1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MEMORY_REF_COUNTED_H_
#define BASE_MEMORY_REF_COUNTED_H_
#include <stddef.h>
#include <cassert>
#include <iosfwd>
#include <type_traits>
#include "base/atomic_ref_count.h"
#include "base/base_export.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/sequence_checker.h"
#include "base/threading/thread_collision_warner.h"
#include "build/build_config.h"
template <class T>
class scoped_refptr;
namespace base {
template <typename T>
scoped_refptr<T> AdoptRef(T* t);
namespace subtle {
enum AdoptRefTag { kAdoptRefTag };
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
class BASE_EXPORT RefCountedBase {
public:
bool HasOneRef() const { return ref_count_ == 1; }
protected:
explicit RefCountedBase(StartRefCountFromZeroTag) {
#if DCHECK_IS_ON()
sequence_checker_.DetachFromSequence();
#endif
}
explicit RefCountedBase(StartRefCountFromOneTag) : ref_count_(1) {
#if DCHECK_IS_ON()
needs_adopt_ref_ = true;
sequence_checker_.DetachFromSequence();
#endif
}
~RefCountedBase() {
#if DCHECK_IS_ON()
DCHECK(in_dtor_) << "RefCounted object deleted without calling Release()";
#endif
}
void AddRef() const {
// TODO(maruel): Add back once it doesn't assert 500 times/sec.
// Current thread books the critical section "AddRelease"
// without release it.
// DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
DCHECK(!needs_adopt_ref_)
<< "This RefCounted object is created with non-zero reference count."
<< " The first reference to such a object has to be made by AdoptRef or"
<< " MakeRefCounted.";
if (ref_count_ >= 1) {
DCHECK(CalledOnValidSequence());
}
#endif
++ref_count_;
}
// Returns true if the object should self-delete.
bool Release() const {
--ref_count_;
// TODO(maruel): Add back once it doesn't assert 500 times/sec.
// Current thread books the critical section "AddRelease"
// without release it.
// DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
if (ref_count_ == 0)
in_dtor_ = true;
if (ref_count_ >= 1)
DCHECK(CalledOnValidSequence());
if (ref_count_ == 1)
sequence_checker_.DetachFromSequence();
#endif
return ref_count_ == 0;
}
// Returns true if it is safe to read or write the object, from a thread
// safety standpoint. Should be DCHECK'd from the methods of RefCounted
// classes if there is a danger of objects being shared across threads.
//
// This produces fewer false positives than adding a separate SequenceChecker
// into the subclass, because it automatically detaches from the sequence when
// the reference count is 1 (and never fails if there is only one reference).
//
// This means unlike a separate SequenceChecker, it will permit a singly
// referenced object to be passed between threads (not holding a reference on
// the sending thread), but will trap if the sending thread holds onto a
// reference, or if the object is accessed from multiple threads
// simultaneously.
bool IsOnValidSequence() const {
#if DCHECK_IS_ON()
return ref_count_ <= 1 || CalledOnValidSequence();
#else
return true;
#endif
}
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
void Adopted() const {
#if DCHECK_IS_ON()
DCHECK(needs_adopt_ref_);
needs_adopt_ref_ = false;
#endif
}
#if DCHECK_IS_ON()
bool CalledOnValidSequence() const;
#endif
mutable size_t ref_count_ = 0;
#if DCHECK_IS_ON()
mutable bool needs_adopt_ref_ = false;
mutable bool in_dtor_ = false;
mutable SequenceChecker sequence_checker_;
#endif
DFAKE_MUTEX(add_release_);
DISALLOW_COPY_AND_ASSIGN(RefCountedBase);
};
class BASE_EXPORT RefCountedThreadSafeBase {
public:
bool HasOneRef() const;
protected:
explicit RefCountedThreadSafeBase(StartRefCountFromZeroTag) {}
explicit RefCountedThreadSafeBase(StartRefCountFromOneTag) : ref_count_(1) {
#if DCHECK_IS_ON()
needs_adopt_ref_ = true;
#endif
}
~RefCountedThreadSafeBase();
// Release and AddRef are suitable for inlining on X86 because they generate
// very small code sequences. On other platforms (ARM), it causes a size
// regression and is probably not worth it.
