1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
|
#![warn(unsafe_op_in_unsafe_fn)]
use core::{ffi::CStr, marker::PhantomData, mem::MaybeUninit, ops::ControlFlow};
use crate::{
adler32::adler32,
allocate::Allocator,
c_api::{gz_header, internal_state, z_checksum, z_stream},
crc32::{crc32, Crc32Fold},
read_buf::ReadBuf,
trace,
weak_slice::{WeakArrayMut, WeakSliceMut},
DeflateFlush, ReturnCode, ADLER32_INITIAL_VALUE, CRC32_INITIAL_VALUE, MAX_WBITS, MIN_WBITS,
};
use self::{
algorithm::CONFIGURATION_TABLE,
hash_calc::{HashCalcVariant, RollHashCalc, StandardHashCalc},
pending::Pending,
trees_tbl::STATIC_LTREE,
window::Window,
};
mod algorithm;
mod compare256;
mod hash_calc;
mod longest_match;
mod pending;
mod slide_hash;
mod trees_tbl;
mod window;
// Position relative to the current window
pub(crate) type Pos = u16;
// SAFETY: This struct must have the same layout as [`z_stream`], so that casts and transmutations
// between the two can work without UB.
#[repr(C)]
pub struct DeflateStream<'a> {
pub(crate) next_in: *mut crate::c_api::Bytef,
pub(crate) avail_in: crate::c_api::uInt,
pub(crate) total_in: crate::c_api::z_size,
pub(crate) next_out: *mut crate::c_api::Bytef,
pub(crate) avail_out: crate::c_api::uInt,
pub(crate) total_out: crate::c_api::z_size,
pub(crate) msg: *const core::ffi::c_char,
pub(crate) state: &'a mut State<'a>,
pub(crate) alloc: Allocator<'a>,
pub(crate) data_type: core::ffi::c_int,
pub(crate) adler: crate::c_api::z_checksum,
pub(crate) reserved: crate::c_api::uLong,
}
impl<'a> DeflateStream<'a> {
// z_stream and DeflateStream must have the same layout. Do our best to check if this is true.
// (imperfect check, but should catch most mistakes.)
const _S: () = assert!(core::mem::size_of::<z_stream>() == core::mem::size_of::<Self>());
const _A: () = assert!(core::mem::align_of::<z_stream>() == core::mem::align_of::<Self>());
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// - `strm` satisfies the conditions of [`pointer::as_mut`]
/// - if not `NULL`, `strm` as initialized using [`init`] or similar
///
/// [`pointer::as_mut`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.as_mut
#[inline(always)]
pub unsafe fn from_stream_mut(strm: *mut z_stream) -> Option<&'a mut Self> {
{
// Safety: ptr points to a valid value of type z_stream (if non-null)
let stream = unsafe { strm.as_ref() }?;
if stream.zalloc.is_none() || stream.zfree.is_none() {
return None;
}
if stream.state.is_null() {
return None;
}
}
// SAFETY: DeflateStream has an equivalent layout as z_stream
unsafe { strm.cast::<DeflateStream>().as_mut() }
}
fn as_z_stream_mut(&mut self) -> &mut z_stream {
// SAFETY: a valid &mut DeflateStream is also a valid &mut z_stream
unsafe { &mut *(self as *mut DeflateStream as *mut z_stream) }
}
pub fn pending(&self) -> (usize, u8) {
(
self.state.bit_writer.pending.pending,
self.state.bit_writer.bits_used,
)
}
}
/// number of elements in hash table
pub(crate) const HASH_SIZE: usize = 65536;
/// log2(HASH_SIZE)
const HASH_BITS: usize = 16;
/// Maximum value for memLevel in deflateInit2
const MAX_MEM_LEVEL: i32 = 9;
const DEF_MEM_LEVEL: i32 = if MAX_MEM_LEVEL > 8 { 8 } else { MAX_MEM_LEVEL };
#[repr(i32)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
#[cfg_attr(feature = "__internal-fuzz", derive(arbitrary::Arbitrary))]
pub enum Method {
#[default]
Deflated = 8,
}
impl TryFrom<i32> for Method {
type Error = ();
fn try_from(value: i32) -> Result<Self, Self::Error> {
match value {
8 => Ok(Self::Deflated),
_ => Err(()),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "__internal-fuzz", derive(arbitrary::Arbitrary))]
pub struct DeflateConfig {
pub level: i32,
pub method: Method,
pub window_bits: i32,
pub mem_level: i32,
pub strategy: Strategy,
}
#[cfg(any(test, feature = "__internal-test"))]
impl quickcheck::Arbitrary for DeflateConfig {
fn arbitrary(g: &mut quickcheck::Gen) -> Self {
let mem_levels: Vec<_> = (1..=9).collect();
let levels: Vec<_> = (0..=9).collect();
let mut window_bits = Vec::new();
window_bits.extend(9..=15); // zlib
window_bits.extend(9 + 16..=15 + 16); // gzip
window_bits.extend(-15..=-9); // raw
Self {
level: *g.choose(&levels).unwrap(),
method: Method::Deflated,
window_bits: *g.choose(&window_bits).unwrap(),
mem_level: *g.choose(&mem_levels).unwrap(),
strategy: *g
.choose(&[
Strategy::Default,
Strategy::Filtered,
Strategy::HuffmanOnly,
Strategy::Rle,
Strategy::Fixed,
])
.unwrap(),
}
}
}
impl DeflateConfig {
pub fn new(level: i32) -> Self {
Self {
level,
..Self::default()
}
}
}
impl Default for DeflateConfig {
fn default() -> Self {
Self {
level: crate::c_api::Z_DEFAULT_COMPRESSION,
method: Method::Deflated,
window_bits: MAX_WBITS,
mem_level: DEF_MEM_LEVEL,
strategy: Strategy::Default,
}
}
}
pub fn init(stream: &mut z_stream, config: DeflateConfig) -> ReturnCode {
let DeflateConfig {
mut level,
method: _,
mut window_bits,
mem_level,
strategy,
} = config;
/* Todo: ignore strm->next_in if we use it as window */
stream.msg = core::ptr::null_mut();
// for safety we must really make sure that alloc and free are consistent
// this is a (slight) deviation from stock zlib. In this crate we pick the rust
// allocator as the default, but `libz-rs-sys` always explicitly sets an allocator,
// and can configure the C allocator
#[cfg(feature = "rust-allocator")]
if stream.zalloc.is_none() || stream.zfree.is_none() {
stream.configure_default_rust_allocator()
}
#[cfg(feature = "c-allocator")]
if stream.zalloc.is_none() || stream.zfree.is_none() {
stream.configure_default_c_allocator()
}
if stream.zalloc.is_none() || stream.zfree.is_none() {
return ReturnCode::StreamError;
}
if level == crate::c_api::Z_DEFAULT_COMPRESSION {
level = 6;
}
let wrap = if window_bits < 0 {
if window_bits < -MAX_WBITS {
return ReturnCode::StreamError;
}
window_bits = -window_bits;
0
} else if window_bits > MAX_WBITS {
window_bits -= 16;
2
} else {
1
};
if (!(1..=MAX_MEM_LEVEL).contains(&mem_level))
|| !(MIN_WBITS..=MAX_WBITS).contains(&window_bits)
|| !(0..=9).contains(&level)
|| (window_bits == 8 && wrap != 1)
{
return ReturnCode::StreamError;
}
let window_bits = if window_bits == 8 {
9 /* until 256-byte window bug fixed */
} else {
window_bits as usize
};
let alloc = Allocator {
zalloc: stream.zalloc.unwrap(),
zfree: stream.zfree.unwrap(),
opaque: stream.opaque,
_marker: PhantomData,
};
// allocated here to have the same order as zlib
let Some(state_allocation) = alloc.allocate_raw::<State>() else {
return ReturnCode::MemError;
};
let w_size = 1 << window_bits;
let window = Window::new_in(&alloc, window_bits);
let prev = alloc.allocate_slice_raw::<u16>(w_size);
let head = alloc.allocate_raw::<[u16; HASH_SIZE]>();
let lit_bufsize = 1 << (mem_level + 6); // 16K elements by default
let pending = Pending::new_in(&alloc, 4 * lit_bufsize);
// zlib-ng overlays the pending_buf and sym_buf. We cannot really do that safely
let sym_buf = ReadBuf::new_in(&alloc, 3 * lit_bufsize);
// if any allocation failed, clean up allocations that did succeed
let (window, prev, head, pending, sym_buf) = match (window, prev, head, pending, sym_buf) {
(Some(window), Some(prev), Some(head), Some(pending), Some(sym_buf)) => {
(window, prev, head, pending, sym_buf)
}
(window, prev, head, pending, sym_buf) => {
// SAFETY: these pointers/structures are discarded after deallocation.
unsafe {
if let Some(mut sym_buf) = sym_buf {
alloc.deallocate(sym_buf.as_mut_ptr(), sym_buf.capacity())
}
if let Some(mut pending) = pending {
pending.drop_in(&alloc);
}
if let Some(head) = head {
alloc.deallocate(head.as_ptr(), 1)
}
if let Some(prev) = prev {
alloc.deallocate(prev.as_ptr(), w_size)
}
if let Some(mut window) = window {
window.drop_in(&alloc);
}
alloc.deallocate(state_allocation.as_ptr(), 1);
}
return ReturnCode::MemError;
}
};
// zero initialize the memory
let prev = prev.as_ptr(); // FIXME: write_bytes is stable for NonNull since 1.80.0
unsafe { prev.write_bytes(0, w_size) };
let prev = unsafe { WeakSliceMut::from_raw_parts_mut(prev, w_size) };
// zero out head's first element
let head = head.as_ptr(); // FIXME: write_bytes is stable for NonNull since 1.80.0
unsafe { head.write_bytes(0, 1) };
let head = unsafe { WeakArrayMut::<u16, HASH_SIZE>::from_ptr(head) };
let state = State {
status: Status::Init,
// window
w_size,
w_mask: w_size - 1,
// allocated values
window,
prev,
head,
bit_writer: BitWriter::from_pending(pending),
//
lit_bufsize,
//
sym_buf,
//
level: level as i8, // set to zero again for testing?
strategy,
// these fields are not set explicitly at this point
last_flush: 0,
wrap,
strstart: 0,
block_start: 0,
block_open: 0,
window_size: 0,
insert: 0,
matches: 0,
opt_len: 0,
static_len: 0,
lookahead: 0,
ins_h: 0,
max_chain_length: 0,
max_lazy_match: 0,
good_match: 0,
nice_match: 0,
//
l_desc: TreeDesc::EMPTY,
d_desc: TreeDesc::EMPTY,
bl_desc: TreeDesc::EMPTY,
//
crc_fold: Crc32Fold::new(),
gzhead: None,
gzindex: 0,
//
match_start: 0,
prev_match: 0,
match_available: false,
prev_length: 0,
// just provide a valid default; gets set properly later
hash_calc_variant: HashCalcVariant::Standard,
_cache_line_0: (),
_cache_line_1: (),
_cache_line_2: (),
_cache_line_3: (),
_padding_0: 0,
};
unsafe { state_allocation.as_ptr().write(state) }; // FIXME: write is stable for NonNull since 1.80.0
stream.state = state_allocation.as_ptr() as *mut internal_state;
let Some(stream) = (unsafe { DeflateStream::from_stream_mut(stream) }) else {
if cfg!(debug_assertions) {
unreachable!("we should have initialized the stream properly");
}
return ReturnCode::StreamError;
};
reset(stream)
}
pub fn params(stream: &mut DeflateStream, level: i32, strategy: Strategy) -> ReturnCode {
let level = if level == crate::c_api::Z_DEFAULT_COMPRESSION {
6
} else {
level
};
if !(0..=9).contains(&level) {
return ReturnCode::StreamError;
}
let level = level as i8;
let func = CONFIGURATION_TABLE[stream.state.level as usize].func;
let state = &mut stream.state;
if (strategy != state.strategy || func != CONFIGURATION_TABLE[level as usize].func)
&& state.last_flush != -2
{
// Flush the last buffer.
let err = deflate(stream, DeflateFlush::Block);
if err == ReturnCode::StreamError {
return err;
}
let state = &mut stream.state;
if stream.avail_in != 0
|| ((state.strstart as isize - state.block_start) + state.lookahead as isize) != 0
{
return ReturnCode::BufError;
}
}
let state = &mut stream.state;
if state.level != level {
if state.level == 0 && state.matches != 0 {
if state.matches == 1 {
self::slide_hash::slide_hash(state);
} else {
state.head.as_mut_slice().fill(0);
}
state.matches = 0;
}
lm_set_level(state, level);
}
state.strategy = strategy;
ReturnCode::Ok
}
pub fn set_dictionary(stream: &mut DeflateStream, mut dictionary: &[u8]) -> ReturnCode {
let state = &mut stream.state;
let wrap = state.wrap;
if wrap == 2 || (wrap == 1 && state.status != Status::Init) || state.lookahead != 0 {
return ReturnCode::StreamError;
}
// when using zlib wrappers, compute Adler-32 for provided dictionary
if wrap == 1 {
stream.adler = adler32(stream.adler as u32, dictionary) as z_checksum;
}
// avoid computing Adler-32 in read_buf
state.wrap = 0;
// if dictionary would fill window, just replace the history
if dictionary.len() >= state.window.capacity() {
if wrap == 0 {
// clear the hash table
state.head.as_mut_slice().fill(0);
state.strstart = 0;
state.block_start = 0;
state.insert = 0;
} else {
/* already empty otherwise */
}
// use the tail
dictionary = &dictionary[dictionary.len() - state.w_size..];
}
// insert dictionary into window and hash
let avail = stream.avail_in;
let next = stream.next_in;
stream.avail_in = dictionary.len() as _;
stream.next_in = dictionary.as_ptr() as *mut u8;
fill_window(stream);
while stream.state.lookahead >= STD_MIN_MATCH {
let str = stream.state.strstart;
let n = stream.state.lookahead - (STD_MIN_MATCH - 1);
stream.state.insert_string(str, n);
stream.state.strstart = str + n;
stream.state.lookahead = STD_MIN_MATCH - 1;
fill_window(stream);
}
let state = &mut stream.state;
state.strstart += state.lookahead;
state.block_start = state.strstart as _;
state.insert = state.lookahead;
state.lookahead = 0;
state.prev_length = 0;
state.match_available = false;
// restore the state
stream.next_in = next;
stream.avail_in = avail;
state.wrap = wrap;
ReturnCode::Ok
}
pub fn prime(stream: &mut DeflateStream, mut bits: i32, value: i32) -> ReturnCode {
// our logic actually supports up to 32 bits.
debug_assert!(bits <= 16, "zlib only supports up to 16 bits here");
let mut value64 = value as u64;
let state = &mut stream.state;
if bits < 0
|| bits > BitWriter::BIT_BUF_SIZE as i32
|| bits > (core::mem::size_of_val(&value) << 3) as i32
{
return ReturnCode::BufError;
}
let mut put;
loop {
put = BitWriter::BIT_BUF_SIZE - state.bit_writer.bits_used;
let put = Ord::min(put as i32, bits);
if state.bit_writer.bits_used == 0 {
state.bit_writer.bit_buffer = value64;
} else {
state.bit_writer.bit_buffer |=
(value64 & ((1 << put) - 1)) << state.bit_writer.bits_used;
}
state.bit_writer.bits_used += put as u8;
state.bit_writer.flush_bits();
value64 >>= put;
bits -= put;
if bits == 0 {
break;
}
}
ReturnCode::Ok
}
pub fn copy<'a>(
dest: &mut MaybeUninit<DeflateStream<'a>>,
source: &mut DeflateStream<'a>,
) -> ReturnCode {
// SAFETY: source and dest are both mutable references, so guaranteed not to overlap.
