1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <cstring>
#include <numeric>
#include "api/array_view.h"
#include "api/optional.h"
#include "modules/audio_device/audio_device_impl.h"
#include "modules/audio_device/include/audio_device.h"
#include "modules/audio_device/include/mock_audio_transport.h"
#include "rtc_base/buffer.h"
#include "rtc_base/criticalsection.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/race_checker.h"
#include "rtc_base/scoped_ref_ptr.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/thread_checker.h"
#include "rtc_base/timeutils.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Ge;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::NotNull;
namespace webrtc {
namespace {
// #define ENABLE_DEBUG_PRINTF
#ifdef ENABLE_DEBUG_PRINTF
#define PRINTD(...) fprintf(stderr, __VA_ARGS__);
#else
#define PRINTD(...) ((void)0)
#endif
#define PRINT(...) fprintf(stderr, __VA_ARGS__);
// Don't run these tests in combination with sanitizers.
#if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER)
#define SKIP_TEST_IF_NOT(requirements_satisfied) \
do { \
if (!requirements_satisfied) { \
return; \
} \
} while (false)
#else
// Or if other audio-related requirements are not met.
#define SKIP_TEST_IF_NOT(requirements_satisfied) \
do { \
return; \
} while (false)
#endif
// Number of callbacks (input or output) the tests waits for before we set
// an event indicating that the test was OK.
static constexpr size_t kNumCallbacks = 10;
// Max amount of time we wait for an event to be set while counting callbacks.
static constexpr size_t kTestTimeOutInMilliseconds = 10 * 1000;
// Average number of audio callbacks per second assuming 10ms packet size.
static constexpr size_t kNumCallbacksPerSecond = 100;
// Run the full-duplex test during this time (unit is in seconds).
static constexpr size_t kFullDuplexTimeInSec = 5;
// Length of round-trip latency measurements. Number of deteced impulses
// shall be kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1 since the
// last transmitted pulse is not used.
static constexpr size_t kMeasureLatencyTimeInSec = 10;
// Sets the number of impulses per second in the latency test.
static constexpr size_t kImpulseFrequencyInHz = 1;
// Utilized in round-trip latency measurements to avoid capturing noise samples.
static constexpr int kImpulseThreshold = 1000;
enum class TransportType {
kInvalid,
kPlay,
kRecord,
kPlayAndRecord,
};
// Interface for processing the audio stream. Real implementations can e.g.
// run audio in loopback, read audio from a file or perform latency
// measurements.
class AudioStream {
public:
virtual void Write(rtc::ArrayView<const int16_t> source, size_t channels) = 0;
virtual void Read(rtc::ArrayView<int16_t> destination, size_t channels) = 0;
virtual ~AudioStream() = default;
};
// Converts index corresponding to position within a 10ms buffer into a
// delay value in milliseconds.
// Example: index=240, frames_per_10ms_buffer=480 => 5ms as output.
int IndexToMilliseconds(size_t index, size_t frames_per_10ms_buffer) {
return rtc::checked_cast<int>(
10.0 * (static_cast<double>(index) / frames_per_10ms_buffer) + 0.5);
}
} // namespace
// Simple first in first out (FIFO) class that wraps a list of 16-bit audio
// buffers of fixed size and allows Write and Read operations. The idea is to
// store recorded audio buffers (using Write) and then read (using Read) these
// stored buffers with as short delay as possible when the audio layer needs
// data to play out. The number of buffers in the FIFO will stabilize under
// normal conditions since there will be a balance between Write and Read calls.
// The container is a std::list container and access is protected with a lock
// since both sides (playout and recording) are driven by its own thread.
