1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
this.EXPORTED_SYMBOLS = ["GlodaIMSearcher"];
var Cc = Components.classes;
var Ci = Components.interfaces;
var Cr = Components.results;
var Cu = Components.utils;
Cu.import("resource://gre/modules/Services.jsm");
Cu.import("resource:///modules/gloda/public.js");
/**
* How much time boost should a 'score point' amount to? The authoritative,
* incontrivertible answer, across all time and space, is a week.
* Note that gloda stores conversation timestamps in seconds.
*/
var FUZZSCORE_TIMESTAMP_FACTOR = 60 * 60 * 24 * 7;
var RANK_USAGE =
"glodaRank(matchinfo(imConversationsText), 1.0, 2.0, 2.0, 1.5, 1.5)";
var DASCORE ="imConversations.time";
// "(((" + RANK_USAGE + ") * " +
// FUZZSCORE_TIMESTAMP_FACTOR +
// ") + imConversations.time)";
/**
* A new optimization decision we are making is that we do not want to carry
* around any data in our ephemeral tables that is not used for whittling the
* result set. The idea is that the btree page cache or OS cache is going to
* save us from the disk seeks and carrying around the extra data is just going
* to be CPU/memory churn that slows us down.
*
* Additionally, we try and avoid row lookups that would have their results
* discarded by the LIMIT. Because of limitations in FTS3 (which might
* be addressed in FTS4 by a feature request), we can't avoid the 'imConversations'
* lookup since that has the message's date and static notability but we can
* defer the 'imConversationsText' lookup.
*
* This is the access pattern we are after here:
* 1) Order the matches with minimized lookup and result storage costs.
* - The innermost MATCH does the doclist magic and provides us with
* matchinfo() support which does not require content row retrieval
* from imConversationsText. Unfortunately, this is not enough to whittle anything
* because we still need static interestingness, so...
* - Based on the match we retrieve the date and notability for that row from
* 'imConversations' using this in conjunction with matchinfo() to provide a score
* that we can then use to LIMIT our results.
* 2) We reissue the MATCH query so that we will be able to use offsets(), but
* we intersect the results of this MATCH against our LIMITed results from
* step 1.
* - We use 'docid IN (phase 1 query)' to accomplish this because it results in
* efficient lookup. If we just use a join, we get O(mn) performance because
* a cartesian join ends up being performed where either we end up performing
* the fulltext query M times and table scan intersect with the results from
* phase 1 or we do the fulltext once but traverse the entire result set from
* phase 1 N times.
* - We believe that the re-execution of the MATCH query should have no disk
* costs because it should still be cached by SQLite or the OS. In the case
* where memory is so constrained this is not true our behavior is still
* probably preferable than the old way because that would have caused lots
* of swapping.
* - This part of the query otherwise resembles the basic gloda query but with
* the inclusion of the offsets() invocation. The imConversations table lookup
* should not involve any disk traffic because the pages should still be
* cached (SQLite or OS) from phase 1. The imConversationsText lookup is new, and
* this is the major disk-seek reduction optimization we are making. (Since
* we avoid this lookup for all of the documents that were excluded by the
* LIMIT.) Since offsets() also needs to retrieve the row from imConversationsText
* there is a nice synergy there.
*/
var NUEVO_FULLTEXT_SQL =
"SELECT imConversations.*, imConversationsText.*, offsets(imConversationsText) AS osets " +
"FROM imConversationsText, imConversations " +
"WHERE" +
" imConversationsText MATCH ?1 " +
" AND imConversationsText.docid IN (" +
"SELECT docid " +
"FROM imConversationsText JOIN imConversations ON imConversationsText.docid = imConversations.id " +
"WHERE imConversationsText MATCH ?1 " +
"ORDER BY " + DASCORE + " DESC " +
"LIMIT ?2" +
" )" +
" AND imConversations.id = imConversationsText.docid";
function identityFunc(x) {
return x;
}
function oneLessMaxZero(x) {
if (x <= 1)
return 0;
else
return x - 1;
}
function reduceSum(accum, curValue) {
return accum + curValue;
}
/*
* Columns are: body, subject, attachment names, author, recipients
*/
/**
* Scores if all search terms match in a column. We bias against author
* slightly and recipient a bit more in this case because a search that
* entirely matches just on a person should give a mention of that person
* in the subject or attachment a fighting chance.