// dest being a reference to maybe uninitialized memory makes a copy of 1 DeflateStream valid.
unsafe {
core::ptr::copy_nonoverlapping(source, dest.as_mut_ptr(), 1);
}
let alloc = &source.alloc;
// allocated here to have the same order as zlib
let Some(state_allocation) = alloc.allocate_raw::<State>() else {
return ReturnCode::MemError;
};
let source_state = &source.state;
let window = source_state.window.clone_in(alloc);
let prev = alloc.allocate_slice_raw::<u16>(source_state.w_size);
let head = alloc.allocate_raw::<[u16; HASH_SIZE]>();
let pending = source_state.bit_writer.pending.clone_in(alloc);
let sym_buf = source_state.sym_buf.clone_in(alloc);
// if any allocation failed, clean up allocations that did succeed
let (window, prev, head, pending, sym_buf) = match (window, prev, head, pending, sym_buf) {
(Some(window), Some(prev), Some(head), Some(pending), Some(sym_buf)) => {
(window, prev, head, pending, sym_buf)
}
(window, prev, head, pending, sym_buf) => {
// SAFETY: this access is in-bounds
let field_ptr = unsafe { core::ptr::addr_of_mut!((*dest.as_mut_ptr()).state) };
unsafe { core::ptr::write(field_ptr as *mut *mut State, core::ptr::null_mut()) };
// SAFETY: it is an assumpion on DeflateStream that (de)allocation does not cause UB.
unsafe {
if let Some(mut sym_buf) = sym_buf {
alloc.deallocate(sym_buf.as_mut_ptr(), sym_buf.capacity())
}
if let Some(mut pending) = pending {
pending.drop_in(alloc);
}
if let Some(head) = head {
alloc.deallocate(head.as_ptr(), HASH_SIZE)
}
if let Some(prev) = prev {
alloc.deallocate(prev.as_ptr(), source_state.w_size)
}
if let Some(mut window) = window {
window.drop_in(alloc);
}
alloc.deallocate(state_allocation.as_ptr(), 1);
}
return ReturnCode::MemError;
}
};
let prev = unsafe {
let prev = prev.as_ptr();
prev.copy_from_nonoverlapping(source_state.prev.as_ptr(), source_state.prev.len());
WeakSliceMut::from_raw_parts_mut(prev, source_state.prev.len())
};
// FIXME: write_bytes is stable for NonNull since 1.80.0
let head = unsafe {
let head = head.as_ptr();
head.write_bytes(0, 1);
head.cast::<u16>().write(source_state.head.as_slice()[0]);
WeakArrayMut::from_ptr(head)
};
let mut bit_writer = BitWriter::from_pending(pending);
bit_writer.bits_used = source_state.bit_writer.bits_used;
bit_writer.bit_buffer = source_state.bit_writer.bit_buffer;
let dest_state = State {
status: source_state.status,
bit_writer,
last_flush: source_state.last_flush,
wrap: source_state.wrap,
strategy: source_state.strategy,
level: source_state.level,
good_match: source_state.good_match,
nice_match: source_state.nice_match,
l_desc: source_state.l_desc.clone(),
d_desc: source_state.d_desc.clone(),
bl_desc: source_state.bl_desc.clone(),
prev_match: source_state.prev_match,
match_available: source_state.match_available,
strstart: source_state.strstart,
match_start: source_state.match_start,
prev_length: source_state.prev_length,
max_chain_length: source_state.max_chain_length,
max_lazy_match: source_state.max_lazy_match,
block_start: source_state.block_start,
block_open: source_state.block_open,
window,
sym_buf,
lit_bufsize: source_state.lit_bufsize,
window_size: source_state.window_size,
matches: source_state.matches,
opt_len: source_state.opt_len,
static_len: source_state.static_len,
insert: source_state.insert,
w_size: source_state.w_size,
w_mask: source_state.w_mask,
lookahead: source_state.lookahead,
prev,
head,
ins_h: source_state.ins_h,
hash_calc_variant: source_state.hash_calc_variant,
crc_fold: source_state.crc_fold,
gzhead: None,
gzindex: source_state.gzindex,
_cache_line_0: (),
_cache_line_1: (),
_cache_line_2: (),
_cache_line_3: (),
_padding_0: source_state._padding_0,
};
// write the cloned state into state_ptr
unsafe { state_allocation.as_ptr().write(dest_state) }; // FIXME: write is stable for NonNull since 1.80.0
// insert the state_ptr into `dest`
let field_ptr = unsafe { core::ptr::addr_of_mut!((*dest.as_mut_ptr()).state) };
unsafe { core::ptr::write(field_ptr as *mut *mut State, state_allocation.as_ptr()) };
// update the gzhead field (it contains a mutable reference so we need to be careful
let field_ptr = unsafe { core::ptr::addr_of_mut!((*dest.as_mut_ptr()).state.gzhead) };
unsafe { core::ptr::copy(&source_state.gzhead, field_ptr, 1) };
ReturnCode::Ok
}
/// # Returns
///
/// - Err when deflate is not done. A common cause is insufficient output space
/// - Ok otherwise
pub fn end<'a>(stream: &'a mut DeflateStream) -> Result<&'a mut z_stream, &'a mut z_stream> {
let status = stream.state.status;
let alloc = stream.alloc;
// deallocate in reverse order of allocations
unsafe {
// SAFETY: we make sure that these fields are not used (by invalidating the state pointer)
stream.state.sym_buf.drop_in(&alloc);
stream.state.bit_writer.pending.drop_in(&alloc);
alloc.deallocate(stream.state.head.as_mut_ptr(), 1);
if !stream.state.prev.is_empty() {
alloc.deallocate(stream.state.prev.as_mut_ptr(), stream.state.prev.len());
}
stream.state.window.drop_in(&alloc);
}
let stream = stream.as_z_stream_mut();
let state = core::mem::replace(&mut stream.state, core::ptr::null_mut());
// SAFETY: `state` is not used later
unsafe {
alloc.deallocate(state as *mut State, 1);
}
match status {
Status::Busy => Err(stream),
_ => Ok(stream),
}
}
pub fn reset(stream: &mut DeflateStream) -> ReturnCode {
let ret = reset_keep(stream);
if ret == ReturnCode::Ok {
lm_init(stream.state);
}
ret
}
fn reset_keep(stream: &mut DeflateStream) -> ReturnCode {
stream.total_in = 0;
stream.total_out = 0;
stream.msg = core::ptr::null_mut();
stream.data_type = crate::c_api::Z_UNKNOWN;
let state = &mut stream.state;
state.bit_writer.pending.reset_keep();
// can be made negative by deflate(..., Z_FINISH);
state.wrap = state.wrap.abs();
state.status = match state.wrap {
2 => Status::GZip,
_ => Status::Init,
};
stream.adler = match state.wrap {
2 => {
state.crc_fold = Crc32Fold::new();
CRC32_INITIAL_VALUE as _
}
_ => ADLER32_INITIAL_VALUE as _,
};
state.last_flush = -2;
state.zng_tr_init();
ReturnCode::Ok
}
fn lm_init(state: &mut State) {
state.window_size = 2 * state.w_size;
// zlib uses CLEAR_HASH here
state.head.as_mut_slice().fill(0);
// Set the default configuration parameters:
lm_set_level(state, state.level);
state.strstart = 0;
state.block_start = 0;
state.lookahead = 0;
state.insert = 0;
state.prev_length = 0;
state.match_available = false;
state.match_start = 0;
state.ins_h = 0;
}
fn lm_set_level(state: &mut State, level: i8) {
state.max_lazy_match = CONFIGURATION_TABLE[level as usize].max_lazy;
state.good_match = CONFIGURATION_TABLE[level as usize].good_length;
state.nice_match = CONFIGURATION_TABLE[level as usize].nice_length;
state.max_chain_length = CONFIGURATION_TABLE[level as usize].max_chain;
state.hash_calc_variant = HashCalcVariant::for_max_chain_length(state.max_chain_length);
state.level = level;
}
pub fn tune(
stream: &mut DeflateStream,
good_length: usize,
max_lazy: usize,
nice_length: usize,
max_chain: usize,
) -> ReturnCode {
stream.state.good_match = good_length as u16;
stream.state.max_lazy_match = max_lazy as u16;
stream.state.nice_match = nice_length as u16;
stream.state.max_chain_length = max_chain as u16;
ReturnCode::Ok
}
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) struct Value {
a: u16,
b: u16,
}
impl Value {
pub(crate) const fn new(a: u16, b: u16) -> Self {
Self { a, b }
}
pub(crate) fn freq_mut(&mut self) -> &mut u16 {
&mut self.a
}
pub(crate) fn code_mut(&mut self) -> &mut u16 {
&mut self.a
}
pub(crate) fn dad_mut(&mut self) -> &mut u16 {
&mut self.b
}
pub(crate) fn len_mut(&mut self) -> &mut u16 {
&mut self.b
}
#[inline(always)]
pub(crate) const fn freq(self) -> u16 {
self.a
}
#[inline(always)]
pub(crate) const fn code(self) -> u16 {
self.a
}
#[inline(always)]
pub(crate) const fn dad(self) -> u16 {
self.b
}
#[inline(always)]
pub(crate) const fn len(self) -> u16 {
self.b
}
}
/// number of length codes, not counting the special END_BLOCK code
pub(crate) const LENGTH_CODES: usize = 29;
/// number of literal bytes 0..255
const LITERALS: usize = 256;
/// number of Literal or Length codes, including the END_BLOCK code
pub(crate) const L_CODES: usize = LITERALS + 1 + LENGTH_CODES;
/// number of distance codes
pub(crate) const D_CODES: usize = 30;
/// number of codes used to transfer the bit lengths
const BL_CODES: usize = 19;
/// maximum heap size
const HEAP_SIZE: usize = 2 * L_CODES + 1;
/// all codes must not exceed MAX_BITS bits
const MAX_BITS: usize = 15;
/// Bit length codes must not exceed MAX_BL_BITS bits
const MAX_BL_BITS: usize = 7;
pub(crate) const DIST_CODE_LEN: usize = 512;
struct BitWriter<'a> {
pub(crate) pending: Pending<'a>, // output still pending
pub(crate) bit_buffer: u64,
pub(crate) bits_used: u8,
/// total bit length of compressed file (NOTE: zlib-ng uses a 32-bit integer here)
#[cfg(feature = "ZLIB_DEBUG")]
compressed_len: usize,
/// bit length of compressed data sent (NOTE: zlib-ng uses a 32-bit integer here)
#[cfg(feature = "ZLIB_DEBUG")]
bits_sent: usize,
}
#[inline]
const fn encode_len(ltree: &[Value], lc: u8) -> (u64, usize) {
let mut lc = lc as usize;
/* Send the length code, len is the match length - STD_MIN_MATCH */
let code = self::trees_tbl::LENGTH_CODE[lc] as usize;
let c = code + LITERALS + 1;
assert!(c < L_CODES, "bad l_code");
// send_code_trace(s, c);
let lnode = ltree[c];
let mut match_bits: u64 = lnode.code() as u64;
let mut match_bits_len = lnode.len() as usize;
let extra = StaticTreeDesc::EXTRA_LBITS[code] as usize;
if extra != 0 {
lc -= self::trees_tbl::BASE_LENGTH[code] as usize;
match_bits |= (lc as u64) << match_bits_len;
match_bits_len += extra;
}
(match_bits, match_bits_len)
}
#[inline]
const fn encode_dist(dtree: &[Value], mut dist: u16) -> (u64, usize) {
dist -= 1; /* dist is now the match distance - 1 */
let code = State::d_code(dist as usize) as usize;
assert!(code < D_CODES, "bad d_code");
// send_code_trace(s, code);
/* Send the distance code */
let dnode = dtree[code];
let mut match_bits = dnode.code() as u64;
let mut match_bits_len = dnode.len() as usize;
let extra = StaticTreeDesc::EXTRA_DBITS[code] as usize;
if extra != 0 {
dist -= self::trees_tbl::BASE_DIST[code];
match_bits |= (dist as u64) << match_bits_len;
match_bits_len += extra;
}
(match_bits, match_bits_len)
}
impl<'a> BitWriter<'a> {
pub(crate) const BIT_BUF_SIZE: u8 = 64;
fn from_pending(pending: Pending<'a>) -> Self {
Self {
pending,
bit_buffer: 0,
bits_used: 0,
#[cfg(feature = "ZLIB_DEBUG")]
compressed_len: 0,
#[cfg(feature = "ZLIB_DEBUG")]
bits_sent: 0,
}
}
fn flush_bits(&mut self) {
debug_assert!(self.bits_used <= 64);
let removed = self.bits_used.saturating_sub(7).next_multiple_of(8);
let keep_bytes = self.bits_used / 8; // can never divide by zero
let src = &self.bit_buffer.to_le_bytes();
self.pending.extend(&src[..keep_bytes as usize]);
self.bits_used -= removed;
self.bit_buffer = self.bit_buffer.checked_shr(removed as u32).unwrap_or(0);
}
fn emit_align(&mut self) {
debug_assert!(self.bits_used <= 64);
let keep_bytes = self.bits_used.div_ceil(8);
let src = &self.bit_buffer.to_le_bytes();
self.pending.extend(&src[..keep_bytes as usize]);
self.bits_used = 0;
self.bit_buffer = 0;
self.sent_bits_align();
}
fn send_bits_trace(&self, _value: u64, _len: u8) {
trace!(" l {:>2} v {:>4x} ", _len, _value);
}
fn cmpr_bits_add(&mut self, _len: usize) {
#[cfg(feature = "ZLIB_DEBUG")]
{
self.compressed_len += _len;
}
}
fn cmpr_bits_align(&mut self) {
#[cfg(feature = "ZLIB_DEBUG")]
{
self.compressed_len = self.compressed_len.next_multiple_of(8);
}
}
fn sent_bits_add(&mut self, _len: usize) {
#[cfg(feature = "ZLIB_DEBUG")]
{
self.bits_sent += _len;
}
}
fn sent_bits_align(&mut self) {
#[cfg(feature = "ZLIB_DEBUG")]
{
self.bits_sent = self.bits_sent.next_multiple_of(8);
}
}
#[inline(always)]
fn send_bits(&mut self, val: u64, len: u8) {
debug_assert!(len <= 64);
debug_assert!(self.bits_used <= 64);
let total_bits = len + self.bits_used;
self.send_bits_trace(val, len);
self.sent_bits_add(len as usize);
if total_bits < Self::BIT_BUF_SIZE {
self.bit_buffer |= val << self.bits_used;
self.bits_used = total_bits;
} else {
self.send_bits_overflow(val, total_bits);
}
}
fn send_bits_overflow(&mut self, val: u64, total_bits: u8) {
if self.bits_used == Self::BIT_BUF_SIZE {
self.pending.extend(&self.bit_buffer.to_le_bytes());
self.bit_buffer = val;
self.bits_used = total_bits - Self::BIT_BUF_SIZE;
} else {
self.bit_buffer |= val << self.bits_used;
self.pending.extend(&self.bit_buffer.to_le_bytes());
self.bit_buffer = val >> (Self::BIT_BUF_SIZE - self.bits_used);
self.bits_used = total_bits - Self::BIT_BUF_SIZE;
}
}
fn send_code(&mut self, code: usize, tree: &[Value]) {
let node = tree[code];
self.send_bits(node.code() as u64, node.len() as u8)
}
/// Send one empty static block to give enough lookahead for inflate.
