratio allocation between temporal streams:
// Values as required for the VP8 codec (accumulating).
static const float
    kLayerRateAllocation[kMaxTemporalStreams][kMaxTemporalStreams] = {
        {1.0f, 1.0f, 1.0f, 1.0f},  // 1 layer
        {0.6f, 1.0f, 1.0f, 1.0f},  // 2 layers {60%, 40%}
        {0.4f, 0.6f, 1.0f, 1.0f},  // 3 layers {40%, 20%, 40%}
        {0.25f, 0.4f, 0.6f, 1.0f}  // 4 layers {25%, 15%, 20%, 40%}
};

static const float kBaseHeavy3TlRateAllocation[kMaxTemporalStreams] = {
    0.6f, 0.8f, 1.0f, 1.0f  // 3 layers {60%, 20%, 20%}
};

const uint32_t kLegacyScreenshareTl0BitrateKbps = 200;
const uint32_t kLegacyScreenshareTl1BitrateKbps = 1000;
}  // namespace

float SimulcastRateAllocator::GetTemporalRateAllocation(
    int num_layers,
    int temporal_id,
    bool base_heavy_tl3_alloc) {
  RTC_CHECK_GT(num_layers, 0);
  RTC_CHECK_LE(num_layers, kMaxTemporalStreams);
  RTC_CHECK_GE(temporal_id, 0);
  RTC_CHECK_LT(temporal_id, num_layers);
  if (num_layers == 3 && base_heavy_tl3_alloc) {
    return kBaseHeavy3TlRateAllocation[temporal_id];
  }
  return kLayerRateAllocation[num_layers - 1][temporal_id];
}

SimulcastRateAllocator::SimulcastRateAllocator(const Environment& env,
                                               const VideoCodec& codec)
    : codec_(codec),
      stable_rate_settings_(env.field_trials()),
      rate_control_settings_(env.field_trials()),
      legacy_conference_mode_(false) {}

SimulcastRateAllocator::~SimulcastRateAllocator() = default;

VideoBitrateAllocation SimulcastRateAllocator::Allocate(
    VideoBitrateAllocationParameters parameters) {
  VideoBitrateAllocation allocated_bitrates;
  DataRate stable_rate = parameters.total_bitrate;
  if (stable_rate_settings_.IsEnabled() &&
      parameters.stable_bitrate > DataRate::Zero()) {
    stable_rate = std::min(parameters.stable_bitrate, parameters.total_bitrate);
  }
  DistributeAllocationToSimulcastLayers(parameters.total_bitrate, stable_rate,
                                        &allocated_bitrates);
  DistributeAllocationToTemporalLayers(&allocated_bitrates);
  return allocated_bitrates;
}

void SimulcastRateAllocator::DistributeAllocationToSimulcastLayers(
    DataRate total_bitrate,
    DataRate stable_bitrate,
    VideoBitrateAllocation* allocated_bitrates) {
  DataRate left_in_total_allocation = total_bitrate;
  DataRate left_in_stable_allocation = stable_bitrate;

  if (codec_.maxBitrate) {
    DataRate max_rate = DataRate::KilobitsPerSec(codec_.maxBitrate);
    left_in_total_allocation = std::min(left_in_total_allocation, max_rate);
    left_in_stable_allocation = std::min(left_in_stable_allocation, max_rate);
  }

  if (codec_.numberOfSimulcastStreams == 0) {
    // No simulcast, just set the target as this has been capped already.
    if (codec_.active) {
      allocated_bitrates->SetBitrate(
          0, 0,
          std::max(DataRate::KilobitsPerSec(codec_.minBitrate),
                   left_in_total_allocation)
              .bps());
    }
    return;
  }

  // Sort the layers by maxFramerate, they might not always be from smallest
  // to biggest
  std::vector<size_t> layer_index(codec_.numberOfSimulcastStreams);
  std::iota(layer_index.begin(), layer_index.end(), 0);
  std::stable_sort(layer_index.begin(), layer_index.end(),
                   [this](size_t a, size_t b) {
                     return std::tie(codec_.simulcastStream[a].maxBitrate) <
                            std::tie(codec_.simulcastStream[b].maxBitrate);
                   });

  // Find the first active layer. We don't allocate to inactive layers.
  size_t active_layer = 0;
  for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
    if (codec_.simulcastStream[layer_index[active_layer]].active) {
      // Found the first active layer.
      break;
    }
  }
  // All streams could be inactive, and nothing more to do.
  if (active_layer == codec_.numberOfSimulcastStreams) {
    return;
  }