// Note that, we know by design that the size of the audio buffer will not
// change over time and that both sides will use the same size.
class FifoAudioStream : public AudioStream {
public:
void Write(rtc::ArrayView<const int16_t> source, size_t channels) override {
EXPECT_EQ(channels, 1u);
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
const size_t size = [&] {
rtc::CritScope lock(&lock_);
fifo_.push_back(Buffer16(source.data(), source.size()));
return fifo_.size();
}();
if (size > max_size_) {
max_size_ = size;
}
// Add marker once per second to signal that audio is active.
if (write_count_++ % 100 == 0) {
PRINT(".");
}
written_elements_ += size;
}
void Read(rtc::ArrayView<int16_t> destination, size_t channels) override {
EXPECT_EQ(channels, 1u);
rtc::CritScope lock(&lock_);
if (fifo_.empty()) {
std::fill(destination.begin(), destination.end(), 0);
} else {
const Buffer16& buffer = fifo_.front();
RTC_CHECK_EQ(buffer.size(), destination.size());
std::copy(buffer.begin(), buffer.end(), destination.begin());
fifo_.pop_front();
}
}
size_t size() const {
rtc::CritScope lock(&lock_);
return fifo_.size();
}
size_t max_size() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
return max_size_;
}
size_t average_size() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
return 0.5 + static_cast<float>(written_elements_ / write_count_);
}
using Buffer16 = rtc::BufferT<int16_t>;
rtc::CriticalSection lock_;
rtc::RaceChecker race_checker_;
std::list<Buffer16> fifo_ RTC_GUARDED_BY(lock_);
size_t write_count_ RTC_GUARDED_BY(race_checker_) = 0;
size_t max_size_ RTC_GUARDED_BY(race_checker_) = 0;
size_t written_elements_ RTC_GUARDED_BY(race_checker_) = 0;
};
// Inserts periodic impulses and measures the latency between the time of
// transmission and time of receiving the same impulse.
class LatencyAudioStream : public AudioStream {
public:
LatencyAudioStream() {
// Delay thread checkers from being initialized until first callback from
// respective thread.
read_thread_checker_.DetachFromThread();
write_thread_checker_.DetachFromThread();
}
// Insert periodic impulses in first two samples of |destination|.
void Read(rtc::ArrayView<int16_t> destination, size_t channels) override {
RTC_DCHECK_RUN_ON(&read_thread_checker_);
EXPECT_EQ(channels, 1u);
if (read_count_ == 0) {
PRINT("[");
}
read_count_++;
std::fill(destination.begin(), destination.end(), 0);
if (read_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) {
PRINT(".");
{
rtc::CritScope lock(&lock_);
if (!pulse_time_) {
pulse_time_ = rtc::Optional<int64_t>(rtc::TimeMillis());
}
}
constexpr int16_t impulse = std::numeric_limits<int16_t>::max();
std::fill_n(destination.begin(), 2, impulse);
}
}
// Detect received impulses in |source|, derive time between transmission and
// detection and add the calculated delay to list of latencies.
void Write(rtc::ArrayView<const int16_t> source, size_t channels) override {
EXPECT_EQ(channels, 1u);
RTC_DCHECK_RUN_ON(&write_thread_checker_);
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
rtc::CritScope lock(&lock_);
write_count_++;
if (!pulse_time_) {
// Avoid detection of new impulse response until a new impulse has
// been transmitted (sets |pulse_time_| to value larger than zero).
return;
}
// Find index (element position in vector) of the max element.
const size_t index_of_max =
std::max_element(source.begin(), source.end()) - source.begin();
// Derive time between transmitted pulse and received pulse if the level
// is high enough (removes noise).
const size_t max = source[index_of_max];
if (max > kImpulseThreshold) {
PRINTD("(%zu, %zu)", max, index_of_max);
int64_t now_time = rtc::TimeMillis();
int extra_delay = IndexToMilliseconds(index_of_max, source.size());
PRINTD("[%d]", rtc::checked_cast<int>(now_time - pulse_time_));
PRINTD("[%d]", extra_delay);
// Total latency is the difference between transmit time and detection
// tome plus the extra delay within the buffer in which we detected the
// received impulse. It is transmitted at sample 0 but can be received
// at sample N where N > 0. The term |extra_delay| accounts for N and it
// is a value between 0 and 10ms.
