1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
/*
* Copyright (c) 2013, Linux Foundation. All rights reserved
*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/basictypes.h"
#include "mozilla/Hal.h"
#include "mozilla/Unused.h"
#include "nsIScreen.h"
#include "nsIScreenManager.h"
#include "OrientationObserver.h"
#include "ProcessOrientation.h"
#include "mozilla/HalSensor.h"
#include "math.h"
#include "limits.h"
#include "android/log.h"
#if 0
#define LOGD(args...) __android_log_print(ANDROID_LOG_DEBUG, "ProcessOrientation" , ## args)
#else
#define LOGD(args...)
#endif
namespace mozilla {
// We work with all angles in degrees in this class.
#define RADIANS_TO_DEGREES (180/M_PI)
// Number of nanoseconds per millisecond.
#define NANOS_PER_MS 1000000
// Indices into SensorEvent.values for the accelerometer sensor.
#define ACCELEROMETER_DATA_X 0
#define ACCELEROMETER_DATA_Y 1
#define ACCELEROMETER_DATA_Z 2
// The minimum amount of time that a predicted rotation must be stable before
// it is accepted as a valid rotation proposal. This value can be quite small
// because the low-pass filter already suppresses most of the noise so we're
// really just looking for quick confirmation that the last few samples are in
// agreement as to the desired orientation.
#define PROPOSAL_SETTLE_TIME_NANOS (40*NANOS_PER_MS)
// The minimum amount of time that must have elapsed since the device last
// exited the flat state (time since it was picked up) before the proposed
// rotation can change.
#define PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS (500*NANOS_PER_MS)
// The minimum amount of time that must have elapsed since the device stopped
// swinging (time since device appeared to be in the process of being put down
// or put away into a pocket) before the proposed rotation can change.
#define PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS (300*NANOS_PER_MS)
// The minimum amount of time that must have elapsed since the device stopped
// undergoing external acceleration before the proposed rotation can change.
#define PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS (500*NANOS_PER_MS)
// If the tilt angle remains greater than the specified angle for a minimum of
// the specified time, then the device is deemed to be lying flat
// (just chillin' on a table).
#define FLAT_ANGLE 75
#define FLAT_TIME_NANOS (1000*NANOS_PER_MS)
// If the tilt angle has increased by at least delta degrees within the
// specified amount of time, then the device is deemed to be swinging away
// from the user down towards flat (tilt = 90).
#define SWING_AWAY_ANGLE_DELTA 20
#define SWING_TIME_NANOS (300*NANOS_PER_MS)
// The maximum sample inter-arrival time in milliseconds. If the acceleration
// samples are further apart than this amount in time, we reset the state of
// the low-pass filter and orientation properties. This helps to handle
// boundary conditions when the device is turned on, wakes from suspend or
// there is a significant gap in samples.
#define MAX_FILTER_DELTA_TIME_NANOS (1000*NANOS_PER_MS)
// The acceleration filter time constant.
//
// This time constant is used to tune the acceleration filter such that
// impulses and vibrational noise (think car dock) is suppressed before we try
// to calculate the tilt and orientation angles.
//
// The filter time constant is related to the filter cutoff frequency, which
// is the frequency at which signals are attenuated by 3dB (half the passband
// power). Each successive octave beyond this frequency is attenuated by an
// additional 6dB.
//
// Given a time constant t in seconds, the filter cutoff frequency Fc in Hertz
// is given by Fc = 1 / (2pi * t).
//
// The higher the time constant, the lower the cutoff frequency, so more noise
// will be suppressed.
//
// Filtering adds latency proportional the time constant (inversely
// proportional to the cutoff frequency) so we don't want to make the time
// constant too large or we can lose responsiveness. Likewise we don't want
// to make it too small or we do a poor job suppressing acceleration spikes.
// Empirically, 100ms seems to be too small and 500ms is too large. Android
// default is 200.
#define FILTER_TIME_CONSTANT_MS 200.0f
// State for orientation detection. Thresholds for minimum and maximum
// allowable deviation from gravity.
//
// If the device is undergoing external acceleration (being bumped, in a car
// that is turning around a corner or a plane taking off) then the magnitude
// may be substantially more or less than gravity. This can skew our
// orientation detection by making us think that up is pointed in a different
// direction.
//
// Conversely, if the device is in freefall, then there will be no gravity to
// measure at all. This is problematic because we cannot detect the orientation
// without gravity to tell us which way is up. A magnitude near 0 produces
// singularities in the tilt and orientation calculations.
//
// In both cases, we postpone choosing an orientation.
//
// However, we need to tolerate some acceleration because the angular momentum
// of turning the device can skew the observed acceleration for a short period
// of time.