* Keep in mind that because of our indexing in the face of address book
* contacts (namely, we index the name used in the e-mail as well as the
* display name on the address book card associated with the e-mail adress)
* a contact is going to bias towards matching multiple times.
*/
var COLUMN_ALL_MATCH_SCORES = [4, 20, 20, 16, 12];
/**
* Score for each distinct term that matches in the column. This is capped
* by COLUMN_ALL_SCORES.
*/
var COLUMN_PARTIAL_PER_MATCH_SCORES = [1, 4, 4, 4, 3];
/**
* If a term matches multiple times, what is the marginal score for each
* additional match. We count the total number of matches beyond the
* first match for each term. In other words, if we have 3 terms which
* matched 5, 3, and 0 times, then the total from our perspective is
* (5 - 1) + (3 - 1) + 0 = 4 + 2 + 0 = 6. We take the minimum of that value
* and the value in COLUMN_MULTIPLE_MATCH_LIMIT and multiply by the value in
* COLUMN_MULTIPLE_MATCH_SCORES.
*/
var COLUMN_MULTIPLE_MATCH_SCORES = [1, 0, 0, 0, 0];
var COLUMN_MULTIPLE_MATCH_LIMIT = [10, 0, 0, 0, 0];
/**
* Score the message on its offsets (from stashedColumns).
*/
function scoreOffsets(aMessage, aContext) {
let score = 0;
let termTemplate = aContext.terms.map(_ => 0);
// for each column, a list of the incidence of each term
let columnTermIncidence = [termTemplate.concat(),
termTemplate.concat(),
termTemplate.concat(),
termTemplate.concat(),
termTemplate.concat()];
// we need a friendlyParseInt because otherwise the radix stuff happens
// because of the extra arguments map parses. curse you, map!
let offsetNums =
aContext.stashedColumns[aMessage.id][0].split(" ").map(x => parseInt(x));
for (let i=0; i < offsetNums.length; i += 4) {
let columnIndex = offsetNums[i];
let termIndex = offsetNums[i+1];
columnTermIncidence[columnIndex][termIndex]++;
}
for (let iColumn = 0; iColumn < COLUMN_ALL_MATCH_SCORES.length; iColumn++) {
let termIncidence = columnTermIncidence[iColumn];
// bestow all match credit
if (termIncidence.every(identityFunc))
score += COLUMN_ALL_MATCH_SCORES[iColumn];
// bestow partial match credit
else if (termIncidence.some(identityFunc))
score += Math.min(COLUMN_ALL_MATCH_SCORES[iColumn],
COLUMN_PARTIAL_PER_MATCH_SCORES[iColumn] *
termIncidence.filter(identityFunc).length);
// bestow multiple match credit
score += Math.min(termIncidence.map(oneLessMaxZero).reduce(reduceSum, 0),
COLUMN_MULTIPLE_MATCH_LIMIT[iColumn]) *
COLUMN_MULTIPLE_MATCH_SCORES[iColumn];
}
return score;
}
/**
* The searcher basically looks like a query, but is specialized for fulltext
* search against imConversations. Most of the explicit specialization involves
* crafting a SQL query that attempts to order the matches by likelihood that
* the user was looking for it. This is based on full-text matches combined
* with an explicit (generic) interest score value placed on the message at
* indexing time (TODO). This is followed by using the more generic gloda scoring
* mechanism to explicitly score the IM conversations given the search context in
* addition to the more generic score adjusting rules.
*/
function GlodaIMSearcher(aListener, aSearchString, aAndTerms) {
this.listener = aListener;
this.searchString = aSearchString;
this.fulltextTerms = this.parseSearchString(aSearchString);
this.andTerms = (aAndTerms != null) ? aAndTerms : true;
this.query = null;
this.collection = null;
this.scores = null;
}
GlodaIMSearcher.prototype = {
/**
* Number of messages to retrieve initially.