#if defined(ARCH_CPU_X86_FAMILY)
// Returns true if the object should self-delete.
bool Release() const { return ReleaseImpl(); }
void AddRef() const { AddRefImpl(); }
#else
// Returns true if the object should self-delete.
bool Release() const;
void AddRef() const;
#endif
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
void Adopted() const {
#if DCHECK_IS_ON()
DCHECK(needs_adopt_ref_);
needs_adopt_ref_ = false;
#endif
}
ALWAYS_INLINE void AddRefImpl() const {
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
DCHECK(!needs_adopt_ref_)
<< "This RefCounted object is created with non-zero reference count."
<< " The first reference to such a object has to be made by AdoptRef or"
<< " MakeRefCounted.";
#endif
ref_count_.Increment();
}
ALWAYS_INLINE bool ReleaseImpl() const {
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
DCHECK(!ref_count_.IsZero());
#endif
if (!ref_count_.Decrement()) {
#if DCHECK_IS_ON()
in_dtor_ = true;
#endif
return true;
}
return false;
}
mutable AtomicRefCount ref_count_{0};
#if DCHECK_IS_ON()
mutable bool needs_adopt_ref_ = false;
mutable bool in_dtor_ = false;
#endif
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase);
};
} // namespace subtle
// ScopedAllowCrossThreadRefCountAccess disables the check documented on
// RefCounted below for rare pre-existing use cases where thread-safety was
// guaranteed through other means (e.g. explicit sequencing of calls across
// execution sequences when bouncing between threads in order). New callers
// should refrain from using this (callsites handling thread-safety through
// locks should use RefCountedThreadSafe per the overhead of its atomics being
// negligible compared to locks anyways and callsites doing explicit sequencing
// should properly std::move() the ref to avoid hitting this check).
// TODO(tzik): Cleanup existing use cases and remove
// ScopedAllowCrossThreadRefCountAccess.
class BASE_EXPORT ScopedAllowCrossThreadRefCountAccess final {
public:
#if DCHECK_IS_ON()
ScopedAllowCrossThreadRefCountAccess();
~ScopedAllowCrossThreadRefCountAccess();
#else
ScopedAllowCrossThreadRefCountAccess() {}
~ScopedAllowCrossThreadRefCountAccess() {}
#endif
};
//
// A base class for reference counted classes. Otherwise, known as a cheap
// knock-off of WebKit's RefCounted<T> class. To use this, just extend your
// class from it like so:
//
// class MyFoo : public base::RefCounted<MyFoo> {
// ...
// private:
// friend class base::RefCounted<MyFoo>;
// ~MyFoo();
// };
//
// You should always make your destructor non-public, to avoid any code deleting
// the object accidently while there are references to it.
//
//
// The ref count manipulation to RefCounted is NOT thread safe and has DCHECKs
// to trap unsafe cross thread usage. A subclass instance of RefCounted can be
// passed to another execution sequence only when its ref count is 1. If the ref
// count is more than 1, the RefCounted class verifies the ref updates are made
// on the same execution sequence as the previous ones. The subclass can also
// manually call IsOnValidSequence to trap other non-thread-safe accesses; see
// the documentation for that method.
//
//
// The reference count starts from zero by default, and we intended to migrate
// to start-from-one ref count. Put REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() to
// the ref counted class to opt-in.
//
// If an object has start-from-one ref count, the first scoped_refptr need to be
// created by base::AdoptRef() or base::MakeRefCounted(). We can use
// base::MakeRefCounted() to create create both type of ref counted object.
//
// The motivations to use start-from-one ref count are:
// - Start-from-one ref count doesn't need the ref count increment for the
// first reference.
// - It can detect an invalid object acquisition for a being-deleted object
// that has zero ref count. That tends to happen on custom deleter that
// delays the deletion.
// TODO(tzik): Implement invalid acquisition detection.
// - Behavior parity to Blink's WTF::RefCounted, whose count starts from one.
// And start-from-one ref count is a step to merge WTF::RefCounted into
// base::RefCounted.
//
#define REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() \
static constexpr ::base::subtle::StartRefCountFromOneTag \
kRefCountPreference = ::base::subtle::kStartRefCountFromOneTag
template <class T>
class RefCounted : public subtle::RefCountedBase {
public:
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
subtle::kStartRefCountFromZeroTag;
RefCounted() : subtle::RefCountedBase(T::kRefCountPreference) {}
void AddRef() const {
subtle::RefCountedBase::AddRef();
}
void Release() const {
if (subtle::RefCountedBase::Release()) {
// Prune the code paths which the static analyzer may take to simulate
// object destruction. Use-after-free errors aren't possible given the
// lifetime guarantees of the refcounting system.