#define NEAR_ZERO_MAGNITUDE 1 // m/s^2
#define ACCELERATION_TOLERANCE 4 // m/s^2
#define STANDARD_GRAVITY 9.80665f
#define MIN_ACCELERATION_MAGNITUDE (STANDARD_GRAVITY-ACCELERATION_TOLERANCE)
#define MAX_ACCELERATION_MAGNITUDE (STANDARD_GRAVITY+ACCELERATION_TOLERANCE)
// Maximum absolute tilt angle at which to consider orientation data. Beyond
// this (i.e. when screen is facing the sky or ground), we completely ignore
// orientation data.
#define MAX_TILT 75
// The gap angle in degrees between adjacent orientation angles for
// hysteresis.This creates a "dead zone" between the current orientation and a
// proposed adjacent orientation. No orientation proposal is made when the
// orientation angle is within the gap between the current orientation and the
// adjacent orientation.
#define ADJACENT_ORIENTATION_ANGLE_GAP 45
const int
ProcessOrientation::tiltTolerance[][4] = {
{-25, 70}, // ROTATION_0
{-25, 65}, // ROTATION_90
{-25, 60}, // ROTATION_180
{-25, 65} // ROTATION_270
};
int
ProcessOrientation::GetProposedRotation()
{
return mProposedRotation;
}
int
ProcessOrientation::OnSensorChanged(const SensorData& event,
int deviceCurrentRotation)
{
// The vector given in the SensorEvent points straight up (towards the sky)
// under ideal conditions (the phone is not accelerating). I'll call this up
// vector elsewhere.
const InfallibleTArray<float>& values = event.values();
float x = values[ACCELEROMETER_DATA_X];
float y = values[ACCELEROMETER_DATA_Y];
float z = values[ACCELEROMETER_DATA_Z];
LOGD
("ProcessOrientation: Raw acceleration vector: x = %f, y = %f, z = %f,"
"magnitude = %f\n", x, y, z, sqrt(x * x + y * y + z * z));
// Apply a low-pass filter to the acceleration up vector in cartesian space.
// Reset the orientation listener state if the samples are too far apart in
// time or when we see values of (0, 0, 0) which indicates that we polled the
// accelerometer too soon after turning it on and we don't have any data yet.
const int64_t now = (int64_t) event.timestamp();
const int64_t then = mLastFilteredTimestampNanos;
const float timeDeltaMS = (now - then) * 0.000001f;
bool skipSample = false;
if (now < then
|| now > then + MAX_FILTER_DELTA_TIME_NANOS
|| (x == 0 && y == 0 && z == 0)) {
LOGD
("ProcessOrientation: Resetting orientation listener.");
Reset();
skipSample = true;
} else {
const float alpha = timeDeltaMS / (FILTER_TIME_CONSTANT_MS + timeDeltaMS);
x = alpha * (x - mLastFilteredX) + mLastFilteredX;
y = alpha * (y - mLastFilteredY) + mLastFilteredY;
z = alpha * (z - mLastFilteredZ) + mLastFilteredZ;
LOGD
("ProcessOrientation: Filtered acceleration vector: x=%f, y=%f, z=%f,"
"magnitude=%f", z, y, z, sqrt(x * x + y * y + z * z));
skipSample = false;
}
mLastFilteredTimestampNanos = now;
mLastFilteredX = x;
mLastFilteredY = y;
mLastFilteredZ = z;
bool isAccelerating = false;
bool isFlat = false;
bool isSwinging = false;
if (skipSample) {
return -1;
}
// Calculate the magnitude of the acceleration vector.
const float magnitude = sqrt(x * x + y * y + z * z);
if (magnitude < NEAR_ZERO_MAGNITUDE) {
LOGD
("ProcessOrientation: Ignoring sensor data, magnitude too close to"
" zero.");
ClearPredictedRotation();
} else {
// Determine whether the device appears to be undergoing external
// acceleration.
if (this->IsAccelerating(magnitude)) {
isAccelerating = true;
mAccelerationTimestampNanos = now;
}
// Calculate the tilt angle. This is the angle between the up vector and
// the x-y plane (the plane of the screen) in a range of [-90, 90]
// degrees.
// -90 degrees: screen horizontal and facing the ground (overhead)
// 0 degrees: screen vertical
// 90 degrees: screen horizontal and facing the sky (on table)
const int tiltAngle =
static_cast<int>(roundf(asin(z / magnitude) * RADIANS_TO_DEGREES));
AddTiltHistoryEntry(now, tiltAngle);
// Determine whether the device appears to be flat or swinging.
if (this->IsFlat(now)) {
isFlat = true;
mFlatTimestampNanos = now;
}
if (this->IsSwinging(now, tiltAngle)) {
isSwinging = true;
mSwingTimestampNanos = now;
}
// If the tilt angle is too close to horizontal then we cannot determine
// the orientation angle of the screen.
if (abs(tiltAngle) > MAX_TILT) {
LOGD
("ProcessOrientation: Ignoring sensor data, tilt angle too high:"
" tiltAngle=%d", tiltAngle);
ClearPredictedRotation();
} else {
// Calculate the orientation angle.