*/
get retrievalLimit() {
return Services.prefs.getIntPref(
"mailnews.database.global.search.im.limit"
);
},
/**
* Parse the string into terms/phrases by finding matching double-quotes.
*/
parseSearchString: function GlodaIMSearcher_parseSearchString(aSearchString) {
aSearchString = aSearchString.trim();
let terms = [];
/*
* Add the term as long as the trim on the way in didn't obliterate it.
*
* In the future this might have other helper logic; it did once before.
*/
function addTerm(aTerm) {
if (aTerm)
terms.push(aTerm);
}
while (aSearchString) {
if (aSearchString.startsWith('"')) {
let endIndex = aSearchString.indexOf(aSearchString[0], 1);
// eat the quote if it has no friend
if (endIndex == -1) {
aSearchString = aSearchString.substring(1);
continue;
}
addTerm(aSearchString.substring(1, endIndex).trim());
aSearchString = aSearchString.substring(endIndex + 1);
continue;
}
let spaceIndex = aSearchString.indexOf(" ");
if (spaceIndex == -1) {
addTerm(aSearchString);
break;
}
addTerm(aSearchString.substring(0, spaceIndex));
aSearchString = aSearchString.substring(spaceIndex+1);
}
return terms;
},
buildFulltextQuery: function GlodaIMSearcher_buildFulltextQuery() {
let query = Gloda.newQuery(Gloda.lookupNoun("im-conversation"), {
noMagic: true,
explicitSQL: NUEVO_FULLTEXT_SQL,
limitClauseAlreadyIncluded: true,
// osets is 0-based column number 4 (volatile to column changes)
// save the offset column for extra analysis
stashColumns: [6]
});
let fulltextQueryString = "";
for (let [iTerm, term] of this.fulltextTerms.entries()) {
if (iTerm)
fulltextQueryString += this.andTerms ? " " : " OR ";
// Put our term in quotes. This is needed for the tokenizer to be able
// to do useful things. The exception is people clever enough to use
// NEAR.
if (/^NEAR(\/\d+)?$/.test(term))
fulltextQueryString += term;
// Check if this is a single-character CJK search query. If so, we want
// to add a wildcard.
// Our tokenizer treats anything at/above 0x2000 as CJK for now.
else if (term.length == 1 && term.charCodeAt(0) >= 0x2000)
fulltextQueryString += term + "*";
else if (
term.length == 2 &&
term.charCodeAt(0) >= 0x2000 &&
term.charCodeAt(1) >= 0x2000
|| term.length >= 3
)
fulltextQueryString += '"' + term + '"';
}
query.fulltextMatches(fulltextQueryString);
query.limit(this.retrievalLimit);
return query;
},
getCollection: function GlodaIMSearcher_getCollection(
aListenerOverride, aData) {
if (aListenerOverride)
this.listener = aListenerOverride;
this.query = this.buildFulltextQuery();
this.collection = this.query.getCollection(this, aData);
this.completed = false;
return this.collection;
},
sortBy: '-dascore',
onItemsAdded: function GlodaIMSearcher_onItemsAdded(aItems, aCollection) {
let newScores = Gloda.scoreNounItems(
aItems,
{
terms: this.fulltextTerms,
stashedColumns: aCollection.stashedColumns
},
[scoreOffsets]);
if (this.scores)
this.scores = this.scores.concat(newScores);
else
this.scores = newScores;
if (this.listener)
this.listener.onItemsAdded(aItems, aCollection);
},
onItemsModified: function GlodaIMSearcher_onItemsModified(aItems,
aCollection) {
if (this.listener)
this.listener.onItemsModified(aItems, aCollection);
},
onItemsRemoved: function GlodaIMSearcher_onItemsRemoved(aItems,
aCollection) {
if (this.listener)
this.listener.onItemsRemoved(aItems, aCollection);
},
onQueryCompleted: function GlodaIMSearcher_onQueryCompleted(aCollection) {
this.completed = true;
if (this.listener)
this.listener.onQueryCompleted(aCollection);
}
};
|