/// This takes 10 bits, of which 7 may remain in the bit buffer.
pub fn align(&mut self) {
self.emit_tree(BlockType::StaticTrees, false);
self.emit_end_block(&STATIC_LTREE, false);
self.flush_bits();
}
pub(crate) fn emit_tree(&mut self, block_type: BlockType, is_last_block: bool) {
let header_bits = (block_type as u64) << 1 | (is_last_block as u64);
self.send_bits(header_bits, 3);
trace!("\n--- Emit Tree: Last: {}\n", is_last_block as u8);
}
pub(crate) fn emit_end_block_and_align(&mut self, ltree: &[Value], is_last_block: bool) {
self.emit_end_block(ltree, is_last_block);
if is_last_block {
self.emit_align();
}
}
fn emit_end_block(&mut self, ltree: &[Value], _is_last_block: bool) {
const END_BLOCK: usize = 256;
self.send_code(END_BLOCK, ltree);
trace!(
"\n+++ Emit End Block: Last: {} Pending: {} Total Out: {}\n",
_is_last_block as u8,
self.pending.pending().len(),
"<unknown>"
);
}
pub(crate) fn emit_lit(&mut self, ltree: &[Value], c: u8) -> u16 {
self.send_code(c as usize, ltree);
#[cfg(feature = "ZLIB_DEBUG")]
if let Some(c) = char::from_u32(c as u32) {
if isgraph(c as u8) {
trace!(" '{}' ", c);
}
}
ltree[c as usize].len()
}
pub(crate) fn emit_dist(
&mut self,
ltree: &[Value],
dtree: &[Value],
lc: u8,
dist: u16,
) -> usize {
let (mut match_bits, mut match_bits_len) = encode_len(ltree, lc);
let (dist_match_bits, dist_match_bits_len) = encode_dist(dtree, dist);
match_bits |= dist_match_bits << match_bits_len;
match_bits_len += dist_match_bits_len;
self.send_bits(match_bits, match_bits_len as u8);
match_bits_len
}
pub(crate) fn emit_dist_static(&mut self, lc: u8, dist: u16) -> usize {
let precomputed_len = trees_tbl::STATIC_LTREE_ENCODINGS[lc as usize];
let mut match_bits = precomputed_len.code() as u64;
let mut match_bits_len = precomputed_len.len() as usize;
let dtree = self::trees_tbl::STATIC_DTREE.as_slice();
let (dist_match_bits, dist_match_bits_len) = encode_dist(dtree, dist);
match_bits |= dist_match_bits << match_bits_len;
match_bits_len += dist_match_bits_len;
self.send_bits(match_bits, match_bits_len as u8);
match_bits_len
}
fn compress_block_help(&mut self, sym_buf: &[u8], ltree: &[Value], dtree: &[Value]) {
for chunk in sym_buf.chunks_exact(3) {
let [dist_low, dist_high, lc] = *chunk else {
unreachable!("out of bound access on the symbol buffer");
};
match u16::from_le_bytes([dist_low, dist_high]) {
0 => self.emit_lit(ltree, lc) as usize,
dist => self.emit_dist(ltree, dtree, lc, dist),
};
}
self.emit_end_block(ltree, false)
}
fn send_tree(&mut self, tree: &[Value], bl_tree: &[Value], max_code: usize) {
/* tree: the tree to be scanned */
/* max_code and its largest code of non zero frequency */
let mut prevlen: isize = -1; /* last emitted length */
let mut curlen; /* length of current code */
let mut nextlen = tree[0].len(); /* length of next code */
let mut count = 0; /* repeat count of the current code */
let mut max_count = 7; /* max repeat count */
let mut min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */
/* guard already set */
if nextlen == 0 {
max_count = 138;
min_count = 3;
}
for n in 0..=max_code {
curlen = nextlen;
nextlen = tree[n + 1].len();
count += 1;
if count < max_count && curlen == nextlen {
continue;
} else if count < min_count {
loop {
self.send_code(curlen as usize, bl_tree);
count -= 1;
if count == 0 {
break;
}
}
} else if curlen != 0 {
if curlen as isize != prevlen {
self.send_code(curlen as usize, bl_tree);
count -= 1;
}
assert!((3..=6).contains(&count), " 3_6?");
self.send_code(REP_3_6, bl_tree);
self.send_bits(count - 3, 2);
} else if count <= 10 {
self.send_code(REPZ_3_10, bl_tree);
self.send_bits(count - 3, 3);
} else {
self.send_code(REPZ_11_138, bl_tree);
self.send_bits(count - 11, 7);
}
count = 0;
prevlen = curlen as isize;
if nextlen == 0 {
max_count = 138;
min_count = 3;
} else if curlen == nextlen {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
}
#[repr(C, align(64))]
pub(crate) struct State<'a> {
status: Status,
last_flush: i8, /* value of flush param for previous deflate call */
pub(crate) wrap: i8, /* bit 0 true for zlib, bit 1 true for gzip */
pub(crate) strategy: Strategy,
pub(crate) level: i8,
/// Whether or not a block is currently open for the QUICK deflation scheme.
/// 0 if the block is closed, 1 if there is an active block, or 2 if there
/// is an active block and it is the last block.
pub(crate) block_open: u8,
pub(crate) hash_calc_variant: HashCalcVariant,
pub(crate) match_available: bool, /* set if previous match exists */
/// Use a faster search when the previous match is longer than this
pub(crate) good_match: u16,
/// Stop searching when current match exceeds this
pub(crate) nice_match: u16,
pub(crate) match_start: Pos, /* start of matching string */
pub(crate) prev_match: Pos, /* previous match */
pub(crate) strstart: usize, /* start of string to insert */
pub(crate) window: Window<'a>,
pub(crate) w_size: usize, /* LZ77 window size (32K by default) */
pub(crate) w_mask: usize, /* w_size - 1 */
_cache_line_0: (),
/// prev[N], where N is an offset in the current window, contains the offset in the window
/// of the previous 4-byte sequence that hashes to the same value as the 4-byte sequence
/// starting at N. Together with head, prev forms a chained hash table that can be used
/// to find earlier strings in the window that are potential matches for new input being
/// deflated.
pub(crate) prev: WeakSliceMut<'a, u16>,
/// head[H] contains the offset of the last 4-character sequence seen so far in
/// the current window that hashes to H (as calculated using the hash_calc_variant).
pub(crate) head: WeakArrayMut<'a, u16, HASH_SIZE>,
/// Length of the best match at previous step. Matches not greater than this
/// are discarded. This is used in the lazy match evaluation.
pub(crate) prev_length: u16,
/// To speed up deflation, hash chains are never searched beyond this length.
/// A higher limit improves compression ratio but degrades the speed.
pub(crate) max_chain_length: u16,
// TODO untangle this mess! zlib uses the same field differently based on compression level
// we should just have 2 fields for clarity!
//
// Insert new strings in the hash table only if the match length is not
// greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.
// define max_insert_length max_lazy_match
/// Attempt to find a better match only when the current match is strictly smaller
/// than this value. This mechanism is used only for compression levels >= 4.
pub(crate) max_lazy_match: u16,
/// number of string matches in current block
/// NOTE: this is a saturating 8-bit counter, to help keep the struct compact. The code that
/// makes decisions based on this field only cares whether the count is greater than 2, so
/// an 8-bit counter is sufficient.
pub(crate) matches: u8,
/// Window position at the beginning of the current output block. Gets
/// negative when the window is moved backwards.
pub(crate) block_start: isize,
pub(crate) sym_buf: ReadBuf<'a>,
_cache_line_1: (),
/// Size of match buffer for literals/lengths. There are 4 reasons for
/// limiting lit_bufsize to 64K:
/// - frequencies can be kept in 16 bit counters
/// - if compression is not successful for the first block, all input
/// data is still in the window so we can still emit a stored block even
/// when input comes from standard input. (This can also be done for
/// all blocks if lit_bufsize is not greater than 32K.)
/// - if compression is not successful for a file smaller than 64K, we can
/// even emit a stored file instead of a stored block (saving 5 bytes).
/// This is applicable only for zip (not gzip or zlib).
/// - creating new Huffman trees less frequently may not provide fast
/// adaptation to changes in the input data statistics. (Take for
/// example a binary file with poorly compressible code followed by
/// a highly compressible string table.) Smaller buffer sizes give
/// fast adaptation but have of course the overhead of transmitting
/// trees more frequently.
/// - I can't count above 4
lit_bufsize: usize,
/// Actual size of window: 2*w_size, except when the user input buffer is directly used as sliding window.
pub(crate) window_size: usize,
bit_writer: BitWriter<'a>,
_cache_line_2: (),
/// bit length of current block with optimal trees
opt_len: usize,
/// bit length of current block with static trees
static_len: usize,
/// bytes at end of window left to insert
pub(crate) insert: usize,
pub(crate) lookahead: usize, /* number of valid bytes ahead in window */
/// hash index of string to be inserted
pub(crate) ins_h: u32,
gzhead: Option<&'a mut gz_header>,
gzindex: usize,
_padding_0: usize,
_cache_line_3: (),
crc_fold: crate::crc32::Crc32Fold,
l_desc: TreeDesc<HEAP_SIZE>, /* literal and length tree */
d_desc: TreeDesc<{ 2 * D_CODES + 1 }>, /* distance tree */
bl_desc: TreeDesc<{ 2 * BL_CODES + 1 }>, /* Huffman tree for bit lengths */
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Default)]
#[cfg_attr(feature = "__internal-fuzz", derive(arbitrary::Arbitrary))]
pub enum Strategy {
#[default]
Default = 0,
Filtered = 1,
HuffmanOnly = 2,
Rle = 3,
Fixed = 4,
}
impl TryFrom<i32> for Strategy {
type Error = ();
fn try_from(value: i32) -> Result<Self, Self::Error> {
match value {
0 => Ok(Strategy::Default),
1 => Ok(Strategy::Filtered),
2 => Ok(Strategy::HuffmanOnly),
3 => Ok(Strategy::Rle),
4 => Ok(Strategy::Fixed),
_ => Err(()),
}
}
}
#[derive(Debug, PartialEq, Eq)]
enum DataType {
Binary = 0,
Text = 1,
Unknown = 2,
}
impl<'a> State<'a> {
pub const BIT_BUF_SIZE: u8 = BitWriter::BIT_BUF_SIZE;
// log2(w_size) (in the range MIN_WBITS..=MAX_WBITS)
pub(crate) fn w_bits(&self) -> u32 {
self.w_size.trailing_zeros()
}
pub(crate) fn max_dist(&self) -> usize {
self.w_size - MIN_LOOKAHEAD
}
// TODO untangle this mess! zlib uses the same field differently based on compression level
// we should just have 2 fields for clarity!
pub(crate) fn max_insert_length(&self) -> usize {
self.max_lazy_match as usize
}
/// Total size of the pending buf. But because `pending` shares memory with `sym_buf`, this is
/// not the number of bytes that are actually in `pending`!
pub(crate) fn pending_buf_size(&self) -> usize {
self.lit_bufsize * 4
}
#[inline(always)]
pub(crate) fn update_hash(&self, h: u32, val: u32) -> u32 {
match self.hash_calc_variant {
HashCalcVariant::Standard => StandardHashCalc::update_hash(h, val),
HashCalcVariant::Roll => RollHashCalc::update_hash(h, val),
}
}
#[inline(always)]
pub(crate) fn quick_insert_string(&mut self, string: usize) -> u16 {
match self.hash_calc_variant {
HashCalcVariant::Standard => StandardHashCalc::quick_insert_string(self, string),
HashCalcVariant::Roll => RollHashCalc::quick_insert_string(self, string),
}
}
#[inline(always)]
pub(crate) fn insert_string(&mut self, string: usize, count: usize) {
match self.hash_calc_variant {
HashCalcVariant::Standard => StandardHashCalc::insert_string(self, string, count),
HashCalcVariant::Roll => RollHashCalc::insert_string(self, string, count),
}
}
#[inline(always)]
pub(crate) fn tally_lit(&mut self, unmatched: u8) -> bool {
Self::tally_lit_help(&mut self.sym_buf, &mut self.l_desc, unmatched)
}
#[inline(always)]
pub(crate) fn tally_lit_help(
sym_buf: &mut ReadBuf<'a>,
l_desc: &mut TreeDesc<HEAP_SIZE>,
unmatched: u8,
) -> bool {
sym_buf.push_lit(unmatched);
*l_desc.dyn_tree[unmatched as usize].freq_mut() += 1;
assert!(
unmatched as usize <= STD_MAX_MATCH - STD_MIN_MATCH,
"zng_tr_tally: bad literal"
);
// signal that the current block should be flushed
sym_buf.len() == sym_buf.capacity() - 3
}
const fn d_code(dist: usize) -> u8 {
let index = if dist < 256 { dist } else { 256 + (dist >> 7) };
self::trees_tbl::DIST_CODE[index]
}
#[inline(always)]
pub(crate) fn tally_dist(&mut self, mut dist: usize, len: usize) -> bool {
self.sym_buf.push_dist(dist as u16, len as u8);
self.matches = self.matches.saturating_add(1);
dist -= 1;
assert!(
dist < self.max_dist() && Self::d_code(dist) < D_CODES as u8,
"tally_dist: bad match"
);
let index = self::trees_tbl::LENGTH_CODE[len] as usize + LITERALS + 1;
*self.l_desc.dyn_tree[index].freq_mut() += 1;
*self.d_desc.dyn_tree[Self::d_code(dist) as usize].freq_mut() += 1;
// signal that the current block should be flushed
self.sym_buf.len() == self.sym_buf.capacity() - 3
}
fn detect_data_type(dyn_tree: &[Value]) -> DataType {
// set bits 0..6, 14..25, and 28..31
// 0xf3ffc07f = binary 11110011111111111100000001111111
const NON_TEXT: u64 = 0xf3ffc07f;
let mut mask = NON_TEXT;
/* Check for non-textual bytes. */
for value in &dyn_tree[0..32] {
if (mask & 1) != 0 && value.freq() != 0 {
return DataType::Binary;
}
mask >>= 1;
}
/* Check for textual bytes. */
if dyn_tree[9].freq() != 0 || dyn_tree[10].freq() != 0 || dyn_tree[13].freq() != 0 {
return DataType::Text;
}
if dyn_tree[32..LITERALS].iter().any(|v| v.freq() != 0) {
return DataType::Text;
}
// there are no explicit text or non-text bytes. The stream is either empty or has only
// tolerated bytes
DataType::Binary
}
fn compress_block_static_trees(&mut self) {
let ltree = self::trees_tbl::STATIC_LTREE.as_slice();
for chunk in self.sym_buf.filled().chunks_exact(3) {
let [dist_low, dist_high, lc] = *chunk else {
unreachable!("out of bound access on the symbol buffer");
};
match u16::from_le_bytes([dist_low, dist_high]) {
0 => self.bit_writer.emit_lit(ltree, lc) as usize,
dist => self.bit_writer.emit_dist_static(lc, dist),
};
}
self.bit_writer.emit_end_block(ltree, false)
}
fn compress_block_dynamic_trees(&mut self) {
self.bit_writer.compress_block_help(
self.sym_buf.filled(),
&self.l_desc.dyn_tree,
&self.d_desc.dyn_tree,
);
}
fn header(&self) -> u16 {
// preset dictionary flag in zlib header
const PRESET_DICT: u16 = 0x20;
// The deflate compression method (the only one supported in this version)
const Z_DEFLATED: u16 = 8;
let dict = match self.strstart {
0 => 0,
_ => PRESET_DICT,
};
let h =
(Z_DEFLATED + ((self.w_bits() as u16 - 8) << 4)) << 8 | (self.level_flags() << 6) | dict;
h + 31 - (h % 31)
}
fn level_flags(&self) -> u16 {
if self.strategy >= Strategy::HuffmanOnly || self.level < 2 {
0
} else if self.level < 6 {
1
} else if self.level == 6 {
2
} else {
3
}
}
fn zng_tr_init(&mut self) {
self.l_desc.stat_desc = &StaticTreeDesc::L;
self.d_desc.stat_desc = &StaticTreeDesc::D;
self.bl_desc.stat_desc = &StaticTreeDesc::BL;
self.bit_writer.bit_buffer = 0;
self.bit_writer.bits_used = 0;
#[cfg(feature = "ZLIB_DEBUG")]
{
self.bit_writer.compressed_len = 0;
self.bit_writer.bits_sent = 0;
}
// Initialize the first block of the first file:
self.init_block();
}
/// initializes a new block
fn init_block(&mut self) {
// Initialize the trees.
