1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A Tuple is a generic templatized container, similar in concept to std::pair
// and std::tuple. The convenient MakeTuple() function takes any number of
// arguments and will construct and return the appropriate Tuple object. The
// functions DispatchToMethod and DispatchToFunction take a function pointer or
// instance and method pointer, and unpack a tuple into arguments to the call.
//
// Tuple elements are copied by value, and stored in the tuple. See the unit
// tests for more details of how/when the values are copied.
//
// Example usage:
// // These two methods of creating a Tuple are identical.
// Tuple<int, const char*> tuple_a(1, "wee");
// Tuple<int, const char*> tuple_b = MakeTuple(1, "wee");
//
// void SomeFunc(int a, const char* b) { }
// DispatchToFunction(&SomeFunc, tuple_a); // SomeFunc(1, "wee")
// DispatchToFunction(
// &SomeFunc, MakeTuple(10, "foo")); // SomeFunc(10, "foo")
//
// struct { void SomeMeth(int a, int b, int c) { } } foo;
// DispatchToMethod(&foo, &Foo::SomeMeth, MakeTuple(1, 2, 3));
// // foo->SomeMeth(1, 2, 3);
#ifndef BASE_TUPLE_H_
#define BASE_TUPLE_H_
#include <stddef.h>
#include "base/bind_helpers.h"
#include "build/build_config.h"
namespace base {
// Index sequences
//
// Minimal clone of the similarly-named C++14 functionality.
template <size_t...>
struct IndexSequence {};
template <size_t... Ns>
struct MakeIndexSequenceImpl;
#if defined(_PREFAST_) && defined(OS_WIN)
// Work around VC++ 2013 /analyze internal compiler error:
// https://connect.microsoft.com/VisualStudio/feedback/details/1053626
template <> struct MakeIndexSequenceImpl<0> {
using Type = IndexSequence<>;
};
template <> struct MakeIndexSequenceImpl<1> {
using Type = IndexSequence<0>;
};
template <> struct MakeIndexSequenceImpl<2> {
using Type = IndexSequence<0,1>;
};
template <> struct MakeIndexSequenceImpl<3> {
using Type = IndexSequence<0,1,2>;
};
template <> struct MakeIndexSequenceImpl<4> {
using Type = IndexSequence<0,1,2,3>;
};
template <> struct MakeIndexSequenceImpl<5> {
using Type = IndexSequence<0,1,2,3,4>;
};
template <> struct MakeIndexSequenceImpl<6> {
using Type = IndexSequence<0,1,2,3,4,5>;
};
template <> struct MakeIndexSequenceImpl<7> {
using Type = IndexSequence<0,1,2,3,4,5,6>;
};
template <> struct MakeIndexSequenceImpl<8> {
using Type = IndexSequence<0,1,2,3,4,5,6,7>;
};
template <> struct MakeIndexSequenceImpl<9> {
using Type = IndexSequence<0,1,2,3,4,5,6,7,8>;
};
template <> struct MakeIndexSequenceImpl<10> {
using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9>;
};
template <> struct MakeIndexSequenceImpl<11> {
using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9,10>;
};
template <> struct MakeIndexSequenceImpl<12> {
using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9,10,11>;
};
template <> struct MakeIndexSequenceImpl<13> {
using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9,10,11,12>;
};
#else // defined(WIN) && defined(_PREFAST_)
template <size_t... Ns>
struct MakeIndexSequenceImpl<0, Ns...> {
using Type = IndexSequence<Ns...>;
};
template <size_t N, size_t... Ns>
struct MakeIndexSequenceImpl<N, Ns...>
: MakeIndexSequenceImpl<N - 1, N - 1, Ns...> {};
#endif // defined(WIN) && defined(_PREFAST_)
template <size_t N>
using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::Type;
// Traits ----------------------------------------------------------------------
//
// A simple traits class for tuple arguments.
//
// ValueType: the bare, nonref version of a type (same as the type for nonrefs).
// RefType: the ref version of a type (same as the type for refs).
// ParamType: what type to pass to functions (refs should not be constified).
template <class P>
struct TupleTraits {
typedef P ValueType;
typedef P& RefType;
typedef const P& ParamType;
};
template <class P>
struct TupleTraits<P&> {
typedef P ValueType;
typedef P& RefType;
typedef P& ParamType;
};
// Tuple -----------------------------------------------------------------------
//
// This set of classes is useful for bundling 0 or more heterogeneous data types
// into a single variable. The advantage of this is that it greatly simplifies
// function objects that need to take an arbitrary number of parameters; see
// RunnableMethod and IPC::MessageWithTuple.
//
// Tuple<> is supplied to act as a 'void' type. It can be used, for example,
// when dispatching to a function that accepts no arguments (see the
// Dispatchers below).
