File: glimmer2.cc

package info (click to toggle)
tigr-glimmer 3.02b-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,948 kB
  • sloc: cpp: 24,416; awk: 232; csh: 220; makefile: 147; sh: 51
file content (3757 lines) | stat: -rw-r--r-- 119,241 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
//
//  Programmer:  A. Delcher
//
//        File:  ~delcher/Glimmer2/glimmer2.cc
//
//     Version:  2.01  31 Jul 98
//                 Change probability model
//                 Simplify wraparounds
//                 Move start codons to eliminate overlaps
//                 Discount independent model scores when
//                    there are no overlaps
//                 Uses Harmon's model
//
//     Version:  2.03  9 Dec 2002
//               Include raw scores in output
//               Add strict option to use independent intergenic
//                 model that discounts stop codons
//               Add option to score each entry from a list of coordinates
//                 separately, without overlapping/voting rules
//
//     Version:  2.10  5 Feb 2003
//               Strict option to use independent intergenic
//                 model that discounts stop codons is only behaviour
//
//    Copyright (c) 1999 by Arthur Delcher, Steven Salzberg, Simon
//    Kasif, and Owen White.  All rights reserved.  Redistribution
//    is not permitted without the express written permission of
//    the authors.
//
//  This program finds open reading frames in the file named
//  on the command line and scores them using the probability
//  model in the file indicated by the second command-line
//  parameter.
//


#include  "delcher.h"
#include  "gene.h"

#include <cstring>

const int  DEFAULT_MIN_GENE_LEN = 90;
const double  DEFAULT_MIN_OLAP_PERCENT = 0.10;
const int  DEFAULT_MIN_WEAK_LEN = INT_MAX;
const int  DEFAULT_SHOW_FRAME_AND_LENGTH = TRUE;
const int  DEFAULT_THRESHOLD_SCORE = 90;
const int  DEFAULT_MIN_OLAP = 30;
const int  DEFAULT_CHOOSE_FIRST_START_CODON = TRUE;
const int  DEFAULT_USE_INDEPENDENT = TRUE;
const int  DEFAULT_USE_STRICT_INDEPENDENT = TRUE;
const int  DEFAULT_VOTE_THRESHOLD = 150;
const int  DEFAULT_IGNORE_OPTION = FALSE;
const int  MAX_ITERATIONS = 10;
const int  MAX_RIBOSOME_PATTERN_LEN = 15;
const int  MAX_START_SHIFT = 150;
const int  MIN_LONG_GENE_LEN = 90;                   // Was 240
const double  MIN_PERCENT_LEN_DIFF = 0.10;
const int  MIN_SCORABLE_LEN = 60;
const int  OLAP_THRESHOLD_SCORE = 50;
const double  ATG_THRESHOLD = 7.0;
const double  GTG_THRESHOLD = 8.0;
const double  TTG_THRESHOLD = 9.0;
const double  BIG_NEGATIVE = -1000.0;
const int  MAX_FREE_LEN = 3;
const int  NUM_FRAME_MODELS = 3;
const int  ORF_SIZE_INCR = 1000;
const double  SMALL_OLAP_PERCENT = 0.10;
const int  UPSTREAM_LEN = 15;
const int  UPSTREAM_OFFSET = 2;

                         //  Tail of 16s ribosomal RNA in *reverse* order
// #define  DEFAULT_RIBOSOME_PATTERN  "tctttcctccac"   // For SangerTB
// #define  DEFAULT_RIBOSOME_PATTERN  "tcctccactagg"   // For H.pylori
#define  DEFAULT_RIBOSOME_PATTERN  "tcctcca"   // For H.pylori

const int  MODEL_LEN = 12;
const int  ALPHABET_SIZE = 4;
const int  MAX_NAME_LEN = 256;
const double  MAX_LOG_DIFF = -46.0;    // approx 1e-20 difference in probs