// TODO would a memset also work here?
for value in &mut self.l_desc.dyn_tree[..L_CODES] {
*value.freq_mut() = 0;
}
for value in &mut self.d_desc.dyn_tree[..D_CODES] {
*value.freq_mut() = 0;
}
for value in &mut self.bl_desc.dyn_tree[..BL_CODES] {
*value.freq_mut() = 0;
}
// end of block literal code
const END_BLOCK: usize = 256;
*self.l_desc.dyn_tree[END_BLOCK].freq_mut() = 1;
self.opt_len = 0;
self.static_len = 0;
self.sym_buf.clear();
self.matches = 0;
}
}
#[repr(u8)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Status {
Init = 1,
GZip = 4,
Extra = 5,
Name = 6,
Comment = 7,
Hcrc = 8,
Busy = 2,
Finish = 3,
}
const fn rank_flush(f: i8) -> i8 {
// rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH
((f) * 2) - (if (f) > 4 { 9 } else { 0 })
}
#[derive(Debug)]
pub(crate) enum BlockState {
/// block not completed, need more input or more output
NeedMore = 0,
/// block flush performed
BlockDone = 1,
/// finish started, need only more output at next deflate
FinishStarted = 2,
/// finish done, accept no more input or output
FinishDone = 3,
}
// Maximum stored block length in deflate format (not including header).
pub(crate) const MAX_STORED: usize = 65535; // so u16::max
pub(crate) fn read_buf_window(stream: &mut DeflateStream, offset: usize, size: usize) -> usize {
let len = Ord::min(stream.avail_in as usize, size);
if len == 0 {
return 0;
}
stream.avail_in -= len as u32;
if stream.state.wrap == 2 {
// we likely cannot fuse the crc32 and the copy here because the input can be changed by
// a concurrent thread. Therefore it cannot be converted into a slice!
let window = &mut stream.state.window;
// SAFETY: len is bounded by avail_in, so this copy is in bounds.
unsafe { window.copy_and_initialize(offset..offset + len, stream.next_in) };
let data = &stream.state.window.filled()[offset..][..len];
stream.state.crc_fold.fold(data, CRC32_INITIAL_VALUE);
} else if stream.state.wrap == 1 {
// we likely cannot fuse the adler32 and the copy here because the input can be changed by
// a concurrent thread. Therefore it cannot be converted into a slice!
let window = &mut stream.state.window;
// SAFETY: len is bounded by avail_in, so this copy is in bounds.
unsafe { window.copy_and_initialize(offset..offset + len, stream.next_in) };
let data = &stream.state.window.filled()[offset..][..len];
stream.adler = adler32(stream.adler as u32, data) as _;
} else {
let window = &mut stream.state.window;
// SAFETY: len is bounded by avail_in, so this copy is in bounds.
unsafe { window.copy_and_initialize(offset..offset + len, stream.next_in) };
}
stream.next_in = stream.next_in.wrapping_add(len);
stream.total_in += len as crate::c_api::z_size;
len
}
pub(crate) enum BlockType {
StoredBlock = 0,
StaticTrees = 1,
DynamicTrees = 2,
}
pub(crate) fn zng_tr_stored_block(
state: &mut State,
window_range: core::ops::Range<usize>,
is_last: bool,
) {
// send block type
state.bit_writer.emit_tree(BlockType::StoredBlock, is_last);
// align on byte boundary
state.bit_writer.emit_align();
state.bit_writer.cmpr_bits_align();
let input_block: &[u8] = &state.window.filled()[window_range];
let stored_len = input_block.len() as u16;
state.bit_writer.pending.extend(&stored_len.to_le_bytes());
state
.bit_writer
.pending
.extend(&(!stored_len).to_le_bytes());
state.bit_writer.cmpr_bits_add(32);
state.bit_writer.sent_bits_add(32);
if stored_len > 0 {
state.bit_writer.pending.extend(input_block);
state.bit_writer.cmpr_bits_add((stored_len << 3) as usize);
state.bit_writer.sent_bits_add((stored_len << 3) as usize);
}
}
/// The minimum match length mandated by the deflate standard
pub(crate) const STD_MIN_MATCH: usize = 3;
/// The maximum match length mandated by the deflate standard
pub(crate) const STD_MAX_MATCH: usize = 258;
/// The minimum wanted match length, affects deflate_quick, deflate_fast, deflate_medium and deflate_slow
pub(crate) const WANT_MIN_MATCH: usize = 4;
pub(crate) const MIN_LOOKAHEAD: usize = STD_MAX_MATCH + STD_MIN_MATCH + 1;
#[inline]
pub(crate) fn fill_window(stream: &mut DeflateStream) {
debug_assert!(stream.state.lookahead < MIN_LOOKAHEAD);
let wsize = stream.state.w_size;
loop {
let state = &mut *stream.state;
let mut more = state.window_size - state.lookahead - state.strstart;
// If the window is almost full and there is insufficient lookahead,
// move the upper half to the lower one to make room in the upper half.
if state.strstart >= wsize + state.max_dist() {
// shift the window to the left
let (old, new) = state.window.filled_mut()[..2 * wsize].split_at_mut(wsize);
old.copy_from_slice(new);
state.match_start = state.match_start.saturating_sub(wsize as u16);
if state.match_start == 0 {
state.prev_length = 0;
}
state.strstart -= wsize; /* we now have strstart >= MAX_DIST */
state.block_start -= wsize as isize;
state.insert = Ord::min(state.insert, state.strstart);
self::slide_hash::slide_hash(state);
more += wsize;
}
if stream.avail_in == 0 {
break;
}
// If there was no sliding:
// strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
// more == window_size - lookahead - strstart
// => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
// => more >= window_size - 2*WSIZE + 2
// In the BIG_MEM or MMAP case (not yet supported),
// window_size == input_size + MIN_LOOKAHEAD &&
// strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
// Otherwise, window_size == 2*WSIZE so more >= 2.
// If there was sliding, more >= WSIZE. So in all cases, more >= 2.
assert!(more >= 2, "more < 2");
let n = read_buf_window(stream, stream.state.strstart + stream.state.lookahead, more);
let state = &mut *stream.state;
state.lookahead += n;
// Initialize the hash value now that we have some input:
if state.lookahead + state.insert >= STD_MIN_MATCH {
let string = state.strstart - state.insert;
if state.max_chain_length > 1024 {
let v0 = state.window.filled()[string] as u32;
let v1 = state.window.filled()[string + 1] as u32;
state.ins_h = state.update_hash(v0, v1);
} else if string >= 1 {
state.quick_insert_string(string + 2 - STD_MIN_MATCH);
}
let mut count = state.insert;
if state.lookahead == 1 {
count -= 1;
}
if count > 0 {
state.insert_string(string, count);
state.insert -= count;
}
}
// If the whole input has less than STD_MIN_MATCH bytes, ins_h is garbage,
// but this is not important since only literal bytes will be emitted.
if !(stream.state.lookahead < MIN_LOOKAHEAD && stream.avail_in != 0) {
break;
}
}
assert!(
stream.state.strstart <= stream.state.window_size - MIN_LOOKAHEAD,
"not enough room for search"
);
}
pub(crate) struct StaticTreeDesc {
/// static tree or NULL
pub(crate) static_tree: &'static [Value],
/// extra bits for each code or NULL
extra_bits: &'static [u8],
/// base index for extra_bits
extra_base: usize,
/// max number of elements in the tree
elems: usize,
/// max bit length for the codes
max_length: u16,
}
impl StaticTreeDesc {
const EMPTY: Self = Self {
static_tree: &[],
extra_bits: &[],
extra_base: 0,
elems: 0,
max_length: 0,
};
/// extra bits for each length code
const EXTRA_LBITS: [u8; LENGTH_CODES] = [
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0,
];
/// extra bits for each distance code
const EXTRA_DBITS: [u8; D_CODES] = [
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12,
13, 13,
];
/// extra bits for each bit length code
const EXTRA_BLBITS: [u8; BL_CODES] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7];
/// The lengths of the bit length codes are sent in order of decreasing
/// probability, to avoid transmitting the lengths for unused bit length codes.
const BL_ORDER: [u8; BL_CODES] = [
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
];
pub(crate) const L: Self = Self {
static_tree: &self::trees_tbl::STATIC_LTREE,
extra_bits: &Self::EXTRA_LBITS,
extra_base: LITERALS + 1,
elems: L_CODES,
max_length: MAX_BITS as u16,
};
pub(crate) const D: Self = Self {
static_tree: &self::trees_tbl::STATIC_DTREE,
extra_bits: &Self::EXTRA_DBITS,
extra_base: 0,
elems: D_CODES,
max_length: MAX_BITS as u16,
};
pub(crate) const BL: Self = Self {
static_tree: &[],
extra_bits: &Self::EXTRA_BLBITS,
extra_base: 0,
elems: BL_CODES,
max_length: MAX_BL_BITS as u16,
};
}
#[derive(Clone)]
pub(crate) struct TreeDesc<const N: usize> {
dyn_tree: [Value; N],
max_code: usize,
stat_desc: &'static StaticTreeDesc,
}
impl<const N: usize> TreeDesc<N> {
const EMPTY: Self = Self {
dyn_tree: [Value::new(0, 0); N],
max_code: 0,
stat_desc: &StaticTreeDesc::EMPTY,
};
}
fn build_tree<const N: usize>(state: &mut State, desc: &mut TreeDesc<N>) {
let tree = &mut desc.dyn_tree;
let stree = desc.stat_desc.static_tree;
let elements = desc.stat_desc.elems;
let mut heap = Heap::new();
let mut max_code = heap.initialize(&mut tree[..elements]);
// The pkzip format requires that at least one distance code exists,
// and that at least one bit should be sent even if there is only one
// possible code. So to avoid special checks later on we force at least
// two codes of non zero frequency.
while heap.heap_len < 2 {
heap.heap_len += 1;
let node = if max_code < 2 {
max_code += 1;
max_code
} else {
0
};
debug_assert!(node >= 0);
let node = node as usize;
heap.heap[heap.heap_len] = node as u32;
*tree[node].freq_mut() = 1;
heap.depth[node] = 0;
state.opt_len -= 1;
if !stree.is_empty() {
state.static_len -= stree[node].len() as usize;
}
/* node is 0 or 1 so it does not have extra bits */
}
debug_assert!(max_code >= 0);
let max_code = max_code as usize;
desc.max_code = max_code;
// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
// establish sub-heaps of increasing lengths:
let mut n = heap.heap_len / 2;
while n >= 1 {
heap.pqdownheap(tree, n);
n -= 1;
}
heap.construct_huffman_tree(tree, elements);
// At this point, the fields freq and dad are set. We can now
// generate the bit lengths.
let bl_count = gen_bitlen(state, &mut heap, desc);
// The field len is now set, we can generate the bit codes
gen_codes(&mut desc.dyn_tree, max_code, &bl_count);
}
fn gen_bitlen<const N: usize>(
state: &mut State,
heap: &mut Heap,
desc: &mut TreeDesc<N>,
) -> [u16; MAX_BITS + 1] {
let tree = &mut desc.dyn_tree;
let max_code = desc.max_code;
let stree = desc.stat_desc.static_tree;
let extra = desc.stat_desc.extra_bits;
let base = desc.stat_desc.extra_base;
let max_length = desc.stat_desc.max_length;
let mut bl_count = [0u16; MAX_BITS + 1];
// In a first pass, compute the optimal bit lengths (which may
// overflow in the case of the bit length tree).
*tree[heap.heap[heap.heap_max] as usize].len_mut() = 0; /* root of the heap */
// number of elements with bit length too large
let mut overflow: i32 = 0;
for h in heap.heap_max + 1..HEAP_SIZE {
let n = heap.heap[h] as usize;
let mut bits = tree[tree[n].dad() as usize].len() + 1;
if bits > max_length {
bits = max_length;
overflow += 1;
}
// We overwrite tree[n].Dad which is no longer needed
*tree[n].len_mut() = bits;
// not a leaf node
if n > max_code {
continue;
}
bl_count[bits as usize] += 1;
let mut xbits = 0;
if n >= base {
xbits = extra[n - base] as usize;
}
let f = tree[n].freq() as usize;
state.opt_len += f * (bits as usize + xbits);
if !stree.is_empty() {
state.static_len += f * (stree[n].len() as usize + xbits);
}
}
if overflow == 0 {
return bl_count;
}
/* Find the first bit length which could increase: */
loop {
let mut bits = max_length as usize - 1;
while bl_count[bits] == 0 {
bits -= 1;
}
bl_count[bits] -= 1; /* move one leaf down the tree */
bl_count[bits + 1] += 2; /* move one overflow item as its brother */
bl_count[max_length as usize] -= 1;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
if overflow <= 0 {
break;
}
}
// Now recompute all bit lengths, scanning in increasing frequency.
// h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
// lengths instead of fixing only the wrong ones. This idea is taken
// from 'ar' written by Haruhiko Okumura.)
let mut h = HEAP_SIZE;
for bits in (1..=max_length).rev() {
let mut n = bl_count[bits as usize];
while n != 0 {
h -= 1;
let m = heap.heap[h] as usize;
if m > max_code {
continue;
}
if tree[m].len() != bits {
// Tracev((stderr, "code %d bits %d->%u\n", m, tree[m].Len, bits));
state.opt_len += (bits * tree[m].freq()) as usize;
state.opt_len -= (tree[m].len() * tree[m].freq()) as usize;
*tree[m].len_mut() = bits;
}
n -= 1;
}
}
bl_count
}
/// Checks that symbol is a printing character (excluding space)
#[allow(unused)]
fn isgraph(c: u8) -> bool {
(c > 0x20) && (c <= 0x7E)
}
fn gen_codes(tree: &mut [Value], max_code: usize, bl_count: &[u16]) {
/* tree: the tree to decorate */
/* max_code: largest code with non zero frequency */
/* bl_count: number of codes at each bit length */
let mut next_code = [0; MAX_BITS + 1]; /* next code value for each bit length */
let mut code = 0; /* running code value */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for bits in 1..=MAX_BITS {
code = (code + bl_count[bits - 1]) << 1;
next_code[bits] = code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
assert!(
code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
"inconsistent bit counts"
);
trace!("\ngen_codes: max_code {max_code} ");
for n in 0..=max_code {
let len = tree[n].len();
if len == 0 {
continue;
}
/* Now reverse the bits */
assert!((1..=15).contains(&len), "code length must be 1-15");
*tree[n].code_mut() = next_code[len as usize].reverse_bits() >> (16 - len);
next_code[len as usize] += 1;
if tree != self::trees_tbl::STATIC_LTREE.as_slice() {
trace!(
"\nn {:>3} {} l {:>2} c {:>4x} ({:x}) ",
n,
if isgraph(n as u8) {
char::from_u32(n as u32).unwrap()
} else {
' '
},
len,
tree[n].code(),
next_code[len as usize] - 1
);
}
}
}
/// repeat previous bit length 3-6 times (2 bits of repeat count)
const REP_3_6: usize = 16;
/// repeat a zero length 3-10 times (3 bits of repeat count)
const REPZ_3_10: usize = 17;
/// repeat a zero length 11-138 times (7 bits of repeat count)
const REPZ_11_138: usize = 18;
fn scan_tree(bl_desc: &mut TreeDesc<{ 2 * BL_CODES + 1 }>, tree: &mut [Value], max_code: usize) {
/* tree: the tree to be scanned */
/* max_code: and its largest code of non zero frequency */
let mut prevlen = -1isize; /* last emitted length */
let mut curlen: isize; /* length of current code */
let mut nextlen = tree[0].len(); /* length of next code */
let mut count = 0; /* repeat count of the current code */
let mut max_count = 7; /* max repeat count */
let mut min_count = 4; /* min repeat count */
if nextlen == 0 {
max_count = 138;
min_count = 3;
}
*tree[max_code + 1].len_mut() = 0xffff; /* guard */
let bl_tree = &mut bl_desc.dyn_tree;
for n in 0..=max_code {
curlen = nextlen as isize;
nextlen = tree[n + 1].len();
count += 1;
if count < max_count && curlen == nextlen as isize {
continue;
} else if count < min_count {
*bl_tree[curlen as usize].freq_mut() += count;
} else if curlen != 0 {
if curlen != prevlen {
*bl_tree[curlen as usize].freq_mut() += 1;
}
*bl_tree[REP_3_6].freq_mut() += 1;
} else if count <= 10 {
*bl_tree[REPZ_3_10].freq_mut() += 1;
} else {
*bl_tree[REPZ_11_138].freq_mut() += 1;
}
count = 0;
prevlen = curlen;
if nextlen == 0 {
max_count = 138;
min_count = 3;
} else if curlen == nextlen as isize {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
fn send_all_trees(state: &mut State, lcodes: usize, dcodes: usize, blcodes: usize) {
assert!(
lcodes >= 257 && dcodes >= 1 && blcodes >= 4,
"not enough codes"
);
assert!(
lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
"too many codes"
);
trace!("\nbl counts: ");
state.bit_writer.send_bits(lcodes as u64 - 257, 5); /* not +255 as stated in appnote.txt */
state.bit_writer.send_bits(dcodes as u64 - 1, 5);
state.bit_writer.send_bits(blcodes as u64 - 4, 4); /* not -3 as stated in appnote.txt */
for rank in 0..blcodes {
trace!("\nbl code {:>2} ", StaticTreeDesc::BL_ORDER[rank]);
state.bit_writer.send_bits(
state.bl_desc.dyn_tree[StaticTreeDesc::BL_ORDER[rank] as usize].len() as u64,
3,
);
}
trace!("\nbl tree: sent {}", state.bit_writer.bits_sent);
// literal tree
state
.bit_writer
.send_tree(&state.l_desc.dyn_tree, &state.bl_desc.dyn_tree, lcodes - 1);
trace!("\nlit tree: sent {}", state.bit_writer.bits_sent);
// distance tree
state
.bit_writer
.send_tree(&state.d_desc.dyn_tree, &state.bl_desc.dyn_tree, dcodes - 1);
trace!("\ndist tree: sent {}", state.bit_writer.bits_sent);
}
/// Construct the Huffman tree for the bit lengths and return the index in
/// bl_order of the last bit length code to send.