// This is the angle between the x-y projection of the up vector onto
// the +y-axis, increasing clockwise in a range of [0, 360] degrees.
int orientationAngle =
static_cast<int>(roundf(-atan2f(-x, y) * RADIANS_TO_DEGREES));
if (orientationAngle < 0) {
// atan2 returns [-180, 180]; normalize to [0, 360]
orientationAngle += 360;
}
// Find the nearest rotation.
int nearestRotation = (orientationAngle + 45) / 90;
if (nearestRotation == 4) {
nearestRotation = 0;
}
// Determine the predicted orientation.
if (IsTiltAngleAcceptable(nearestRotation, tiltAngle)
&&
IsOrientationAngleAcceptable
(nearestRotation, orientationAngle, deviceCurrentRotation)) {
UpdatePredictedRotation(now, nearestRotation);
LOGD
("ProcessOrientation: Predicted: tiltAngle=%d, orientationAngle=%d,"
" predictedRotation=%d, predictedRotationAgeMS=%f",
tiltAngle,
orientationAngle,
mPredictedRotation,
((now - mPredictedRotationTimestampNanos) * 0.000001f));
} else {
LOGD
("ProcessOrientation: Ignoring sensor data, no predicted rotation:"
" tiltAngle=%d, orientationAngle=%d",
tiltAngle,
orientationAngle);
ClearPredictedRotation();
}
}
}
// Determine new proposed rotation.
const int oldProposedRotation = mProposedRotation;
if (mPredictedRotation < 0 || IsPredictedRotationAcceptable(now)) {
mProposedRotation = mPredictedRotation;
}
// Write final statistics about where we are in the orientation detection
// process.
LOGD
("ProcessOrientation: Result: oldProposedRotation=%d,currentRotation=%d, "
"proposedRotation=%d, predictedRotation=%d, timeDeltaMS=%f, "
"isAccelerating=%d, isFlat=%d, isSwinging=%d, timeUntilSettledMS=%f, "
"timeUntilAccelerationDelayExpiredMS=%f, timeUntilFlatDelayExpiredMS=%f, "
"timeUntilSwingDelayExpiredMS=%f",
oldProposedRotation,
deviceCurrentRotation, mProposedRotation,
mPredictedRotation, timeDeltaMS, isAccelerating, isFlat,
isSwinging, RemainingMS(now,
mPredictedRotationTimestampNanos +
PROPOSAL_SETTLE_TIME_NANOS),
RemainingMS(now,
mAccelerationTimestampNanos +
PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS),
RemainingMS(now,
mFlatTimestampNanos +
PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS),
RemainingMS(now,
mSwingTimestampNanos +
PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS));
// Avoid unused-but-set compile warnings for these variables, when LOGD is
// a no-op, as it is by default:
Unused << isAccelerating;
Unused << isFlat;
Unused << isSwinging;
// Tell the listener.
if (mProposedRotation != oldProposedRotation && mProposedRotation >= 0) {
LOGD
("ProcessOrientation: Proposed rotation changed! proposedRotation=%d, "
"oldProposedRotation=%d",
mProposedRotation,
oldProposedRotation);
return mProposedRotation;
}
// Don't rotate screen
return -1;
}
bool
ProcessOrientation::IsTiltAngleAcceptable(int rotation, int tiltAngle)
{
return (tiltAngle >= tiltTolerance[rotation][0]
&& tiltAngle <= tiltTolerance[rotation][1]);
}
bool
ProcessOrientation::IsOrientationAngleAcceptable(int rotation,
int orientationAngle,
int currentRotation)
{
// If there is no current rotation, then there is no gap.