#include  "icm.h"

const unsigned int  OK = 0x0;
const unsigned int  REJECTED = 0x1;
const unsigned int  SHADOWED_BY = 0x2;
const unsigned int  SHADOWS_ANOTHER = 0x4;
const unsigned int  RBS_START_SHIFT = 0x8;
const unsigned int  MIGHT_CHANGE = 0x10;
const unsigned int  JUNK_ORF = 0x20;
const unsigned int  GIVEN_GENE = 0x40;
const unsigned int  OFF_LIMITS = 0x80;

const char  CONTAINS_CHAR = '>';
const char  ELIM_OLAP_CHAR = 'E';
const char  NEAR_REJECT_CHAR = 'N';
const char  NOPROB_CHAR = ' ';
const char  REJECT_CHAR = 'R';
const char  SCORES_WORSE_CHAR = 'B';
const char  SHADOWED_CHAR = '<';
const char  SHORTER_CHAR = 'S';

enum  Gene_Category_Type
         {NONE, REGULAR, VOTED, WEAK};
enum  Olap_Fix_Type
         {NEITHER_CAN_MOVE, ONLY_A_CAN_MOVE, ONLY_B_CAN_MOVE, BOTH_CAN_MOVE};

struct  Overlap_Node
  {
   char  Problem_Code;
   long int  From, Olap, Delay, Lo, Hi;
   int  Other_Frame, Score;
   Overlap_Node  * Next;
  };

struct  Gene_Ref
  {
   long int  Lo, Hi, Len, Max_Hi, Min_Lo, Top;
   long int  Delay_Len, Delay_Cause;
   int  Frame;
   unsigned int  Status;
   Gene_Category_Type  Category;
   int  Score;
   double  Raw_Score;
   Overlap_Node  * Overlap_List;
   void  Clear_Status  (unsigned int S)      // Make Status not include S
     {
      Status &= ~ S;
     }
   int  Has_Status  (unsigned int S)         // Return whether Status matches S
     {
      return  ((Status & S) == S);
     }
   void  Set_Status  (unsigned int S)        // Set Status to include S
     {
      Status |= S;
     }
  };

struct  ED_Struct
  {
   float  Free_i, Free_j, Both_Free, Match;
   int  Free_i_Len, Free_j_Len, Both_i_Len, Both_j_Len;
  }  ED_Score [1 + MAX_RIBOSOME_PATTERN_LEN] [1 + UPSTREAM_LEN];

struct Ignore_Node
  {
    int Low_Address;
    int High_Address;
    int Frame;
  };
typedef  Ignore_Node  * Ignore_Ptr;


void  Add_Overlap
    (Gene_Ref &, long int, long int, long int, char, int);
void  Append_Gene_Ref
    (Gene_Ref * &, long int, long int, long int, int, int, Gene_Category_Type,
     double raw_score);
double  Bulge_Cost
    (int);
int  Can_Delay_Start
    (Gene_Ref &, Overlap_Node *, char, long int);
int  Choose_Score
    (int [7], int);
long int  Choose_Start
    (long int, long int);
void  Determine_Changes
    (Gene_Ref * [], Gene_Ref [], long int);
double  Doublet_Score
    (char, char, char, char);
double  Edit_Distance
    (const char *, const char *);
void  Evaluate_Overlap
    (Overlap_Node *, long int, Gene_Ref []);
long int  Extend_Data
    (char * & Data, long int Len, long int Max_Extend);
void  Find_Overlaps
    (Gene_Ref *, long int);
int  Gene_Ref_Cmp
    (const void *, const void *);
Olap_Fix_Type  Get_Olap_Fix
    (long int, long int, int, long int, long int, int);
double  Loop_Cost
    (int, int);
void  Make_Codon_Log_Prob
    (double codon_log_prob [64], double base_prob [4]);
int  Make_Final_Changes
    (Gene_Ref * [], Gene_Ref [], long int);
int  Make_Sure_Changes
    (Gene_Ref [], long int);
int  Match
    (char, char);
void  Permute
    (int [], int);
static void  Print_Category
    (Gene_Category_Type Category);
static void  Print_Separate_Score_Headings
    (void);
void  Process_Ignore ( Ignore_Ptr & );
void  Process_Options
    (int, char * []);
void  Process_Orflist
    (void);
void  Read_Probability_Model
    (char *);
void  RNAbin
    (char * Data, long int genomeLen, long int coords[][2],
     long int newStartsArr [], long int N);
  // Olga's new function
void  Score_Multifasta_Orfs
    (FILE * fp);
void  Score_Olap_Region
    (long int, long int, int, int, int &, int &);
void  Score_String
    (long int, long int, double [ALPHABET_SIZE], int [7],
     int, int &, double &);
static void  Set_Ignore_Indep_Len
    (void);
  // Set  Ignore_Indep_Len  based on  Ch_Ct  if it's not
  // already set by command-line option
void  Set_Indep_Probs_From_Data
    (double Ch_Ct [], FILE * fp);
void  Show_Gene_Info
    (Gene_Ref [], long int);
void  Simple_Score
    (char [], long int, int, double [ALPHABET_SIZE], int [7],
     int, int &, double &);
void  Slide_Both_Starts
    (Gene_Ref &, Overlap_Node *, char, Gene_Ref &, Overlap_Node *,
     long int);
void  Slide_One_Start
    (Gene_Ref &, Overlap_Node *, long int &);
void  Transfer
    (char *, long int, int);
static void  Usage
    (char * command);