// Tuple<A> is rarely useful. One such use is when A is non-const ref that you
// want filled by the dispatchee, and the tuple is merely a container for that
// output (a "tier"). See MakeRefTuple and its usages.
template <typename IxSeq, typename... Ts>
struct TupleBaseImpl;
template <typename... Ts>
using TupleBase = TupleBaseImpl<MakeIndexSequence<sizeof...(Ts)>, Ts...>;
template <size_t N, typename T>
struct TupleLeaf;
template <typename... Ts>
struct Tuple final : TupleBase<Ts...> {
Tuple() : TupleBase<Ts...>() {}
explicit Tuple(typename TupleTraits<Ts>::ParamType... args)
: TupleBase<Ts...>(args...) {}
};
// Avoids ambiguity between Tuple's two constructors.
template <>
struct Tuple<> final {};
template <size_t... Ns, typename... Ts>
struct TupleBaseImpl<IndexSequence<Ns...>, Ts...> : TupleLeaf<Ns, Ts>... {
TupleBaseImpl() : TupleLeaf<Ns, Ts>()... {}
explicit TupleBaseImpl(typename TupleTraits<Ts>::ParamType... args)
: TupleLeaf<Ns, Ts>(args)... {}
};
template <size_t N, typename T>
struct TupleLeaf {
TupleLeaf() {}
explicit TupleLeaf(typename TupleTraits<T>::ParamType x) : x(x) {}
T& get() { return x; }
const T& get() const { return x; }
T x;
};
// Tuple getters --------------------------------------------------------------
//
// Allows accessing an arbitrary tuple element by index.
//
// Example usage:
// base::Tuple<int, double> t2;
// base::get<0>(t2) = 42;
// base::get<1>(t2) = 3.14;
template <size_t I, typename T>
T& get(TupleLeaf<I, T>& leaf) {
return leaf.get();
}
template <size_t I, typename T>
const T& get(const TupleLeaf<I, T>& leaf) {
return leaf.get();
}
// Tuple types ----------------------------------------------------------------
//
// Allows for selection of ValueTuple/RefTuple/ParamTuple without needing the
// definitions of class types the tuple takes as parameters.
template <typename T>
struct TupleTypes;
template <typename... Ts>
struct TupleTypes<Tuple<Ts...>> {
using ValueTuple = Tuple<typename TupleTraits<Ts>::ValueType...>;
using RefTuple = Tuple<typename TupleTraits<Ts>::RefType...>;
using ParamTuple = Tuple<typename TupleTraits<Ts>::ParamType...>;
};
// Tuple creators -------------------------------------------------------------
//
// Helper functions for constructing tuples while inferring the template
// argument types.
template <typename... Ts>
inline Tuple<Ts...> MakeTuple(const Ts&... arg) {
return Tuple<Ts...>(arg...);
}
// The following set of helpers make what Boost refers to as "Tiers" - a tuple
// of references.
template <typename... Ts>
inline Tuple<Ts&...> MakeRefTuple(Ts&... arg) {
return Tuple<Ts&...>(arg...);
}
// Dispatchers ----------------------------------------------------------------
//
// Helper functions that call the given method on an object, with the unpacked
// tuple arguments. Notice that they all have the same number of arguments,
// so you need only write:
// DispatchToMethod(object, &Object::method, args);
// This is very useful for templated dispatchers, since they don't need to know
// what type |args| is.
// Non-Static Dispatchers with no out params.
template <typename ObjT, typename Method, typename... Ts, size_t... Ns>
inline void DispatchToMethodImpl(ObjT* obj,
Method method,
const Tuple<Ts...>& arg,
IndexSequence<Ns...>) {
(obj->*method)(base::internal::UnwrapTraits<Ts>::Unwrap(get<Ns>(arg))...);
}
template <typename ObjT, typename Method, typename... Ts>
inline void DispatchToMethod(ObjT* obj,
Method method,
const Tuple<Ts...>& arg) {
DispatchToMethodImpl(obj, method, arg, MakeIndexSequence<sizeof...(Ts)>());
}
// Static Dispatchers with no out params.
template <typename Function, typename... Ts, size_t... Ns>
inline void DispatchToFunctionImpl(Function function,
const Tuple<Ts...>& arg,
IndexSequence<Ns...>) {
(*function)(base::internal::UnwrapTraits<Ts>::Unwrap(get<Ns>(arg))...);
}
template <typename Function, typename... Ts>
inline void DispatchToFunction(Function function, const Tuple<Ts...>& arg) {
DispatchToFunctionImpl(function, arg, MakeIndexSequence<sizeof...(Ts)>());
}
// Dispatchers with out parameters.
template <typename ObjT,
typename Method,
typename... InTs,
typename... OutTs,
size_t... InNs,
size_t... OutNs>
inline void DispatchToMethodImpl(ObjT* obj,
Method method,
const Tuple<InTs...>& in,
Tuple<OutTs...>* out,
IndexSequence<InNs...>,
IndexSequence<OutNs...>) {
(obj->*method)(base::internal::UnwrapTraits<InTs>::Unwrap(get<InNs>(in))...,
&get<OutNs>(*out)...);
}
template <typename ObjT, typename Method, typename... InTs, typename... OutTs>
inline void DispatchToMethod(ObjT* obj,
Method method,
const Tuple<InTs...>& in,
Tuple<OutTs...>* out) {
DispatchToMethodImpl(obj, method, in, out,
MakeIndexSequence<sizeof...(InTs)>(),
MakeIndexSequence<sizeof...(OutTs)>());
}
} // namespace base
#endif // BASE_TUPLE_H_
|