  // Always allocate enough bitrate for the minimum bitrate of the first
  // active layer. Suspending below min bitrate is controlled outside the
  // codec implementation and is not overridden by this.
  DataRate min_rate = DataRate::KilobitsPerSec(
      codec_.simulcastStream[layer_index[active_layer]].minBitrate);
  left_in_total_allocation = std::max(left_in_total_allocation, min_rate);
  left_in_stable_allocation = std::max(left_in_stable_allocation, min_rate);

  // Begin by allocating bitrate to simulcast streams, putting all bitrate in
  // temporal layer 0. We'll then distribute this bitrate, across potential
  // temporal layers, when stream allocation is done.

  bool first_allocation = false;
  if (stream_enabled_.empty()) {
    // First time allocating, this means we should not include hysteresis in
    // case this is a reconfiguration of an existing enabled stream.
    first_allocation = true;
    stream_enabled_.resize(codec_.numberOfSimulcastStreams, false);
  }

  size_t top_active_layer = active_layer;
  // Allocate up to the target bitrate for each active simulcast layer.
  for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
    const SimulcastStream& stream =
        codec_.simulcastStream[layer_index[active_layer]];
    if (!stream.active) {
      stream_enabled_[layer_index[active_layer]] = false;
      continue;
    }
    // If we can't allocate to the current layer we can't allocate to higher
    // layers because they require a higher minimum bitrate.
    DataRate min_bitrate = DataRate::KilobitsPerSec(stream.minBitrate);
    DataRate target_bitrate = DataRate::KilobitsPerSec(stream.targetBitrate);
    double hysteresis_factor =
        codec_.mode == VideoCodecMode::kRealtimeVideo
            ? stable_rate_settings_.GetVideoHysteresisFactor()
            : stable_rate_settings_.GetScreenshareHysteresisFactor();
    if (!first_allocation && !stream_enabled_[layer_index[active_layer]]) {
      min_bitrate = std::min(hysteresis_factor * min_bitrate, target_bitrate);
    }
    if (left_in_stable_allocation < min_bitrate) {
      allocated_bitrates->set_bw_limited(true);
      break;
    }

    // We are allocating to this layer so it is the current active allocation.
    top_active_layer = layer_index[active_layer];
    stream_enabled_[layer_index[active_layer]] = true;
    DataRate layer_rate = std::min(left_in_total_allocation, target_bitrate);
    allocated_bitrates->SetBitrate(layer_index[active_layer], 0,
                                   layer_rate.bps());
    left_in_total_allocation -= layer_rate;
    left_in_stable_allocation -=
        std::min(left_in_stable_allocation, target_bitrate);
  }

  // All layers above this one are not active.
  for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
    stream_enabled_[layer_index[active_layer]] = false;
  }

  // Next, try allocate remaining bitrate, up to max bitrate, in top active
  // stream.
  // TODO(sprang): Allocate up to max bitrate for all layers once we have a
  //               better idea of possible performance implications.
  if (left_in_total_allocation > DataRate::Zero()) {
    const SimulcastStream& stream = codec_.simulcastStream[top_active_layer];
    DataRate initial_layer_rate = DataRate::BitsPerSec(
        allocated_bitrates->GetSpatialLayerSum(top_active_layer));
    DataRate additional_allocation = std::min(
        left_in_total_allocation,
        DataRate::KilobitsPerSec(stream.maxBitrate) - initial_layer_rate);
    allocated_bitrates->SetBitrate(
        top_active_layer, 0,
        (initial_layer_rate + additional_allocation).bps());
  }
}

void SimulcastRateAllocator::DistributeAllocationToTemporalLayers(
    VideoBitrateAllocation* allocated_bitrates_bps) const {
  const int num_spatial_streams =
      std::max(1, static_cast<int>(codec_.numberOfSimulcastStreams));

  // Finally, distribute the bitrate for the simulcast streams across the
  // available temporal layers.
  for (int simulcast_id = 0; simulcast_id < num_spatial_streams;
       ++simulcast_id) {
    uint32_t target_bitrate_kbps =
        allocated_bitrates_bps->GetBitrate(simulcast_id, 0) / 1000;
    if (target_bitrate_kbps == 0) {
      continue;
    }