ANALYZER_SKIP_THIS_PATH();
delete static_cast<const T*>(this);
}
}
protected:
~RefCounted() = default;
private:
DISALLOW_COPY_AND_ASSIGN(RefCounted);
};
// Forward declaration.
template <class T, typename Traits> class RefCountedThreadSafe;
// Default traits for RefCountedThreadSafe<T>. Deletes the object when its ref
// count reaches 0. Overload to delete it on a different thread etc.
template<typename T>
struct DefaultRefCountedThreadSafeTraits {
static void Destruct(const T* x) {
// Delete through RefCountedThreadSafe to make child classes only need to be
// friend with RefCountedThreadSafe instead of this struct, which is an
// implementation detail.
RefCountedThreadSafe<T,
DefaultRefCountedThreadSafeTraits>::DeleteInternal(x);
}
};
//
// A thread-safe variant of RefCounted<T>
//
// class MyFoo : public base::RefCountedThreadSafe<MyFoo> {
// ...
// };
//
// If you're using the default trait, then you should add compile time
// asserts that no one else is deleting your object. i.e.
// private:
// friend class base::RefCountedThreadSafe<MyFoo>;
// ~MyFoo();
//
// We can use REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() with RefCountedThreadSafe
// too. See the comment above the RefCounted definition for details.
template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T> >
class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase {
public:
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
subtle::kStartRefCountFromZeroTag;
explicit RefCountedThreadSafe()
: subtle::RefCountedThreadSafeBase(T::kRefCountPreference) {}
void AddRef() const {
subtle::RefCountedThreadSafeBase::AddRef();
}
void Release() const {
if (subtle::RefCountedThreadSafeBase::Release()) {
ANALYZER_SKIP_THIS_PATH();
Traits::Destruct(static_cast<const T*>(this));
}
}
protected:
~RefCountedThreadSafe() = default;
private:
friend struct DefaultRefCountedThreadSafeTraits<T>;
static void DeleteInternal(const T* x) { delete x; }
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe);
};
//
// A thread-safe wrapper for some piece of data so we can place other
// things in scoped_refptrs<>.
//
template<typename T>
class RefCountedData
: public base::RefCountedThreadSafe< base::RefCountedData<T> > {
public:
RefCountedData() : data() {}
RefCountedData(const T& in_value) : data(in_value) {}
T data;
private:
friend class base::RefCountedThreadSafe<base::RefCountedData<T> >;
~RefCountedData() = default;
};
// Creates a scoped_refptr from a raw pointer without incrementing the reference
// count. Use this only for a newly created object whose reference count starts
// from 1 instead of 0.
template <typename T>
scoped_refptr<T> AdoptRef(T* obj) {
using Tag = typename std::decay<decltype(T::kRefCountPreference)>::type;
static_assert(std::is_same<subtle::StartRefCountFromOneTag, Tag>::value,
"Use AdoptRef only for the reference count starts from one.");
DCHECK(obj);
DCHECK(obj->HasOneRef());
obj->Adopted();
return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
}
namespace subtle {
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
return scoped_refptr<T>(obj);
}
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
return AdoptRef(obj);
}
} // namespace subtle
// Constructs an instance of T, which is a ref counted type, and wraps the
// object into a scoped_refptr.
template <typename T, typename... Args>
scoped_refptr<T> MakeRefCounted(Args&&... args) {
T* obj = new T(std::forward<Args>(args)...);
return subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
}
} // namespace base
//
// A smart pointer class for reference counted objects. Use this class instead
// of calling AddRef and Release manually on a reference counted object to
// avoid common memory leaks caused by forgetting to Release an object
// reference. Sample usage:
//
// class MyFoo : public RefCounted<MyFoo> {
// ...
// private:
// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
// ~MyFoo(); // Destructor must be private/protected.
// };
//
// void some_function() {
// scoped_refptr<MyFoo> foo = new MyFoo();
// foo->Method(param);
// // |foo| is released when this function returns
// }
//
// void some_other_function() {
// scoped_refptr<MyFoo> foo = new MyFoo();
// ...
// foo = nullptr; // explicitly releases |foo|
// ...
// if (foo)
// foo->Method(param);
// }
//
// The above examples show how scoped_refptr<T> acts like a pointer to T.
// Given two scoped_refptr<T> classes, it is also possible to exchange
// references between the two objects, like so:
//
// {
// scoped_refptr<MyFoo> a = new MyFoo();
// scoped_refptr<MyFoo> b;
//
// b.swap(a);
// // now, |b| references the MyFoo object, and |a| references nullptr.