fn build_bl_tree(state: &mut State) -> usize {
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(
&mut state.bl_desc,
&mut state.l_desc.dyn_tree,
state.l_desc.max_code,
);
scan_tree(
&mut state.bl_desc,
&mut state.d_desc.dyn_tree,
state.d_desc.max_code,
);
/* Build the bit length tree: */
{
let mut tmp = TreeDesc::EMPTY;
core::mem::swap(&mut tmp, &mut state.bl_desc);
build_tree(state, &mut tmp);
core::mem::swap(&mut tmp, &mut state.bl_desc);
}
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
let mut max_blindex = BL_CODES - 1;
while max_blindex >= 3 {
let index = StaticTreeDesc::BL_ORDER[max_blindex] as usize;
if state.bl_desc.dyn_tree[index].len() != 0 {
break;
}
max_blindex -= 1;
}
/* Update opt_len to include the bit length tree and counts */
state.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
trace!(
"\ndyn trees: dyn {}, stat {}",
state.opt_len,
state.static_len
);
max_blindex
}
fn zng_tr_flush_block(
stream: &mut DeflateStream,
window_offset: Option<usize>,
stored_len: u32,
last: bool,
) {
/* window_offset: offset of the input block into the window */
/* stored_len: length of input block */
/* last: one if this is the last block for a file */
let mut opt_lenb;
let static_lenb;
let mut max_blindex = 0;
let state = &mut stream.state;
if state.sym_buf.is_empty() {
opt_lenb = 0;
static_lenb = 0;
state.static_len = 7;
} else if state.level > 0 {
if stream.data_type == DataType::Unknown as i32 {
stream.data_type = State::detect_data_type(&state.l_desc.dyn_tree) as i32;
}
{
let mut tmp = TreeDesc::EMPTY;
core::mem::swap(&mut tmp, &mut state.l_desc);
build_tree(state, &mut tmp);
core::mem::swap(&mut tmp, &mut state.l_desc);
trace!(
"\nlit data: dyn {}, stat {}",
state.opt_len,
state.static_len
);
}
{
let mut tmp = TreeDesc::EMPTY;
core::mem::swap(&mut tmp, &mut state.d_desc);
build_tree(state, &mut tmp);
core::mem::swap(&mut tmp, &mut state.d_desc);
trace!(
"\ndist data: dyn {}, stat {}",
state.opt_len,
state.static_len
);
}
// Build the bit length tree for the above two trees, and get the index
// in bl_order of the last bit length code to send.
max_blindex = build_bl_tree(state);
// Determine the best encoding. Compute the block lengths in bytes.
opt_lenb = (state.opt_len + 3 + 7) >> 3;
static_lenb = (state.static_len + 3 + 7) >> 3;
trace!(
"\nopt {}({}) stat {}({}) stored {} lit {} ",
opt_lenb,
state.opt_len,
static_lenb,
state.static_len,
stored_len,
state.sym_buf.len() / 3
);
if static_lenb <= opt_lenb || state.strategy == Strategy::Fixed {
opt_lenb = static_lenb;
}
} else {
assert!(window_offset.is_some(), "lost buf");
/* force a stored block */
opt_lenb = stored_len as usize + 5;
static_lenb = stored_len as usize + 5;
}
if stored_len as usize + 4 <= opt_lenb && window_offset.is_some() {
/* 4: two words for the lengths
* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
let window_offset = window_offset.unwrap();
let range = window_offset..window_offset + stored_len as usize;
zng_tr_stored_block(state, range, last);
} else if static_lenb == opt_lenb {
state.bit_writer.emit_tree(BlockType::StaticTrees, last);
state.compress_block_static_trees();
// cmpr_bits_add(s, s.static_len);
} else {
state.bit_writer.emit_tree(BlockType::DynamicTrees, last);
send_all_trees(
state,
state.l_desc.max_code + 1,
state.d_desc.max_code + 1,
max_blindex + 1,
);
state.compress_block_dynamic_trees();
}
// TODO
// This check is made mod 2^32, for files larger than 512 MB and unsigned long implemented on 32 bits.
// assert_eq!(state.compressed_len, state.bits_sent, "bad compressed size");
state.init_block();
if last {
state.bit_writer.emit_align();
}
// Tracev((stderr, "\ncomprlen {}(%lu) ", s->compressed_len>>3, s->compressed_len-7*last));
}
pub(crate) fn flush_block_only(stream: &mut DeflateStream, is_last: bool) {
zng_tr_flush_block(
stream,
(stream.state.block_start >= 0).then_some(stream.state.block_start as usize),
(stream.state.strstart as isize - stream.state.block_start) as u32,
is_last,
);
stream.state.block_start = stream.state.strstart as isize;
flush_pending(stream)
}
#[must_use]
fn flush_bytes(stream: &mut DeflateStream, mut bytes: &[u8]) -> ControlFlow<ReturnCode> {
let mut state = &mut stream.state;
// we'll be using the pending buffer as temporary storage
let mut beg = state.bit_writer.pending.pending().len(); /* start of bytes to update crc */
while state.bit_writer.pending.remaining() < bytes.len() {
let copy = state.bit_writer.pending.remaining();
state.bit_writer.pending.extend(&bytes[..copy]);
stream.adler = crc32(
stream.adler as u32,
&state.bit_writer.pending.pending()[beg..],
) as z_checksum;
state.gzindex += copy;
flush_pending(stream);
state = &mut stream.state;
// could not flush all the pending output
if !state.bit_writer.pending.pending().is_empty() {
state.last_flush = -1;
return ControlFlow::Break(ReturnCode::Ok);
}
beg = 0;
bytes = &bytes[copy..];
}
state.bit_writer.pending.extend(bytes);
stream.adler = crc32(
stream.adler as u32,
&state.bit_writer.pending.pending()[beg..],
) as z_checksum;
state.gzindex = 0;
ControlFlow::Continue(())
}
pub fn deflate(stream: &mut DeflateStream, flush: DeflateFlush) -> ReturnCode {
if stream.next_out.is_null()
|| (stream.avail_in != 0 && stream.next_in.is_null())
|| (stream.state.status == Status::Finish && flush != DeflateFlush::Finish)
{
let err = ReturnCode::StreamError;
stream.msg = err.error_message();
return err;
}
if stream.avail_out == 0 {
let err = ReturnCode::BufError;
stream.msg = err.error_message();
return err;
}
let old_flush = stream.state.last_flush;
stream.state.last_flush = flush as i8;
/* Flush as much pending output as possible */
if !stream.state.bit_writer.pending.pending().is_empty() {
flush_pending(stream);
if stream.avail_out == 0 {
/* Since avail_out is 0, deflate will be called again with
* more output space, but possibly with both pending and
* avail_in equal to zero. There won't be anything to do,
* but this is not an error situation so make sure we
* return OK instead of BUF_ERROR at next call of deflate:
*/
stream.state.last_flush = -1;
return ReturnCode::Ok;
}
/* Make sure there is something to do and avoid duplicate consecutive
* flushes. For repeated and useless calls with Z_FINISH, we keep
* returning Z_STREAM_END instead of Z_BUF_ERROR.
*/
} else if stream.avail_in == 0
&& rank_flush(flush as i8) <= rank_flush(old_flush)
&& flush != DeflateFlush::Finish
{
let err = ReturnCode::BufError;
stream.msg = err.error_message();
return err;
}
/* User must not provide more input after the first FINISH: */
if stream.state.status == Status::Finish && stream.avail_in != 0 {
let err = ReturnCode::BufError;
stream.msg = err.error_message();
return err;
}
/* Write the header */
if stream.state.status == Status::Init && stream.state.wrap == 0 {
stream.state.status = Status::Busy;
}
if stream.state.status == Status::Init {
let header = stream.state.header();
stream
.state
.bit_writer
.pending
.extend(&header.to_be_bytes());
/* Save the adler32 of the preset dictionary: */
if stream.state.strstart != 0 {
let adler = stream.adler as u32;
stream.state.bit_writer.pending.extend(&adler.to_be_bytes());
}
stream.adler = ADLER32_INITIAL_VALUE as _;
stream.state.status = Status::Busy;
// compression must start with an empty pending buffer
flush_pending(stream);
if !stream.state.bit_writer.pending.pending().is_empty() {
stream.state.last_flush = -1;
return ReturnCode::Ok;
}
}
if stream.state.status == Status::GZip {
/* gzip header */
stream.state.crc_fold = Crc32Fold::new();
stream.state.bit_writer.pending.extend(&[31, 139, 8]);
let extra_flags = if stream.state.level == 9 {
2
} else if stream.state.strategy >= Strategy::HuffmanOnly || stream.state.level < 2 {
4
} else {
0
};
match &stream.state.gzhead {
None => {
let bytes = [0, 0, 0, 0, 0, extra_flags, gz_header::OS_CODE];
stream.state.bit_writer.pending.extend(&bytes);
stream.state.status = Status::Busy;
/* Compression must start with an empty pending buffer */
flush_pending(stream);
if !stream.state.bit_writer.pending.pending().is_empty() {
stream.state.last_flush = -1;
return ReturnCode::Ok;
}
}
Some(gzhead) => {
stream.state.bit_writer.pending.extend(&[gzhead.flags()]);
let bytes = (gzhead.time as u32).to_le_bytes();
stream.state.bit_writer.pending.extend(&bytes);
stream
.state
.bit_writer
.pending
.extend(&[extra_flags, gzhead.os as u8]);
if !gzhead.extra.is_null() {
let bytes = (gzhead.extra_len as u16).to_le_bytes();
stream.state.bit_writer.pending.extend(&bytes);
}
if gzhead.hcrc > 0 {
stream.adler = crc32(
stream.adler as u32,
stream.state.bit_writer.pending.pending(),
) as z_checksum
}
stream.state.gzindex = 0;
stream.state.status = Status::Extra;
}
}
}
if stream.state.status == Status::Extra {
if let Some(gzhead) = stream.state.gzhead.as_ref() {
if !gzhead.extra.is_null() {
let gzhead_extra = gzhead.extra;
let extra = unsafe {
core::slice::from_raw_parts(
// SAFETY: gzindex is always less than extra_len, and the user
// guarantees the pointer is valid for extra_len.
gzhead_extra.add(stream.state.gzindex),
(gzhead.extra_len & 0xffff) as usize - stream.state.gzindex,
)
};
if let ControlFlow::Break(err) = flush_bytes(stream, extra) {
return err;
}
}
}
stream.state.status = Status::Name;
}
if stream.state.status == Status::Name {
if let Some(gzhead) = stream.state.gzhead.as_ref() {
if !gzhead.name.is_null() {
// SAFETY: user satisfies precondition that gzhead.name is a C string.
let gzhead_name = unsafe { CStr::from_ptr(gzhead.name.cast()) };
let bytes = gzhead_name.to_bytes_with_nul();
if let ControlFlow::Break(err) = flush_bytes(stream, bytes) {
return err;
}
}
stream.state.status = Status::Comment;
}
}
if stream.state.status == Status::Comment {
if let Some(gzhead) = stream.state.gzhead.as_ref() {
if !gzhead.comment.is_null() {
// SAFETY: user satisfies precondition that gzhead.name is a C string.
let gzhead_comment = unsafe { CStr::from_ptr(gzhead.comment.cast()) };
let bytes = gzhead_comment.to_bytes_with_nul();
if let ControlFlow::Break(err) = flush_bytes(stream, bytes) {
return err;
}
}
stream.state.status = Status::Hcrc;
}
}
if stream.state.status == Status::Hcrc {
if let Some(gzhead) = stream.state.gzhead.as_ref() {
if gzhead.hcrc != 0 {
let bytes = (stream.adler as u16).to_le_bytes();
if let ControlFlow::Break(err) = flush_bytes(stream, &bytes) {
return err;
}
}
}
stream.state.status = Status::Busy;
// compression must start with an empty pending buffer
flush_pending(stream);
if !stream.state.bit_writer.pending.pending().is_empty() {
stream.state.last_flush = -1;
return ReturnCode::Ok;
}
}
// Start a new block or continue the current one.
let state = &mut stream.state;
if stream.avail_in != 0
|| state.lookahead != 0
|| (flush != DeflateFlush::NoFlush && state.status != Status::Finish)
{
let bstate = self::algorithm::run(stream, flush);
let state = &mut stream.state;
if matches!(bstate, BlockState::FinishStarted | BlockState::FinishDone) {
state.status = Status::Finish;
}
match bstate {
BlockState::NeedMore | BlockState::FinishStarted => {
if stream.avail_out == 0 {
state.last_flush = -1; /* avoid BUF_ERROR next call, see above */
}
return ReturnCode::Ok;
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
* of deflate should use the same flush parameter to make sure
* that the flush is complete. So we don't have to output an
* empty block here, this will be done at next call. This also
* ensures that for a very small output buffer, we emit at most
* one empty block.