    const uint32_t expected_allocated_bitrate_kbps = target_bitrate_kbps;
    RTC_DCHECK_EQ(
        target_bitrate_kbps,
        allocated_bitrates_bps->GetSpatialLayerSum(simulcast_id) / 1000);
    const int num_temporal_streams = NumTemporalStreams(simulcast_id);
    uint32_t max_bitrate_kbps;
    // Legacy temporal-layered only screenshare, or simulcast screenshare
    // with legacy mode for simulcast stream 0.
    if (codec_.mode == VideoCodecMode::kScreensharing &&
        legacy_conference_mode_ && simulcast_id == 0) {
      // TODO(holmer): This is a "temporary" hack for screensharing, where we
      // interpret the startBitrate as the encoder target bitrate. This is
      // to allow for a different max bitrate, so if the codec can't meet
      // the target we still allow it to overshoot up to the max before dropping
      // frames. This hack should be improved.
      max_bitrate_kbps =
          std::min(kLegacyScreenshareTl1BitrateKbps, target_bitrate_kbps);
      target_bitrate_kbps =
          std::min(kLegacyScreenshareTl0BitrateKbps, target_bitrate_kbps);
    } else if (num_spatial_streams == 1) {
      max_bitrate_kbps = codec_.maxBitrate;
    } else {
      max_bitrate_kbps = codec_.simulcastStream[simulcast_id].maxBitrate;
    }

    std::vector<uint32_t> tl_allocation;
    if (num_temporal_streams == 1) {
      tl_allocation.push_back(target_bitrate_kbps);
    } else {
      if (codec_.mode == VideoCodecMode::kScreensharing &&
          legacy_conference_mode_ && simulcast_id == 0) {
        tl_allocation = ScreenshareTemporalLayerAllocation(
            target_bitrate_kbps, max_bitrate_kbps, simulcast_id);
      } else {
        tl_allocation = DefaultTemporalLayerAllocation(
            target_bitrate_kbps, max_bitrate_kbps, simulcast_id);
      }
    }
    RTC_DCHECK_GT(tl_allocation.size(), 0);
    RTC_DCHECK_LE(tl_allocation.size(), num_temporal_streams);

    uint64_t tl_allocation_sum_kbps = 0;
    for (size_t tl_index = 0; tl_index < tl_allocation.size(); ++tl_index) {
      uint32_t layer_rate_kbps = tl_allocation[tl_index];
      if (layer_rate_kbps > 0) {
        allocated_bitrates_bps->SetBitrate(simulcast_id, tl_index,
                                           layer_rate_kbps * 1000);
      }
      tl_allocation_sum_kbps += layer_rate_kbps;
    }
    RTC_DCHECK_LE(tl_allocation_sum_kbps, expected_allocated_bitrate_kbps);
  }
}

std::vector<uint32_t> SimulcastRateAllocator::DefaultTemporalLayerAllocation(
    int bitrate_kbps,
    int /* max_bitrate_kbps */,
    int simulcast_id) const {
  const size_t num_temporal_layers = NumTemporalStreams(simulcast_id);
  std::vector<uint32_t> bitrates;
  for (size_t i = 0; i < num_temporal_layers; ++i) {
    float layer_bitrate =
        bitrate_kbps *
        GetTemporalRateAllocation(
            num_temporal_layers, i,
            rate_control_settings_.Vp8BaseHeavyTl3RateAllocation());
    bitrates.push_back(static_cast<uint32_t>(layer_bitrate + 0.5));
  }

  // Allocation table is of aggregates, transform to individual rates.
  uint32_t sum = 0;
  for (size_t i = 0; i < num_temporal_layers; ++i) {
    uint32_t layer_bitrate = bitrates[i];
    RTC_DCHECK_LE(sum, bitrates[i]);
    bitrates[i] -= sum;
    sum = layer_bitrate;

    if (sum >= static_cast<uint32_t>(bitrate_kbps)) {
      // Sum adds up; any subsequent layers will be 0.
      bitrates.resize(i + 1);
      break;
    }
  }

  return bitrates;
}

std::vector<uint32_t>
SimulcastRateAllocator::ScreenshareTemporalLayerAllocation(
    int bitrate_kbps,
    int max_bitrate_kbps,
    int simulcast_id) const {
  if (simulcast_id > 0) {
    return DefaultTemporalLayerAllocation(bitrate_kbps, max_bitrate_kbps,
                                          simulcast_id);
  }
  std::vector<uint32_t> allocation;
  allocation.push_back(bitrate_kbps);
  if (max_bitrate_kbps > bitrate_kbps)
    allocation.push_back(max_bitrate_kbps - bitrate_kbps);
  return allocation;
}

const VideoCodec& webrtc::SimulcastRateAllocator::GetCodec() const {
  return codec_;
}

int SimulcastRateAllocator::NumTemporalStreams(size_t simulcast_id) const {
  return std::max<uint8_t>(
      1,
      codec_.codecType == kVideoCodecVP8 && codec_.numberOfSimulcastStreams == 0
          ? codec_.VP8().numberOfTemporalLayers
          : codec_.simulcastStream[simulcast_id].numberOfTemporalLayers);
}

void SimulcastRateAllocator::SetLegacyConferenceMode(bool enabled) {
  legacy_conference_mode_ = enabled;
}

}  // namespace webrtc