latencies_.push_back(now_time - *pulse_time_ + extra_delay);
pulse_time_.reset();
} else {
PRINTD("-");
}
}
size_t num_latency_values() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
return latencies_.size();
}
int min_latency() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
if (latencies_.empty())
return 0;
return *std::min_element(latencies_.begin(), latencies_.end());
}
int max_latency() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
if (latencies_.empty())
return 0;
return *std::max_element(latencies_.begin(), latencies_.end());
}
int average_latency() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
if (latencies_.empty())
return 0;
return 0.5 + static_cast<double>(
std::accumulate(latencies_.begin(), latencies_.end(), 0)) /
latencies_.size();
}
void PrintResults() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
PRINT("] ");
for (auto it = latencies_.begin(); it != latencies_.end(); ++it) {
PRINTD("%d ", *it);
}
PRINT("\n");
PRINT("[..........] [min, max, avg]=[%d, %d, %d] ms\n", min_latency(),
max_latency(), average_latency());
}
rtc::CriticalSection lock_;
rtc::RaceChecker race_checker_;
rtc::ThreadChecker read_thread_checker_;
rtc::ThreadChecker write_thread_checker_;
rtc::Optional<int64_t> pulse_time_ RTC_GUARDED_BY(lock_);
std::vector<int> latencies_ RTC_GUARDED_BY(race_checker_);
size_t read_count_ RTC_ACCESS_ON(read_thread_checker_) = 0;
size_t write_count_ RTC_ACCESS_ON(write_thread_checker_) = 0;
};
// Mocks the AudioTransport object and proxies actions for the two callbacks
// (RecordedDataIsAvailable and NeedMorePlayData) to different implementations
// of AudioStreamInterface.
class MockAudioTransport : public test::MockAudioTransport {
public:
explicit MockAudioTransport(TransportType type) : type_(type) {}
~MockAudioTransport() {}
// Set default actions of the mock object. We are delegating to fake
// implementation where the number of callbacks is counted and an event
// is set after a certain number of callbacks. Audio parameters are also
// checked.
void HandleCallbacks(rtc::Event* event,
AudioStream* audio_stream,
int num_callbacks) {
event_ = event;
audio_stream_ = audio_stream;
num_callbacks_ = num_callbacks;
if (play_mode()) {
ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransport::RealNeedMorePlayData));
}
if (rec_mode()) {
ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable));
}
}
int32_t RealRecordedDataIsAvailable(const void* audio_buffer,
const size_t samples_per_channel,
const size_t bytes_per_frame,
const size_t channels,
const uint32_t sample_rate,
const uint32_t total_delay_ms,
const int32_t clock_drift,
const uint32_t current_mic_level,
const bool typing_status,
uint32_t& new_mic_level) {
EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks.";
RTC_LOG(INFO) << "+";
// Store audio parameters once in the first callback. For all other
// callbacks, verify that the provided audio parameters are maintained and
// that each callback corresponds to 10ms for any given sample rate.
if (!record_parameters_.is_complete()) {
record_parameters_.reset(sample_rate, channels, samples_per_channel);
} else {
EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_buffer());
EXPECT_EQ(bytes_per_frame, record_parameters_.GetBytesPerFrame());
EXPECT_EQ(channels, record_parameters_.channels());
EXPECT_EQ(static_cast<int>(sample_rate),
record_parameters_.sample_rate());
EXPECT_EQ(samples_per_channel,
record_parameters_.frames_per_10ms_buffer());
}
rec_count_++;
// Write audio data to audio stream object if one has been injected.
if (audio_stream_) {
audio_stream_->Write(
rtc::MakeArrayView(static_cast<const int16_t*>(audio_buffer),
samples_per_channel * channels),
channels);
}
// Signal the event after given amount of callbacks.
if (ReceivedEnoughCallbacks()) {
event_->Set();
}
return 0;
}
int32_t RealNeedMorePlayData(const size_t samples_per_channel,
const size_t bytes_per_frame,
const size_t channels,
const uint32_t sample_rate,
void* audio_buffer,
size_t& samples_per_channel_out,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) {
EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks.";
RTC_LOG(INFO) << "-";
// Store audio parameters once in the first callback. For all other
// callbacks, verify that the provided audio parameters are maintained and
// that each callback corresponds to 10ms for any given sample rate.