// }
//
// To make both |a| and |b| in the above example reference the same MyFoo
// object, simply use the assignment operator:
//
// {
// scoped_refptr<MyFoo> a = new MyFoo();
// scoped_refptr<MyFoo> b;
//
// b = a;
// // now, |a| and |b| each own a reference to the same MyFoo object.
// }
//
template <class T>
class scoped_refptr {
public:
typedef T element_type;
scoped_refptr() {}
scoped_refptr(T* p) : ptr_(p) {
if (ptr_)
AddRef(ptr_);
}
// Copy constructor.
scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) {
if (ptr_)
AddRef(ptr_);
}
// Copy conversion constructor.
template <typename U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) {
if (ptr_)
AddRef(ptr_);
}
// Move constructor. This is required in addition to the conversion
// constructor below in order for clang to warn about pessimizing moves.
scoped_refptr(scoped_refptr&& r) : ptr_(r.get()) { r.ptr_ = nullptr; }
// Move conversion constructor.
template <typename U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
scoped_refptr(scoped_refptr<U>&& r) : ptr_(r.get()) {
r.ptr_ = nullptr;
}
~scoped_refptr() {
if (ptr_)
Release(ptr_);
}
T* get() const { return ptr_; }
T& operator*() const {
assert(ptr_ != nullptr);
return *ptr_;
}
T* operator->() const {
assert(ptr_ != nullptr);
return ptr_;
}
scoped_refptr<T>& operator=(T* p) {
// AddRef first so that self assignment should work
if (p)
AddRef(p);
T* old_ptr = ptr_;
ptr_ = p;
if (old_ptr)
Release(old_ptr);
return *this;
}
scoped_refptr<T>& operator=(const scoped_refptr<T>& r) {
return *this = r.ptr_;
}
template <typename U>
scoped_refptr<T>& operator=(const scoped_refptr<U>& r) {
return *this = r.get();
}
scoped_refptr<T>& operator=(scoped_refptr<T>&& r) {
scoped_refptr<T> tmp(std::move(r));
tmp.swap(*this);
return *this;
}
template <typename U>
scoped_refptr<T>& operator=(scoped_refptr<U>&& r) {
// We swap with a temporary variable to guarantee that |ptr_| is released
// immediately. A naive implementation which swaps |this| and |r| would
// unintentionally extend the lifetime of |ptr_| to at least the lifetime of
// |r|.
scoped_refptr<T> tmp(std::move(r));
tmp.swap(*this);
return *this;
}
void swap(scoped_refptr<T>& r) {
T* tmp = ptr_;
ptr_ = r.ptr_;
r.ptr_ = tmp;
}
explicit operator bool() const { return ptr_ != nullptr; }
template <typename U>
bool operator==(const scoped_refptr<U>& rhs) const {
return ptr_ == rhs.get();
}
template <typename U>
bool operator!=(const scoped_refptr<U>& rhs) const {
return !operator==(rhs);
}
template <typename U>
bool operator<(const scoped_refptr<U>& rhs) const {
return ptr_ < rhs.get();
}
protected:
T* ptr_ = nullptr;
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}
// Friend required for move constructors that set r.ptr_ to null.
template <typename U>
friend class scoped_refptr;
// Non-inline helpers to allow:
// class Opaque;
// extern template class scoped_refptr<Opaque>;
// Otherwise the compiler will complain that Opaque is an incomplete type.
static void AddRef(T* ptr);
static void Release(T* ptr);
};
// static
template <typename T>
void scoped_refptr<T>::AddRef(T* ptr) {
ptr->AddRef();
}
// static
template <typename T>
void scoped_refptr<T>::Release(T* ptr) {
ptr->Release();
}
// Handy utility for creating a scoped_refptr<T> out of a T* explicitly without
// having to retype all the template arguments
template <typename T>
scoped_refptr<T> make_scoped_refptr(T* t) {
return scoped_refptr<T>(t);
}
template <typename T, typename U>
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
return lhs.get() == rhs;
}
template <typename T, typename U>
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
return lhs == rhs.get();
}
template <typename T>
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !static_cast<bool>(lhs);
}
template <typename T>
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
return !static_cast<bool>(rhs);
}
template <typename T, typename U>
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
return !operator==(lhs, rhs);
}
template <typename T, typename U>
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
return !operator==(lhs, rhs);
}
template <typename T>
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !operator==(lhs, null);
}
template <typename T>
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
return !operator==(null, rhs);
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
return out << p.get();
}
#endif // BASE_MEMORY_REF_COUNTED_H_
|