File: taskgraph.py

package info (click to toggle)
thunderbird 1%3A143.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 4,703,968 kB
  • sloc: cpp: 7,770,492; javascript: 5,943,842; ansic: 3,918,754; python: 1,418,263; xml: 653,354; asm: 474,045; java: 183,079; sh: 111,238; makefile: 20,410; perl: 14,359; objc: 13,059; yacc: 4,583; pascal: 3,405; lex: 1,720; ruby: 999; exp: 762; sql: 715; awk: 580; php: 436; lisp: 430; sed: 69; csh: 10
file content (53 lines) | stat: -rw-r--r-- 1,968 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

"""
Tools for interacting with existing taskgraphs.
"""

from taskgraph.util.taskcluster import find_task_id, get_artifact


def find_decision_task(parameters, graph_config):
    """Given the parameters for this action, find the taskId of the decision
    task"""
    if parameters.get("repository_type", "hg") == "hg":
        return find_task_id(
            "{}.v2.{}.pushlog-id.{}.decision".format(
                graph_config["trust-domain"],
                parameters["project"],
                parameters["pushlog_id"],
            )
        )
    elif parameters["repository_type"] == "git":
        return find_task_id(
            "{}.v2.{}.revision.{}.taskgraph.decision".format(
                graph_config["trust-domain"],
                parameters["project"],
                parameters["head_rev"],
            )
        )
    else:
        raise Exception(
            "Unknown repository_type {}!".format(parameters["repository_type"])
        )


def find_existing_tasks_from_previous_kinds(
    full_task_graph, previous_graph_ids, rebuild_kinds
):
    """Given a list of previous decision/action taskIds and kinds to ignore
    from the previous graphs, return a dictionary of labels-to-taskids to use
    as ``existing_tasks`` in the optimization step."""
    existing_tasks = {}
    for previous_graph_id in previous_graph_ids:
        label_to_taskid = get_artifact(previous_graph_id, "public/label-to-taskid.json")
        kind_labels = {
            t.label
            for t in full_task_graph.tasks.values()
            if t.attributes["kind"] not in rebuild_kinds
        }
        for label in set(label_to_taskid.keys()).intersection(kind_labels):
            existing_tasks[label] = label_to_taskid[label]
    return existing_tasks