if (!playout_parameters_.is_complete()) {
playout_parameters_.reset(sample_rate, channels, samples_per_channel);
} else {
EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_buffer());
EXPECT_EQ(bytes_per_frame, playout_parameters_.GetBytesPerFrame());
EXPECT_EQ(channels, playout_parameters_.channels());
EXPECT_EQ(static_cast<int>(sample_rate),
playout_parameters_.sample_rate());
EXPECT_EQ(samples_per_channel,
playout_parameters_.frames_per_10ms_buffer());
}
play_count_++;
samples_per_channel_out = samples_per_channel;
// Read audio data from audio stream object if one has been injected.
if (audio_stream_) {
audio_stream_->Read(
rtc::MakeArrayView(static_cast<int16_t*>(audio_buffer),
samples_per_channel * channels),
channels);
} else {
// Fill the audio buffer with zeros to avoid disturbing audio.
const size_t num_bytes = samples_per_channel * bytes_per_frame;
std::memset(audio_buffer, 0, num_bytes);
}
// Signal the event after given amount of callbacks.
if (ReceivedEnoughCallbacks()) {
event_->Set();
}
return 0;
}
bool ReceivedEnoughCallbacks() {
bool recording_done = false;
if (rec_mode()) {
recording_done = rec_count_ >= num_callbacks_;
} else {
recording_done = true;
}
bool playout_done = false;
if (play_mode()) {
playout_done = play_count_ >= num_callbacks_;
} else {
playout_done = true;
}
return recording_done && playout_done;
}
bool play_mode() const {
return type_ == TransportType::kPlay ||
type_ == TransportType::kPlayAndRecord;
}
bool rec_mode() const {
return type_ == TransportType::kRecord ||
type_ == TransportType::kPlayAndRecord;
}
private:
TransportType type_ = TransportType::kInvalid;
rtc::Event* event_ = nullptr;
AudioStream* audio_stream_ = nullptr;
size_t num_callbacks_ = 0;
size_t play_count_ = 0;
size_t rec_count_ = 0;
AudioParameters playout_parameters_;
AudioParameters record_parameters_;
};
// AudioDeviceTest test fixture.
class AudioDeviceTest : public ::testing::Test {
protected:
AudioDeviceTest() : event_(false, false) {
#if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER)
rtc::LogMessage::LogToDebug(rtc::LS_INFO);
// Add extra logging fields here if needed for debugging.
// rtc::LogMessage::LogTimestamps();
// rtc::LogMessage::LogThreads();
audio_device_ =
AudioDeviceModule::Create(AudioDeviceModule::kPlatformDefaultAudio);
EXPECT_NE(audio_device_.get(), nullptr);
AudioDeviceModule::AudioLayer audio_layer;
int got_platform_audio_layer =
audio_device_->ActiveAudioLayer(&audio_layer);
// First, ensure that a valid audio layer can be activated.
if (got_platform_audio_layer != 0) {
requirements_satisfied_ = false;
}
// Next, verify that the ADM can be initialized.
if (requirements_satisfied_) {
requirements_satisfied_ = (audio_device_->Init() == 0);
}
// Finally, ensure that at least one valid device exists in each direction.
if (requirements_satisfied_) {
const int16_t num_playout_devices = audio_device_->PlayoutDevices();
const int16_t num_record_devices = audio_device_->RecordingDevices();
requirements_satisfied_ =
num_playout_devices > 0 && num_record_devices > 0;
}
#else
requirements_satisfied_ = false;
#endif
if (requirements_satisfied_) {
EXPECT_EQ(0, audio_device_->SetPlayoutDevice(0));
EXPECT_EQ(0, audio_device_->InitSpeaker());
EXPECT_EQ(0, audio_device_->SetRecordingDevice(0));
EXPECT_EQ(0, audio_device_->InitMicrophone());
EXPECT_EQ(0, audio_device_->StereoPlayoutIsAvailable(&stereo_playout_));
EXPECT_EQ(0, audio_device_->SetStereoPlayout(stereo_playout_));
// Avoid asking for input stereo support and always record in mono
// since asking can cause issues in combination with remote desktop.
// See https://bugs.chromium.org/p/webrtc/issues/detail?id=7397 for
// details.