*/
}
BlockState::BlockDone => {
match flush {
DeflateFlush::NoFlush => unreachable!("condition of inner surrounding if"),
DeflateFlush::PartialFlush => {
state.bit_writer.align();
}
DeflateFlush::SyncFlush => {
// add an empty stored block that is marked as not final. This is useful for
// parallel deflate where we want to make sure the intermediate blocks are not
// marked as "last block".
zng_tr_stored_block(state, 0..0, false);
}
DeflateFlush::FullFlush => {
// add an empty stored block that is marked as not final. This is useful for
// parallel deflate where we want to make sure the intermediate blocks are not
// marked as "last block".
zng_tr_stored_block(state, 0..0, false);
state.head.as_mut_slice().fill(0); // forget history
if state.lookahead == 0 {
state.strstart = 0;
state.block_start = 0;
state.insert = 0;
}
}
DeflateFlush::Block => { /* fall through */ }
DeflateFlush::Finish => unreachable!("condition of outer surrounding if"),
}
flush_pending(stream);
if stream.avail_out == 0 {
stream.state.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
return ReturnCode::Ok;
}
}
BlockState::FinishDone => { /* do nothing */ }
}
}
if flush != DeflateFlush::Finish {
return ReturnCode::Ok;
}
// write the trailer
if stream.state.wrap == 2 {
let crc_fold = core::mem::take(&mut stream.state.crc_fold);
stream.adler = crc_fold.finish() as z_checksum;
let adler = stream.adler as u32;
stream.state.bit_writer.pending.extend(&adler.to_le_bytes());
let total_in = stream.total_in as u32;
stream
.state
.bit_writer
.pending
.extend(&total_in.to_le_bytes());
} else if stream.state.wrap == 1 {
let adler = stream.adler as u32;
stream.state.bit_writer.pending.extend(&adler.to_be_bytes());
}
flush_pending(stream);
// If avail_out is zero, the application will call deflate again to flush the rest.
if stream.state.wrap > 0 {
stream.state.wrap = -stream.state.wrap; /* write the trailer only once! */
}
if stream.state.bit_writer.pending.pending().is_empty() {
assert_eq!(stream.state.bit_writer.bits_used, 0, "bi_buf not flushed");
return ReturnCode::StreamEnd;
}
ReturnCode::Ok
}
pub(crate) fn flush_pending(stream: &mut DeflateStream) {
let state = &mut stream.state;
state.bit_writer.flush_bits();
let pending = state.bit_writer.pending.pending();
let len = Ord::min(pending.len(), stream.avail_out as usize);
if len == 0 {
return;
}
trace!("\n[FLUSH {len} bytes]");
// SAFETY: len is min(pending, stream.avail_out), so we won't overrun next_out.
unsafe { core::ptr::copy_nonoverlapping(pending.as_ptr(), stream.next_out, len) };
stream.next_out = stream.next_out.wrapping_add(len);
stream.total_out += len as crate::c_api::z_size;
stream.avail_out -= len as crate::c_api::uInt;
state.bit_writer.pending.advance(len);
}
pub fn compress_slice<'a>(
output: &'a mut [u8],
input: &[u8],
config: DeflateConfig,
) -> (&'a mut [u8], ReturnCode) {
// SAFETY: a [u8] is a valid [MaybeUninit<u8>].
let output_uninit = unsafe {
core::slice::from_raw_parts_mut(output.as_mut_ptr() as *mut MaybeUninit<u8>, output.len())
};
compress(output_uninit, input, config)
}
pub fn compress<'a>(
output: &'a mut [MaybeUninit<u8>],
input: &[u8],
config: DeflateConfig,
) -> (&'a mut [u8], ReturnCode) {
compress_with_flush(output, input, config, DeflateFlush::Finish)
}
pub fn compress_slice_with_flush<'a>(
output: &'a mut [u8],
input: &[u8],
config: DeflateConfig,
flush: DeflateFlush,
) -> (&'a mut [u8], ReturnCode) {
// SAFETY: a [u8] is a valid [MaybeUninit<u8>], and `compress_with_flush` never uninitializes previously initialized memory.
let output_uninit = unsafe {
core::slice::from_raw_parts_mut(output.as_mut_ptr() as *mut MaybeUninit<u8>, output.len())
};
compress_with_flush(output_uninit, input, config, flush)
}
pub fn compress_with_flush<'a>(
output: &'a mut [MaybeUninit<u8>],
input: &[u8],
config: DeflateConfig,
final_flush: DeflateFlush,
) -> (&'a mut [u8], ReturnCode) {
let mut stream = z_stream {
next_in: input.as_ptr() as *mut u8,
avail_in: 0, // for special logic in the first iteration
total_in: 0,
next_out: output.as_mut_ptr() as *mut u8,
avail_out: 0, // for special logic on the first iteration
total_out: 0,
msg: core::ptr::null_mut(),
state: core::ptr::null_mut(),
zalloc: None,
zfree: None,
opaque: core::ptr::null_mut(),
data_type: 0,
adler: 0,
reserved: 0,
};
let err = init(&mut stream, config);
if err != ReturnCode::Ok {
return (&mut [], err);
}
let max = core::ffi::c_uint::MAX as usize;
let mut left = output.len();
let mut source_len = input.len();
loop {
if stream.avail_out == 0 {
stream.avail_out = Ord::min(left, max) as _;
left -= stream.avail_out as usize;
}
if stream.avail_in == 0 {
stream.avail_in = Ord::min(source_len, max) as _;
source_len -= stream.avail_in as usize;
}
let flush = if source_len > 0 {
DeflateFlush::NoFlush
} else {
final_flush
};
let err = if let Some(stream) = unsafe { DeflateStream::from_stream_mut(&mut stream) } {
deflate(stream, flush)
} else {
ReturnCode::StreamError
};
if err != ReturnCode::Ok {
break;
}
}
// SAFETY: we have now initialized these bytes
let output_slice = unsafe {
core::slice::from_raw_parts_mut(output.as_mut_ptr() as *mut u8, stream.total_out as usize)
};
// may DataError if insufficient output space
let return_code = if let Some(stream) = unsafe { DeflateStream::from_stream_mut(&mut stream) } {
match end(stream) {
Ok(_) => ReturnCode::Ok,
Err(_) => ReturnCode::DataError,
}
} else {
ReturnCode::Ok
};
(output_slice, return_code)
}
pub const fn compress_bound(source_len: usize) -> usize {
compress_bound_help(source_len, ZLIB_WRAPLEN)
}
const fn compress_bound_help(source_len: usize, wrap_len: usize) -> usize {
source_len // The source size itself */
// Always at least one byte for any input
.wrapping_add(if source_len == 0 { 1 } else { 0 })
// One extra byte for lengths less than 9
.wrapping_add(if source_len < 9 { 1 } else { 0 })
// Source encoding overhead, padded to next full byte
.wrapping_add(deflate_quick_overhead(source_len))
// Deflate block overhead bytes
.wrapping_add(DEFLATE_BLOCK_OVERHEAD)
// none, zlib or gzip wrapper
.wrapping_add(wrap_len)
}
/// heap used to build the Huffman trees
///
/// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
/// The same heap array is used to build all trees.
#[derive(Clone)]
struct Heap {
heap: [u32; 2 * L_CODES + 1],
/// number of elements in the heap
heap_len: usize,
/// element of the largest frequency
heap_max: usize,
depth: [u8; 2 * L_CODES + 1],
}
impl Heap {
// an empty heap
fn new() -> Self {
Self {
heap: [0; 2 * L_CODES + 1],
heap_len: 0,
heap_max: 0,
depth: [0; 2 * L_CODES + 1],
}
}
/// Construct the initial heap, with least frequent element in
/// heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
fn initialize(&mut self, tree: &mut [Value]) -> isize {
let mut max_code = -1;
self.heap_len = 0;
self.heap_max = HEAP_SIZE;
for (n, node) in tree.iter_mut().enumerate() {
if node.freq() > 0 {
self.heap_len += 1;
self.heap[self.heap_len] = n as u32;
max_code = n as isize;
self.depth[n] = 0;
} else {
*node.len_mut() = 0;
}
}
max_code
}
/// Index within the heap array of least frequent node in the Huffman tree
const SMALLEST: usize = 1;
fn pqdownheap(&mut self, tree: &[Value], mut k: usize) {
/* tree: the tree to restore */
/* k: node to move down */
// Given the index $i of a node in the tree, pack the node's frequency and depth
// into a single integer. The heap ordering logic uses a primary sort on frequency
// and a secondary sort on depth, so packing both into one integer makes it
// possible to sort with fewer comparison operations.
macro_rules! freq_and_depth {
($i:expr) => {
(tree[$i as usize].freq() as u32) << 8 | self.depth[$i as usize] as u32
};
}
let v = self.heap[k];
let v_val = freq_and_depth!(v);
let mut j = k << 1; /* left son of k */
while j <= self.heap_len {
/* Set j to the smallest of the two sons: */
let mut j_val = freq_and_depth!(self.heap[j]);
if j < self.heap_len {
let j1_val = freq_and_depth!(self.heap[j + 1]);
if j1_val <= j_val {
j += 1;
j_val = j1_val;
}
}
/* Exit if v is smaller than both sons */
if v_val <= j_val {
break;
}
/* Exchange v with the smallest son */
self.heap[k] = self.heap[j];
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
self.heap[k] = v;
}
/// Remove the smallest element from the heap and recreate the heap with
/// one less element. Updates heap and heap_len.
fn pqremove(&mut self, tree: &[Value]) -> u32 {
let top = self.heap[Self::SMALLEST];
self.heap[Self::SMALLEST] = self.heap[self.heap_len];
self.heap_len -= 1;
self.pqdownheap(tree, Self::SMALLEST);
top
}
/// Construct the Huffman tree by repeatedly combining the least two frequent nodes.
fn construct_huffman_tree(&mut self, tree: &mut [Value], mut node: usize) {
loop {
let n = self.pqremove(tree) as usize; /* n = node of least frequency */
let m = self.heap[Heap::SMALLEST] as usize; /* m = node of next least frequency */
self.heap_max -= 1;
self.heap[self.heap_max] = n as u32; /* keep the nodes sorted by frequency */
self.heap_max -= 1;
self.heap[self.heap_max] = m as u32;
/* Create a new node father of n and m */
*tree[node].freq_mut() = tree[n].freq() + tree[m].freq();
self.depth[node] = Ord::max(self.depth[n], self.depth[m]) + 1;
*tree[n].dad_mut() = node as u16;
*tree[m].dad_mut() = node as u16;
/* and insert the new node in the heap */
self.heap[Heap::SMALLEST] = node as u32;
node += 1;
self.pqdownheap(tree, Heap::SMALLEST);
if self.heap_len < 2 {
break;
}
}
self.heap_max -= 1;
self.heap[self.heap_max] = self.heap[Heap::SMALLEST];
}
}
/// # Safety
///
/// The caller must guarantee:
///
/// * If `head` is `Some`
/// - `head.extra` is `NULL` or is readable for at least `head.extra_len` bytes
/// - `head.name` is `NULL` or satisfies the requirements of [`core::ffi::CStr::from_ptr`]
/// - `head.comment` is `NULL` or satisfies the requirements of [`core::ffi::CStr::from_ptr`]
pub unsafe fn set_header<'a>(
stream: &mut DeflateStream<'a>,
head: Option<&'a mut gz_header>,
) -> ReturnCode {
if stream.state.wrap != 2 {
ReturnCode::StreamError as _
} else {
stream.state.gzhead = head;
ReturnCode::Ok as _
}
}
// zlib format overhead
const ZLIB_WRAPLEN: usize = 6;
// gzip format overhead
const GZIP_WRAPLEN: usize = 18;
const DEFLATE_HEADER_BITS: usize = 3;
const DEFLATE_EOBS_BITS: usize = 15;
const DEFLATE_PAD_BITS: usize = 6;
const DEFLATE_BLOCK_OVERHEAD: usize =
(DEFLATE_HEADER_BITS + DEFLATE_EOBS_BITS + DEFLATE_PAD_BITS) >> 3;
const DEFLATE_QUICK_LIT_MAX_BITS: usize = 9;
const fn deflate_quick_overhead(x: usize) -> usize {
let sum = x
.wrapping_mul(DEFLATE_QUICK_LIT_MAX_BITS - 8)
.wrapping_add(7);
// imitate zlib-ng rounding behavior (on windows, c_ulong is 32 bits)
(sum as core::ffi::c_ulong >> 3) as usize
}
/// For the default windowBits of 15 and memLevel of 8, this function returns
/// a close to exact, as well as small, upper bound on the compressed size.
/// They are coded as constants here for a reason--if the #define's are
/// changed, then this function needs to be changed as well. The return
/// value for 15 and 8 only works for those exact settings.
///
/// For any setting other than those defaults for windowBits and memLevel,
/// the value returned is a conservative worst case for the maximum expansion
/// resulting from using fixed blocks instead of stored blocks, which deflate
/// can emit on compressed data for some combinations of the parameters.
///
/// This function could be more sophisticated to provide closer upper bounds for
/// every combination of windowBits and memLevel. But even the conservative
/// upper bound of about 14% expansion does not seem onerous for output buffer
/// allocation.
pub fn bound(stream: Option<&mut DeflateStream>, source_len: usize) -> usize {
// on windows, c_ulong is only a 32-bit integer
let mask = core::ffi::c_ulong::MAX as usize;
// conservative upper bound for compressed data
let comp_len = source_len
.wrapping_add((source_len.wrapping_add(7) & mask) >> 3)
.wrapping_add((source_len.wrapping_add(63) & mask) >> 6)
.wrapping_add(5);
let Some(stream) = stream else {
// return conservative bound plus zlib wrapper
return comp_len.wrapping_add(6);
};
/* compute wrapper length */
let wrap_len = match stream.state.wrap {
0 => {
// raw deflate
0
}
1 => {
// zlib wrapper
if stream.state.strstart != 0 {
ZLIB_WRAPLEN + 4
} else {
ZLIB_WRAPLEN
}
}
2 => {
// gzip wrapper
let mut gz_wrap_len = GZIP_WRAPLEN;
if let Some(header) = &stream.state.gzhead {
if !header.extra.is_null() {
gz_wrap_len += 2 + header.extra_len as usize;
}
let mut c_string = header.name;
if !c_string.is_null() {
loop {
gz_wrap_len += 1;
// SAFETY: user guarantees header.name is a valid C string.
unsafe {
if *c_string == 0 {
break;
}
c_string = c_string.add(1);
}
}
}
let mut c_string = header.comment;
if !c_string.is_null() {
loop {
gz_wrap_len += 1;
// SAFETY: user guarantees header.comment is a valid C string.
unsafe {
if *c_string == 0 {
break;
}
c_string = c_string.add(1);
}
}
}
if header.hcrc != 0 {
gz_wrap_len += 2;
}
}
gz_wrap_len
}
_ => {
// default
ZLIB_WRAPLEN
}
};
if stream.state.w_bits() != MAX_WBITS as u32 || HASH_BITS < 15 {
if stream.state.level == 0 {
/* upper bound for stored blocks with length 127 (memLevel == 1) ~4% overhead plus a small constant */
source_len
.wrapping_add(source_len >> 5)
.wrapping_add(source_len >> 7)
.wrapping_add(source_len >> 11)
.wrapping_add(7)
.wrapping_add(wrap_len)
} else {
comp_len.wrapping_add(wrap_len)
}
} else {
compress_bound_help(source_len, wrap_len)
}
}
#[cfg(test)]
mod test {
use crate::{
inflate::{uncompress_slice, InflateConfig, InflateStream},
InflateFlush,
};
use super::*;
use core::{ffi::CStr, sync::atomic::AtomicUsize};
#[test]
fn detect_data_type_basic() {
let empty = || [Value::new(0, 0); LITERALS];
assert_eq!(State::detect_data_type(&empty()), DataType::Binary);
let mut binary = empty();
binary[0] = Value::new(1, 0);
assert_eq!(State::detect_data_type(&binary), DataType::Binary);
let mut text = empty();
text[b'\r' as usize] = Value::new(1, 0);
assert_eq!(State::detect_data_type(&text), DataType::Text);
let mut text = empty();
text[b'a' as usize] = Value::new(1, 0);
assert_eq!(State::detect_data_type(&text), DataType::Text);
let mut non_text = empty();
non_text[7] = Value::new(1, 0);
assert_eq!(State::detect_data_type(&non_text), DataType::Binary);
}
#[test]
fn from_stream_mut() {
unsafe {
assert!(DeflateStream::from_stream_mut(core::ptr::null_mut()).is_none());
let mut stream = z_stream::default();
assert!(DeflateStream::from_stream_mut(&mut stream).is_none());
// state is still NULL
assert!(DeflateStream::from_stream_mut(&mut stream).is_none());
init(&mut stream, DeflateConfig::default());
let stream = DeflateStream::from_stream_mut(&mut stream);
assert!(stream.is_some());
assert!(end(stream.unwrap()).is_ok());
}
}
unsafe extern "C" fn fail_nth_allocation<const N: usize>(
opaque: crate::c_api::voidpf,
items: crate::c_api::uInt,
size: crate::c_api::uInt,
) -> crate::c_api::voidpf {
let count = unsafe { &*(opaque as *const AtomicUsize) };
if count.fetch_add(1, core::sync::atomic::Ordering::Relaxed) != N {
// must use the C allocator internally because (de)allocation is based on function
// pointer values and because we don't use the rust allocator directly, the allocation
// logic will store the pointer to the start at the start of the allocation.