// The gap is used only to introduce hysteresis among advertised orientation
// changes to avoid flapping.
if (currentRotation < 0) {
return true;
}
// If the specified rotation is the same or is counter-clockwise adjacent
// to the current rotation, then we set a lower bound on the orientation
// angle. For example, if currentRotation is ROTATION_0 and proposed is
// ROTATION_90, then we want to check orientationAngle > 45 + GAP / 2.
if (rotation == currentRotation || rotation == (currentRotation + 1) % 4) {
int lowerBound = rotation * 90 - 45 + ADJACENT_ORIENTATION_ANGLE_GAP / 2;
if (rotation == 0) {
if (orientationAngle >= 315 && orientationAngle < lowerBound + 360) {
return false;
}
} else {
if (orientationAngle < lowerBound) {
return false;
}
}
}
// If the specified rotation is the same or is clockwise adjacent, then we
// set an upper bound on the orientation angle. For example, if
// currentRotation is ROTATION_0 and rotation is ROTATION_270, then we want
// to check orientationAngle < 315 - GAP / 2.
if (rotation == currentRotation || rotation == (currentRotation + 3) % 4) {
int upperBound = rotation * 90 + 45 - ADJACENT_ORIENTATION_ANGLE_GAP / 2;
if (rotation == 0) {
if (orientationAngle <= 45 && orientationAngle > upperBound) {
return false;
}
} else {
if (orientationAngle > upperBound) {
return false;
}
}
}
return true;
}
bool
ProcessOrientation::IsPredictedRotationAcceptable(int64_t now)
{
// The predicted rotation must have settled long enough.
if (now < mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS) {
return false;
}
// The last flat state (time since picked up) must have been sufficiently long
// ago.
if (now < mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS) {
return false;
}
// The last swing state (time since last movement to put down) must have been
// sufficiently long ago.
if (now < mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS) {
return false;
}
// The last acceleration state must have been sufficiently long ago.
if (now < mAccelerationTimestampNanos
+ PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS) {
return false;
}
// Looks good!
return true;
}
int
ProcessOrientation::Reset()
{
mLastFilteredTimestampNanos = std::numeric_limits<int64_t>::min();
mProposedRotation = -1;
mFlatTimestampNanos = std::numeric_limits<int64_t>::min();
mSwingTimestampNanos = std::numeric_limits<int64_t>::min();
mAccelerationTimestampNanos = std::numeric_limits<int64_t>::min();
ClearPredictedRotation();
ClearTiltHistory();
return -1;
}
void
ProcessOrientation::ClearPredictedRotation()
{
mPredictedRotation = -1;
mPredictedRotationTimestampNanos = std::numeric_limits<int64_t>::min();
}
void
ProcessOrientation::UpdatePredictedRotation(int64_t now, int rotation)
{
if (mPredictedRotation != rotation) {
mPredictedRotation = rotation;
mPredictedRotationTimestampNanos = now;
}
}
bool
ProcessOrientation::IsAccelerating(float magnitude)
{
return magnitude < MIN_ACCELERATION_MAGNITUDE
|| magnitude > MAX_ACCELERATION_MAGNITUDE;
}
void
ProcessOrientation::ClearTiltHistory()
{
mTiltHistory.history[0].timestampNanos = std::numeric_limits<int64_t>::min();
mTiltHistory.index = 1;
}
void
ProcessOrientation::AddTiltHistoryEntry(int64_t now, float tilt)
{
mTiltHistory.history[mTiltHistory.index].tiltAngle = tilt;
mTiltHistory.history[mTiltHistory.index].timestampNanos = now;
mTiltHistory.index = (mTiltHistory.index + 1) % TILT_HISTORY_SIZE;
mTiltHistory.history[mTiltHistory.index].timestampNanos = std::numeric_limits<int64_t>::min();
}
bool
ProcessOrientation::IsFlat(int64_t now)
{
for (int i = mTiltHistory.index; (i = NextTiltHistoryIndex(i)) >= 0;) {
if (mTiltHistory.history[i].tiltAngle < FLAT_ANGLE) {
break;
}
if (mTiltHistory.history[i].timestampNanos + FLAT_TIME_NANOS <= now) {
// Tilt has remained greater than FLAT_TILT_ANGLE for FLAT_TIME_NANOS.
return true;
}
}
return false;
}
bool
ProcessOrientation::IsSwinging(int64_t now, float tilt)
{
for (int i = mTiltHistory.index; (i = NextTiltHistoryIndex(i)) >= 0;) {
if (mTiltHistory.history[i].timestampNanos + SWING_TIME_NANOS < now) {
break;
}
if (mTiltHistory.history[i].tiltAngle + SWING_AWAY_ANGLE_DELTA <= tilt) {
// Tilted away by SWING_AWAY_ANGLE_DELTA within SWING_TIME_NANOS.
return true;
}
}
return false;
}
int
ProcessOrientation::NextTiltHistoryIndex(int index)
{
index = (index == 0 ? TILT_HISTORY_SIZE : index) - 1;
return mTiltHistory.history[index].timestampNanos != std::numeric_limits<int64_t>::min() ? index : -1;
}
float
ProcessOrientation::RemainingMS(int64_t now, int64_t until)
{
return now >= until ? 0 : (until - now) * 0.000001f;
}
} // namespace mozilla
|