EXPECT_EQ(0, audio_device_->SetStereoRecording(false));
EXPECT_EQ(0, audio_device_->SetAGC(false));
EXPECT_FALSE(audio_device_->AGC());
}
}
virtual ~AudioDeviceTest() {
if (audio_device_) {
EXPECT_EQ(0, audio_device_->Terminate());
}
}
bool requirements_satisfied() const { return requirements_satisfied_; }
rtc::Event* event() { return &event_; }
const rtc::scoped_refptr<AudioDeviceModule>& audio_device() const {
return audio_device_;
}
void StartPlayout() {
EXPECT_FALSE(audio_device()->Playing());
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_TRUE(audio_device()->Playing());
}
void StopPlayout() {
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->Playing());
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
}
void StartRecording() {
EXPECT_FALSE(audio_device()->Recording());
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
EXPECT_EQ(0, audio_device()->StartRecording());
EXPECT_TRUE(audio_device()->Recording());
}
void StopRecording() {
EXPECT_EQ(0, audio_device()->StopRecording());
EXPECT_FALSE(audio_device()->Recording());
EXPECT_FALSE(audio_device()->RecordingIsInitialized());
}
private:
bool requirements_satisfied_ = true;
rtc::Event event_;
rtc::scoped_refptr<AudioDeviceModule> audio_device_;
bool stereo_playout_ = false;
};
// Uses the test fixture to create, initialize and destruct the ADM.
TEST_F(AudioDeviceTest, ConstructDestruct) {}
TEST_F(AudioDeviceTest, InitTerminate) {
SKIP_TEST_IF_NOT(requirements_satisfied());
// Initialization is part of the test fixture.
EXPECT_TRUE(audio_device()->Initialized());
EXPECT_EQ(0, audio_device()->Terminate());
EXPECT_FALSE(audio_device()->Initialized());
}
// Tests Start/Stop playout without any registered audio callback.
TEST_F(AudioDeviceTest, StartStopPlayout) {
SKIP_TEST_IF_NOT(requirements_satisfied());
StartPlayout();
StopPlayout();
StartPlayout();
StopPlayout();
}
// Tests Start/Stop recording without any registered audio callback.
TEST_F(AudioDeviceTest, StartStopRecording) {
SKIP_TEST_IF_NOT(requirements_satisfied());
StartRecording();
StopRecording();
StartRecording();
StopRecording();
}
// Tests Init/Stop/Init recording without any registered audio callback.
// See https://bugs.chromium.org/p/webrtc/issues/detail?id=8041 for details
// on why this test is useful.
TEST_F(AudioDeviceTest, InitStopInitRecording) {
SKIP_TEST_IF_NOT(requirements_satisfied());
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
StopRecording();
EXPECT_EQ(0, audio_device()->InitRecording());
StopRecording();
}
// Tests Init/Stop/Init recording while playout is active.
TEST_F(AudioDeviceTest, InitStopInitRecordingWhilePlaying) {
SKIP_TEST_IF_NOT(requirements_satisfied());
StartPlayout();
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
StopRecording();
EXPECT_EQ(0, audio_device()->InitRecording());
StopRecording();
StopPlayout();
}
// Tests Init/Stop/Init playout without any registered audio callback.
TEST_F(AudioDeviceTest, InitStopInitPlayout) {
SKIP_TEST_IF_NOT(requirements_satisfied());
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
StopPlayout();
EXPECT_EQ(0, audio_device()->InitPlayout());
StopPlayout();
}
// Tests Init/Stop/Init playout while recording is active.
TEST_F(AudioDeviceTest, InitStopInitPlayoutWhileRecording) {
SKIP_TEST_IF_NOT(requirements_satisfied());
StartRecording();
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
StopPlayout();
EXPECT_EQ(0, audio_device()->InitPlayout());
StopPlayout();
StopRecording();
}
// Start playout and verify that the native audio layer starts asking for real
// audio samples to play out using the NeedMorePlayData() callback.
// Note that we can't add expectations on audio parameters in EXPECT_CALL
// since parameter are not provided in the each callback. We therefore test and
// verify the parameters in the fake audio transport implementation instead.
TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) {
SKIP_TEST_IF_NOT(requirements_satisfied());
MockAudioTransport mock(TransportType::kPlay);
mock.HandleCallbacks(event(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
event()->Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// Start recording and verify that the native audio layer starts providing real
// audio samples using the RecordedDataIsAvailable() callback.
TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) {
SKIP_TEST_IF_NOT(requirements_satisfied());
MockAudioTransport mock(TransportType::kRecord);
mock.HandleCallbacks(event(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _,
false, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
event()->Wait(kTestTimeOutInMilliseconds);
StopRecording();
}
// Start playout and recording (full-duplex audio) and verify that audio is
// active in both directions.
TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) {
SKIP_TEST_IF_NOT(requirements_satisfied());
MockAudioTransport mock(TransportType::kPlayAndRecord);
mock.HandleCallbacks(event(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _,
false, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
StartRecording();
event()->Wait(kTestTimeOutInMilliseconds);
StopRecording();
StopPlayout();
}
// Start playout and recording and store recorded data in an intermediate FIFO
// buffer from which the playout side then reads its samples in the same order
// as they were stored. Under ideal circumstances, a callback sequence would
// look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-'
// means 'packet played'. Under such conditions, the FIFO would contain max 1,
// with an average somewhere in (0,1) depending on how long the packets are
// buffered. However, under more realistic conditions, the size
// of the FIFO will vary more due to an unbalance between the two sides.
// This test tries to verify that the device maintains a balanced callback-
// sequence by running in loopback for a few seconds while measuring the size
// (max and average) of the FIFO. The size of the FIFO is increased by the
// recording side and decreased by the playout side.
TEST_F(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) {
SKIP_TEST_IF_NOT(requirements_satisfied());
NiceMock<MockAudioTransport> mock(TransportType::kPlayAndRecord);
FifoAudioStream audio_stream;
mock.HandleCallbacks(event(), &audio_stream,
kFullDuplexTimeInSec * kNumCallbacksPerSecond);
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
// Run both sides in mono to make the loopback packet handling less complex.
// The test works for stereo as well; the only requirement is that both sides
// use the same configuration.
EXPECT_EQ(0, audio_device()->SetStereoPlayout(false));
EXPECT_EQ(0, audio_device()->SetStereoRecording(false));
StartPlayout();
StartRecording();
event()->Wait(static_cast<int>(
std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec)));
StopRecording();
StopPlayout();
// This thresholds is set rather high to accommodate differences in hardware
// in several devices. The main idea is to capture cases where a very large
// latency is built up. See http://bugs.webrtc.org/7744 for examples on
// bots where relatively large average latencies can happen.
EXPECT_LE(audio_stream.average_size(), 25u);
PRINT("\n");
}
// Measures loopback latency and reports the min, max and average values for
// a full duplex audio session.
// The latency is measured like so:
// - Insert impulses periodically on the output side.
// - Detect the impulses on the input side.
// - Measure the time difference between the transmit time and receive time.
// - Store time differences in a vector and calculate min, max and average.
// This test needs the '--gtest_also_run_disabled_tests' flag to run and also
// some sort of audio feedback loop. E.g. a headset where the mic is placed
// close to the speaker to ensure highest possible echo. It is also recommended
// to run the test at highest possible output volume.
TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) {
SKIP_TEST_IF_NOT(requirements_satisfied());
NiceMock<MockAudioTransport> mock(TransportType::kPlayAndRecord);
LatencyAudioStream audio_stream;
mock.HandleCallbacks(event(), &audio_stream,
kMeasureLatencyTimeInSec * kNumCallbacksPerSecond);
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
EXPECT_EQ(0, audio_device()->SetStereoPlayout(false));
EXPECT_EQ(0, audio_device()->SetStereoRecording(false));
StartPlayout();
StartRecording();
event()->Wait(static_cast<int>(
std::max(kTestTimeOutInMilliseconds, 1000 * kMeasureLatencyTimeInSec)));
StopRecording();
StopPlayout();
// Verify that the correct number of transmitted impulses are detected.
EXPECT_EQ(audio_stream.num_latency_values(),
static_cast<size_t>(
kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1));
// Print out min, max and average delay values for debugging purposes.
audio_stream.PrintResults();
}
} // namespace webrtc
|