unsafe { (crate::allocate::Allocator::C.zalloc)(opaque, items, size) }
} else {
core::ptr::null_mut()
}
}
#[test]
fn init_invalid_allocator() {
{
let atomic = AtomicUsize::new(0);
let mut stream = z_stream {
zalloc: Some(fail_nth_allocation::<0>),
zfree: Some(crate::allocate::Allocator::C.zfree),
opaque: &atomic as *const _ as *const core::ffi::c_void as *mut _,
..z_stream::default()
};
assert_eq!(
init(&mut stream, DeflateConfig::default()),
ReturnCode::MemError
);
}
{
let atomic = AtomicUsize::new(0);
let mut stream = z_stream {
zalloc: Some(fail_nth_allocation::<3>),
zfree: Some(crate::allocate::Allocator::C.zfree),
opaque: &atomic as *const _ as *const core::ffi::c_void as *mut _,
..z_stream::default()
};
assert_eq!(
init(&mut stream, DeflateConfig::default()),
ReturnCode::MemError
);
}
{
let atomic = AtomicUsize::new(0);
let mut stream = z_stream {
zalloc: Some(fail_nth_allocation::<5>),
zfree: Some(crate::allocate::Allocator::C.zfree),
opaque: &atomic as *const _ as *const core::ffi::c_void as *mut _,
..z_stream::default()
};
assert_eq!(
init(&mut stream, DeflateConfig::default()),
ReturnCode::MemError
);
}
}
mod copy_invalid_allocator {
use super::*;
#[test]
fn fail_0() {
let mut stream = z_stream::default();
let atomic = AtomicUsize::new(0);
stream.opaque = &atomic as *const _ as *const core::ffi::c_void as *mut _;
stream.zalloc = Some(fail_nth_allocation::<6>);
stream.zfree = Some(crate::allocate::Allocator::C.zfree);
// init performs 6 allocations; we don't want those to fail
assert_eq!(init(&mut stream, DeflateConfig::default()), ReturnCode::Ok);
let Some(stream) = (unsafe { DeflateStream::from_stream_mut(&mut stream) }) else {
unreachable!()
};
let mut stream_copy = MaybeUninit::<DeflateStream>::zeroed();
assert_eq!(copy(&mut stream_copy, stream), ReturnCode::MemError);
assert!(end(stream).is_ok());
}
#[test]
fn fail_3() {
let mut stream = z_stream::default();
let atomic = AtomicUsize::new(0);
stream.zalloc = Some(fail_nth_allocation::<{ 6 + 3 }>);
stream.zfree = Some(crate::allocate::Allocator::C.zfree);
stream.opaque = &atomic as *const _ as *const core::ffi::c_void as *mut _;
// init performs 6 allocations; we don't want those to fail
assert_eq!(init(&mut stream, DeflateConfig::default()), ReturnCode::Ok);
let Some(stream) = (unsafe { DeflateStream::from_stream_mut(&mut stream) }) else {
unreachable!()
};
let mut stream_copy = MaybeUninit::<DeflateStream>::zeroed();
assert_eq!(copy(&mut stream_copy, stream), ReturnCode::MemError);
assert!(end(stream).is_ok());
}
#[test]
fn fail_5() {
let mut stream = z_stream::default();
let atomic = AtomicUsize::new(0);
stream.zalloc = Some(fail_nth_allocation::<{ 6 + 5 }>);
stream.zfree = Some(crate::allocate::Allocator::C.zfree);
stream.opaque = &atomic as *const _ as *const core::ffi::c_void as *mut _;
// init performs 6 allocations; we don't want those to fail
assert_eq!(init(&mut stream, DeflateConfig::default()), ReturnCode::Ok);
let Some(stream) = (unsafe { DeflateStream::from_stream_mut(&mut stream) }) else {
unreachable!()
};
let mut stream_copy = MaybeUninit::<DeflateStream>::zeroed();
assert_eq!(copy(&mut stream_copy, stream), ReturnCode::MemError);
assert!(end(stream).is_ok());
}
}
mod invalid_deflate_config {
use super::*;
#[test]
fn sanity_check() {
let mut stream = z_stream::default();
assert_eq!(init(&mut stream, DeflateConfig::default()), ReturnCode::Ok);
assert!(stream.zalloc.is_some());
assert!(stream.zfree.is_some());
// this should be the default level
let stream = unsafe { DeflateStream::from_stream_mut(&mut stream) }.unwrap();
assert_eq!(stream.state.level, 6);
assert!(end(stream).is_ok());
}
#[test]
fn window_bits_correction() {
// window_bits of 8 gets turned into 9 internally
let mut stream = z_stream::default();
let config = DeflateConfig {
window_bits: 8,
..Default::default()
};
assert_eq!(init(&mut stream, config), ReturnCode::Ok);
let stream = unsafe { DeflateStream::from_stream_mut(&mut stream) }.unwrap();
assert_eq!(stream.state.w_bits(), 9);
assert!(end(stream).is_ok());
}
#[test]
fn window_bits_too_low() {
let mut stream = z_stream::default();
let config = DeflateConfig {
window_bits: -16,
..Default::default()
};
assert_eq!(init(&mut stream, config), ReturnCode::StreamError);
}
#[test]
fn window_bits_too_high() {
// window bits too high
let mut stream = z_stream::default();
let config = DeflateConfig {
window_bits: 42,
..Default::default()
};
assert_eq!(init(&mut stream, config), ReturnCode::StreamError);
}
}
#[test]
fn end_data_error() {
let mut stream = z_stream::default();
assert_eq!(init(&mut stream, DeflateConfig::default()), ReturnCode::Ok);
let stream = unsafe { DeflateStream::from_stream_mut(&mut stream) }.unwrap();
// next deflate into too little space
let input = b"Hello World\n";
stream.next_in = input.as_ptr() as *mut u8;
stream.avail_in = input.len() as _;
let output = &mut [0, 0, 0];
stream.next_out = output.as_mut_ptr();
stream.avail_out = output.len() as _;
// the deflate is fine
assert_eq!(deflate(stream, DeflateFlush::NoFlush), ReturnCode::Ok);
// but end is not
assert!(end(stream).is_err());
}
#[test]
fn test_reset_keep() {
let mut stream = z_stream::default();
assert_eq!(init(&mut stream, DeflateConfig::default()), ReturnCode::Ok);
let stream = unsafe { DeflateStream::from_stream_mut(&mut stream) }.unwrap();
// next deflate into too little space
let input = b"Hello World\n";
stream.next_in = input.as_ptr() as *mut u8;
stream.avail_in = input.len() as _;
let output = &mut [0; 1024];
stream.next_out = output.as_mut_ptr();
stream.avail_out = output.len() as _;
assert_eq!(deflate(stream, DeflateFlush::Finish), ReturnCode::StreamEnd);
assert_eq!(reset_keep(stream), ReturnCode::Ok);
let output = &mut [0; 1024];
stream.next_out = output.as_mut_ptr();
stream.avail_out = output.len() as _;
assert_eq!(deflate(stream, DeflateFlush::Finish), ReturnCode::StreamEnd);
assert!(end(stream).is_ok());
}
#[test]
fn hello_world_huffman_only() {
const EXPECTED: &[u8] = &[
0x78, 0x01, 0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x08, 0xcf, 0x2f, 0xca, 0x49, 0x51,
0xe4, 0x02, 0x00, 0x20, 0x91, 0x04, 0x48,
];
let input = "Hello World!\n";
let mut output = vec![0; 128];
let config = DeflateConfig {
level: 6,
method: Method::Deflated,
window_bits: crate::MAX_WBITS,
mem_level: DEF_MEM_LEVEL,
strategy: Strategy::HuffmanOnly,
};
let (output, err) = compress_slice(&mut output, input.as_bytes(), config);
assert_eq!(err, ReturnCode::Ok);
assert_eq!(output.len(), EXPECTED.len());
assert_eq!(EXPECTED, output);
}
#[test]
fn hello_world_quick() {
const EXPECTED: &[u8] = &[
0x78, 0x01, 0xf3, 0x48, 0xcd, 0xc9, 0xc9, 0x57, 0x08, 0xcf, 0x2f, 0xca, 0x49, 0x51,
0xe4, 0x02, 0x00, 0x20, 0x91, 0x04, 0x48,
];
let input = "Hello World!\n";
let mut output = vec![0; 128];
let config = DeflateConfig {
level: 1,
method: Method::Deflated,
window_bits: crate::MAX_WBITS,
mem_level: DEF_MEM_LEVEL,
strategy: Strategy::Default,
};
let (output, err) = compress_slice(&mut output, input.as_bytes(), config);
assert_eq!(err, ReturnCode::Ok);
assert_eq!(output.len(), EXPECTED.len());
assert_eq!(EXPECTED, output);
}
#[test]
fn hello_world_quick_random() {
const EXPECTED: &[u8] = &[
0x78, 0x01, 0x53, 0xe1, 0x50, 0x51, 0xe1, 0x52, 0x51, 0x51, 0x01, 0x00, 0x03, 0xec,
0x00, 0xeb,
];
let input = "$\u{8}$$\n$$$";
let mut output = vec![0; 128];
let config = DeflateConfig {
level: 1,
method: Method::Deflated,
window_bits: crate::MAX_WBITS,
mem_level: DEF_MEM_LEVEL,
strategy: Strategy::Default,
};
let (output, err) = compress_slice(&mut output, input.as_bytes(), config);
assert_eq!(err, ReturnCode::Ok);
assert_eq!(output.len(), EXPECTED.len());
assert_eq!(EXPECTED, output);
}
fn fuzz_based_test(input: &[u8], config: DeflateConfig, expected: &[u8]) {
let mut output_rs = [0; 1 << 17];
let (output_rs, err) = compress_slice(&mut output_rs, input, config);
assert_eq!(err, ReturnCode::Ok);
assert_eq!(output_rs, expected);
}
#[test]
fn simple_rle() {
fuzz_based_test(
"\0\0\0\0\u{6}".as_bytes(),
DeflateConfig {
level: -1,
method: Method::Deflated,
window_bits: 11,
mem_level: 4,
strategy: Strategy::Rle,
},
&[56, 17, 99, 0, 2, 54, 0, 0, 11, 0, 7],
)
}
#[test]
fn fill_window_out_of_bounds() {
const INPUT: &[u8] = &[
0x71, 0x71, 0x71, 0x71, 0x71, 0x6a, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x71, 0x71, 0x71, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1d, 0x1d, 0x1d, 0x1d, 0x63,
0x63, 0x63, 0x63, 0x63, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d,
0x1d, 0x27, 0x0, 0x0, 0x0, 0x1d, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71,
0x71, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x31, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x1d, 0x1d, 0x0, 0x0, 0x0, 0x0, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50,
0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x48, 0x50,
0x50, 0x50, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2c, 0x0, 0x0, 0x0, 0x0, 0x4a,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x70, 0x71, 0x71, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71, 0x71, 0x6a, 0x0, 0x0, 0x0, 0x0,
0x71, 0x0, 0x71, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x31, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x71, 0x0, 0x4a, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x70, 0x71, 0x71, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71, 0x71,
0x6a, 0x0, 0x0, 0x0, 0x0, 0x71, 0x0, 0x71, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x31, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1d, 0x1d, 0x0, 0x0, 0x0, 0x0,
0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50,
0x50, 0x50, 0x50, 0x50, 0x48, 0x50, 0x0, 0x0, 0x71, 0x71, 0x71, 0x71, 0x3b, 0x3f, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x50, 0x50, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x2c, 0x0, 0x0, 0x0, 0x0, 0x4a, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x70, 0x71, 0x71, 0x0, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71,
0x71, 0x71, 0x71, 0x70, 0x71, 0x71, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x71, 0x71, 0x71, 0x71, 0x3b, 0x3f, 0x71, 0x71, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x3b, 0x3f, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x20, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x71, 0x75, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x10, 0x0, 0x71, 0x71,
0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x3b, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x76, 0x71, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x71, 0x71, 0x10, 0x0, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71,
0x71, 0x3b, 0x71, 0x71, 0x71, 0x71, 0x71, 0x71, 0x76, 0x71, 0x34, 0x34, 0x34, 0x34,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x0, 0x0, 0x0, 0x0, 0x0, 0x34, 0x34, 0x34, 0x34,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x34, 0x34, 0x30, 0x34, 0x34, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x71, 0x0, 0x0, 0x0, 0x0, 0x6,
];
fuzz_based_test(
INPUT,
DeflateConfig {
level: -1,
method: Method::Deflated,
window_bits: 9,
mem_level: 1,
strategy: Strategy::HuffmanOnly,
},
&[
0x18, 0x19, 0x4, 0xc1, 0x21, 0x1, 0xc4, 0x0, 0x10, 0x3, 0xb0, 0x18, 0x29, 0x1e,
0x7e, 0x17, 0x83, 0xf5, 0x70, 0x6c, 0xac, 0xfe, 0xc9, 0x27, 0xdb, 0xb6, 0x6f, 0xdb,
0xb6, 0x6d, 0xdb, 0x80, 0x24, 0xb9, 0xbb, 0xbb, 0x24, 0x49, 0x92, 0x24, 0xf, 0x2,
0xd8, 0x36, 0x0, 0xf0, 0x3, 0x0, 0x0, 0x24, 0xd0, 0xb6, 0x6d, 0xdb, 0xb6, 0x6d,
0xdb, 0xbe, 0x6d, 0xf9, 0x13, 0x4, 0xc7, 0x4, 0x0, 0x80, 0x30, 0x0, 0xc3, 0x22,
0x68, 0xf, 0x36, 0x90, 0xc2, 0xb5, 0xfa, 0x7f, 0x48, 0x80, 0x81, 0xb, 0x40, 0x55,
0x55, 0x55, 0xd5, 0x16, 0x80, 0xaa, 0x7, 0x9, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0xe, 0x7c, 0x82, 0xe0, 0x98, 0x0, 0x0, 0x0, 0x4, 0x60, 0x10, 0xf9, 0x8c, 0xe2,
0xe5, 0xfa, 0x3f, 0x2, 0x54, 0x55, 0x55, 0x65, 0x0, 0xa8, 0xaa, 0xaa, 0xaa, 0xba,
0x2, 0x50, 0xb5, 0x90, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x78, 0x82, 0xe0, 0xd0,
0x8a, 0x41, 0x0, 0x0, 0xa2, 0x58, 0x54, 0xb7, 0x60, 0x83, 0x9a, 0x6a, 0x4, 0x96,
0x87, 0xba, 0x51, 0xf8, 0xfb, 0x9b, 0x26, 0xfc, 0x0, 0x1c, 0x7, 0x6c, 0xdb, 0xb6,
0x6d, 0xdb, 0xb6, 0x6d, 0xf7, 0xa8, 0x3a, 0xaf, 0xaa, 0x6a, 0x3, 0xf8, 0xc2, 0x3,
0x40, 0x55, 0x55, 0x55, 0xd5, 0x5b, 0xf8, 0x80, 0xaa, 0x7a, 0xb, 0x0, 0x7f, 0x82,
0xe0, 0x98, 0x0, 0x40, 0x18, 0x0, 0x82, 0xd8, 0x49, 0x40, 0x2, 0x22, 0x7e, 0xeb,
0x80, 0xa6, 0xc, 0xa0, 0x9f, 0xa4, 0x2a, 0x38, 0xf, 0x0, 0x0, 0xe7, 0x1, 0xdc,
0x55, 0x95, 0x17, 0x0, 0x0, 0xae, 0x0, 0x38, 0xc0, 0x67, 0xdb, 0x36, 0x80, 0x2b,
0x0, 0xe, 0xf0, 0xd9, 0xf6, 0x13, 0x4, 0xc7, 0x4, 0x0, 0x0, 0x30, 0xc, 0x83, 0x22,
0x69, 0x7, 0xc6, 0xea, 0xff, 0x19, 0x0, 0x0, 0x80, 0xaa, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x8e, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x6a,
0xf5, 0x63, 0x60, 0x60, 0x3, 0x0, 0xee, 0x8a, 0x88, 0x67,
],
)
}
#[test]
fn gzip_no_header() {
let config = DeflateConfig {
level: 9,
method: Method::Deflated,
window_bits: 31, // gzip
..Default::default()
};
let input = b"Hello World!";
let os = gz_header::OS_CODE;
fuzz_based_test(
input,
config,
&[
31, 139, 8, 0, 0, 0, 0, 0, 2, os, 243, 72, 205, 201, 201, 87, 8, 207, 47, 202, 73,
81, 4, 0, 163, 28, 41, 28, 12, 0, 0, 0,
],
)
}
#[test]
#[rustfmt::skip]
fn gzip_stored_block_checksum() {
fuzz_based_test(
&[
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 9, 0,
],
DeflateConfig {
level: 0,
method: Method::Deflated,
window_bits: 26,
mem_level: 6,
strategy: Strategy::Default,
},
&[
31, 139, 8, 0, 0, 0, 0, 0, 4, gz_header::OS_CODE, 1, 18, 0, 237, 255, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 9, 0, 60, 101, 156, 55, 18, 0, 0, 0,
],
)
}
#[test]
fn gzip_header_pending_flush() {
let extra = "aaaaaaaaaaaaaaaaaaaa\0";
let name = "bbbbbbbbbbbbbbbbbbbb\0";
let comment = "cccccccccccccccccccc\0";
let mut header = gz_header {
text: 0,
time: 0,
xflags: 0,
os: 0,
extra: extra.as_ptr() as *mut _,
extra_len: extra.len() as _,
extra_max: 0,
name: name.as_ptr() as *mut _,
name_max: 0,
comment: comment.as_ptr() as *mut _,
comm_max: 0,
hcrc: 1,
done: 0,
};
let config = DeflateConfig {
window_bits: 31,
mem_level: 1,
..Default::default()
};
let mut stream = z_stream::default();
assert_eq!(init(&mut stream, config), ReturnCode::Ok);
let Some(stream) = (unsafe { DeflateStream::from_stream_mut(&mut stream) }) else {
unreachable!()
};
unsafe { set_header(stream, Some(&mut header)) };
let input = b"Hello World\n";
stream.next_in = input.as_ptr() as *mut _;
stream.avail_in = input.len() as _;
let mut output = [0u8; 1024];
stream.next_out = output.as_mut_ptr();
stream.avail_out = 100;
assert_eq!(stream.state.bit_writer.pending.capacity(), 512);
// only 12 bytes remain, so to write the name the pending buffer must be flushed.
// but there is insufficient output space to flush (only 100 bytes)
stream.state.bit_writer.pending.extend(&[0; 500]);
assert_eq!(deflate(stream, DeflateFlush::Finish), ReturnCode::Ok);
// now try that again but with sufficient output space
stream.avail_out = output.len() as _;
assert_eq!(deflate(stream, DeflateFlush::Finish), ReturnCode::StreamEnd);
let n = stream.total_out as usize;
assert!(end(stream).is_ok());
let output_rs = &mut output[..n];
assert_eq!(output_rs.len(), 500 + 99);
}
#[test]
fn gzip_with_header() {
// this test is here mostly so we get some MIRI action on the gzip header. A test that
// compares behavior with zlib-ng is in the libz-rs-sys test suite
let extra = "some extra stuff\0";
let name = "nomen est omen\0";
let comment = "such comment\0";
let mut header = gz_header {
text: 0,
time: 0,
xflags: 0,
os: 0,
extra: extra.as_ptr() as *mut _,
extra_len: extra.len() as _,
extra_max: 0,
name: name.as_ptr() as *mut _,
name_max: 0,
comment: comment.as_ptr() as *mut _,
comm_max: 0,
hcrc: 1,
done: 0,
};
let config = DeflateConfig {
window_bits: 31,
..Default::default()
};
let mut stream = z_stream::default();
assert_eq!(init(&mut stream, config), ReturnCode::Ok);
let Some(stream) = (unsafe { DeflateStream::from_stream_mut(&mut stream) }) else {
unreachable!()
};
unsafe { set_header(stream, Some(&mut header)) };
let input = b"Hello World\n";
stream.next_in = input.as_ptr() as *mut _;
stream.avail_in = input.len() as _;
let mut output = [0u8; 256];
stream.next_out = output.as_mut_ptr();
stream.avail_out = output.len() as _;
assert_eq!(deflate(stream, DeflateFlush::Finish), ReturnCode::StreamEnd);
let n = stream.total_out as usize;
assert!(end(stream).is_ok());
let output_rs = &mut output[..n];
assert_eq!(output_rs.len(), 81);
{
let mut stream = z_stream::default();
let config = InflateConfig {
window_bits: config.window_bits,
};
assert_eq!(crate::inflate::init(&mut stream, config), ReturnCode::Ok);
let Some(stream) = (unsafe { InflateStream::from_stream_mut(&mut stream) }) else {
unreachable!();
};
stream.next_in = output_rs.as_mut_ptr() as _;
stream.avail_in = output_rs.len() as _;
let mut output = [0u8; 12];
stream.next_out = output.as_mut_ptr();
stream.avail_out = output.len() as _;
let mut extra_buf = [0u8; 64];
let mut name_buf = [0u8; 64];
let mut comment_buf = [0u8; 64];
let mut header = gz_header {
text: 0,
time: 0,
xflags: 0,
os: 0,
extra: extra_buf.as_mut_ptr(),
extra_len: 0,
extra_max: extra_buf.len() as _,
name: name_buf.as_mut_ptr(),
name_max: name_buf.len() as _,
comment: comment_buf.as_mut_ptr(),
comm_max: comment_buf.len() as _,
hcrc: 0,
done: 0,
};
assert_eq!(
unsafe { crate::inflate::get_header(stream, Some(&mut header)) },
ReturnCode::Ok
);
assert_eq!(
unsafe { crate::inflate::inflate(stream, InflateFlush::Finish) },
ReturnCode::StreamEnd
);
crate::inflate::end(stream);
assert!(!header.comment.is_null());
assert_eq!(
unsafe { CStr::from_ptr(header.comment.cast()) }
.to_str()
.unwrap(),
comment.trim_end_matches('\0')
);
assert!(!header.name.is_null());
assert_eq!(
unsafe { CStr::from_ptr(header.name.cast()) }
.to_str()
.unwrap(),
name.trim_end_matches('\0')
);
assert!(!header.extra.is_null());
assert_eq!(
unsafe { CStr::from_ptr(header.extra.cast()) }
.to_str()
.unwrap(),
extra.trim_end_matches('\0')
);
}
}
#[test]
fn insufficient_compress_space() {
const DATA: &[u8] = include_bytes!("deflate/test-data/inflate_buf_error.dat");
fn helper(deflate_buf: &mut [u8]) -> ReturnCode {
let config = DeflateConfig {
level: 0,
method: Method::Deflated,
window_bits: 10,
mem_level: 6,
strategy: Strategy::Default,
};
let (output, err) = compress_slice(deflate_buf, DATA, config);
assert_eq!(err, ReturnCode::Ok);
let config = InflateConfig {
window_bits: config.window_bits,
};
let mut uncompr = [0; 1 << 17];
let (uncompr, err) = uncompress_slice(&mut uncompr, output, config);
if err == ReturnCode::Ok {
assert_eq!(DATA, uncompr);
}
err
}
let mut output = [0; 1 << 17];
// this is too little space
assert_eq!(helper(&mut output[..1 << 16]), ReturnCode::DataError);
// this is sufficient space
assert_eq!(helper(&mut output), ReturnCode::Ok);
}
fn test_flush(flush: DeflateFlush, expected: &[u8]) {
let input = b"Hello World!\n";
let config = DeflateConfig {
level: 6, // use gzip
method: Method::Deflated,
window_bits: 16 + crate::MAX_WBITS,
mem_level: DEF_MEM_LEVEL,
strategy: Strategy::Default,
};
let mut output_rs = vec![0; 128];
// with the flush modes that we test here, the deflate process still has `Status::Busy`,
// and the `deflateEnd` function will return `DataError`.
let expected_err = ReturnCode::DataError;
let (rs, err) = compress_slice_with_flush(&mut output_rs, input, config, flush);
assert_eq!(expected_err, err);
assert_eq!(rs, expected);
}
#[test]
#[rustfmt::skip]
fn sync_flush() {
test_flush(
DeflateFlush::SyncFlush,
&[
31, 139, 8, 0, 0, 0, 0, 0, 0, gz_header::OS_CODE, 242, 72, 205, 201, 201, 87, 8, 207, 47, 202, 73,
81, 228, 2, 0, 0, 0, 255, 255,
],
)
}
#[test]
#[rustfmt::skip]
fn partial_flush() {
test_flush(
DeflateFlush::PartialFlush,
&[
31, 139, 8, 0, 0, 0, 0, 0, 0, gz_header::OS_CODE, 242, 72, 205, 201, 201, 87, 8, 207, 47, 202, 73,
81, 228, 2, 8,
],
);
}
#[test]
#[rustfmt::skip]
fn full_flush() {
test_flush(
DeflateFlush::FullFlush,
&[
31, 139, 8, 0, 0, 0, 0, 0, 0, gz_header::OS_CODE, 242, 72, 205, 201, 201, 87, 8, 207, 47, 202, 73,
81, 228, 2, 0, 0, 0, 255, 255,
],
);
}
#[test]
#[rustfmt::skip]
fn block_flush() {
test_flush(
DeflateFlush::Block,
&[
31, 139, 8, 0, 0, 0, 0, 0, 0, gz_header::OS_CODE, 242, 72, 205, 201, 201, 87, 8, 207, 47, 202, 73,
81, 228, 2,
],
);
}
#[test]
// splits the input into two, deflates them seperately and then joins the deflated byte streams
// into something that can be correctly inflated again. This is the basic idea behind pigz, and
// allows for parallel compression.
fn split_deflate() {
let input = "Hello World!\n";
let (input1, input2) = input.split_at(6);
let mut output1 = vec![0; 128];
let mut output2 = vec![0; 128];
let config = DeflateConfig {
level: 6, // use gzip
method: Method::Deflated,
window_bits: 16 + crate::MAX_WBITS,
mem_level: DEF_MEM_LEVEL,
strategy: Strategy::Default,
};
// see also the docs on `SyncFlush`. it makes sure everything is flushed, ends on a byte
// boundary, and that the final block does not have the "last block" bit set.
let (prefix, err) = compress_slice_with_flush(
&mut output1,
input1.as_bytes(),
config,
DeflateFlush::SyncFlush,
);
assert_eq!(err, ReturnCode::DataError);
let (output2, err) = compress_slice_with_flush(
&mut output2,
input2.as_bytes(),
config,
DeflateFlush::Finish,
);
assert_eq!(err, ReturnCode::Ok);
let inflate_config = crate::inflate::InflateConfig {
window_bits: 16 + 15,
};
// cuts off the length and crc
let (suffix, end) = output2.split_at(output2.len() - 8);
let (crc2, len2) = end.split_at(4);
let crc2 = u32::from_le_bytes(crc2.try_into().unwrap());
// cuts off the gzip header (10 bytes) from the front
let suffix = &suffix[10..];
let mut result: Vec<u8> = Vec::new();
result.extend(prefix.iter());
result.extend(suffix);
// it would be more proper to use `stream.total_in` here, but the slice helpers hide the
// stream so we're cheating a bit here
let len1 = input1.len() as u32;
let len2 = u32::from_le_bytes(len2.try_into().unwrap());
assert_eq!(len2 as usize, input2.len());
let crc1 = crate::crc32(0, input1.as_bytes());
let crc = crate::crc32_combine(crc1, crc2, len2 as u64);
// combined crc of the parts should be the crc of the whole
let crc_cheating = crate::crc32(0, input.as_bytes());
assert_eq!(crc, crc_cheating);
// write the trailer
result.extend(crc.to_le_bytes());
result.extend((len1 + len2).to_le_bytes());
let mut output = vec![0; 128];
let (output, err) = crate::inflate::uncompress_slice(&mut output, &result, inflate_config);
assert_eq!(err, ReturnCode::Ok);
assert_eq!(output, input.as_bytes());
}
#[test]
fn inflate_window_copy_slice() {
let uncompressed = [
9, 126, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 76, 33, 8, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 76, 33, 8, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 12, 10, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 14, 0, 0, 0, 0, 0, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 9, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 12, 28, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
0, 0, 12, 10, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 14, 0, 0, 0, 0, 0, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 9, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69,
69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 12, 28, 0, 2, 0, 0, 0, 63, 1, 0, 12, 2,
36, 0, 28, 0, 0, 0, 1, 0, 0, 63, 63, 13, 0, 0, 0, 0, 0, 0, 0, 63, 63, 63, 63, 0, 0, 0,
0, 0, 0, 65, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91, 0, 0, 0, 9, 0, 0, 0, 9, 0, 0, 12, 33, 2, 0, 0, 8,
0, 4, 0, 0, 0, 12, 10, 41, 12, 10, 47,
];
let compressed = &[
31, 139, 8, 0, 0, 0, 0, 0, 4, 3, 181, 193, 49, 14, 194, 32, 24, 128, 209, 175, 192, 0,
228, 151, 232, 206, 66, 226, 226, 96, 60, 2, 113, 96, 235, 13, 188, 139, 103, 23, 106,
104, 108, 100, 49, 169, 239, 185, 39, 11, 199, 7, 51, 39, 171, 248, 118, 226, 63, 52,
157, 120, 86, 102, 78, 86, 209, 104, 58, 241, 84, 129, 166, 12, 4, 154, 178, 229, 202,
30, 36, 130, 166, 19, 79, 21, 104, 202, 64, 160, 41, 91, 174, 236, 65, 34, 10, 200, 19,
162, 206, 68, 96, 130, 156, 15, 188, 229, 138, 197, 157, 161, 35, 3, 87, 126, 245, 0,
28, 224, 64, 146, 2, 139, 1, 196, 95, 196, 223, 94, 10, 96, 92, 33, 86, 2, 0, 0,
];
let config = InflateConfig { window_bits: 25 };
let mut dest_vec_rs = vec![0u8; uncompressed.len()];
let (output_rs, error) =
crate::inflate::uncompress_slice(&mut dest_vec_rs, compressed, config);
assert_eq!(ReturnCode::Ok, error);
assert_eq!(output_rs, uncompressed);
}
#[test]
fn hash_calc_difference() {
let input = [
0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0,
0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 64, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102, 102, 102, 102, 102,
102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102,
102, 102, 102, 102, 102, 102, 102, 102, 112, 102, 102, 102, 102, 102, 102, 102, 102,
102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 0,
0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 64, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0,
50, 0,
];
let config = DeflateConfig {
level: 6,
method: Method::Deflated,
window_bits: 9,
mem_level: 8,
strategy: Strategy::Default,
};
let expected = [
24, 149, 99, 96, 96, 96, 96, 208, 6, 17, 112, 138, 129, 193, 128, 1, 29, 24, 50, 208,
1, 200, 146, 169, 79, 24, 74, 59, 96, 147, 52, 71, 22, 70, 246, 88, 26, 94, 80, 128,
83, 6, 162, 219, 144, 76, 183, 210, 5, 8, 67, 105, 36, 159, 35, 128, 57, 118, 97, 100,
160, 197, 192, 192, 96, 196, 0, 0, 3, 228, 25, 128,
];
fuzz_based_test(&input, config, &expected);
}
#[cfg(any(target_arch = "x86_64", target_arch = "aarch64"))]
mod _cache_lines {
use super::State;
// FIXME: once zlib-rs Minimum Supported Rust Version >= 1.77, switch to core::mem::offset_of
// and move this _cache_lines module from up a level from tests to super::
use memoffset::offset_of;
const _: () = assert!(offset_of!(State, status) == 0);
const _: () = assert!(offset_of!(State, _cache_line_0) == 64);
const _: () = assert!(offset_of!(State, _cache_line_1) == 128);
const _: () = assert!(offset_of!(State, _cache_line_2) == 192);
const _: () = assert!(offset_of!(State, _cache_line_3) == 256);
}
}
|