static int  Allow_Partial_Orfs = FALSE;
  // If set true by -X option, then score orfs that
  // extend to the end of the sequence
double  Ch_Ct [ALPHABET_SIZE] = {0.0};
int  Choose_First_Start_Codon = DEFAULT_CHOOSE_FIRST_START_CODON;
static double  Codon_Log_Prob [64] = {0.0};
  // Log of probability of non-stop codons using independent probabilities
  // of each base
char  * Data;
long int  Data_Len;
int  Ignore_Option = DEFAULT_IGNORE_OPTION;
char  * Ignore_File_Name;
long int  Extended_Len;
static bool  GC_From_Parameter = false;
  // If true, then GC content for independent model comes from
  // the value specified by the -C option
int  Genome_Is_Circular = TRUE;
long int  Ignore_Indep_Len = LONG_MAX;
static long int  Input_Size = INIT_SIZE;
  // Size of input string buffer
long int  Min_Gene_Len = DEFAULT_MIN_GENE_LEN;
long int  Min_Olap = DEFAULT_MIN_OLAP;
double  Min_Olap_Percent = DEFAULT_MIN_OLAP_PERCENT;
long int  Min_Weak_Len = DEFAULT_MIN_WEAK_LEN;
static char  Name [MAX_LINE];
  // First ID string on fasta header line
char  * Orf_Buffer;
long int  Orf_Buffer_Len;
int  Orflist_Option = FALSE;
char  * Orflist_File_Name;
long int  (* Original_Coord) [2];
long int  * Revised_Start;
char  Ribosome_Pattern [1 + MAX_RIBOSOME_PATTERN_LEN] = DEFAULT_RIBOSOME_PATTERN;
static bool  Separate_Multifasta_Orfs = false;
  // If set true by -M option then input is multifasta file
  // of orfs to be scored separately (like Orflist_Option)
int  Show_Frame_And_Length = DEFAULT_SHOW_FRAME_AND_LENGTH;
int  Threshold_Score = DEFAULT_THRESHOLD_SCORE;
int  Use_Independent = DEFAULT_USE_INDEPENDENT;
int  Use_Strict_Independent = DEFAULT_USE_STRICT_INDEPENDENT;
int  Vote_Threshold = DEFAULT_VOTE_THRESHOLD;

int  Scoring_Overlap = FALSE;                       // Temporary
long int  Big_Diff_Ct = 0, Small_Diff_Ct = 0;       // Temporary
double  Diff_Sum = 0.0;                             // Temporary
int  Global_Show_Details = FALSE;                   // Temporary
int  Global_Check = FALSE;                          // Temporary



int  main
    (int argc, char * argv [])

  {
   FILE  * fp;
   Gene_Ref  * Gene, * * Ptr;
   Ignore_Ptr  Ignore;
   long int  Ignore_Seg, Initial_Base, Max_Extend;
   Overlap_Node  * P;
   int  Frame, In_Frame_Score, Is_Tentative_Gene, Score [7], Weak_Score;
   double  Raw_Score;
   long int  Votes [6] = {0};
   unsigned  Codon;
   Gene_Category_Type  Category;
   long int  For_Prev [3] = {LONG_MAX, LONG_MAX, LONG_MAX};
   long int  Rev_Prev [3] = {LONG_MAX, LONG_MAX, LONG_MAX};
   long int  For_Start [3] = {0};
   long int  Rev_Start [3] = {0};
   long int  ID_Num = 0;
   long int  Changes_Made;
   long int  Lo, Hi;
   long int  i, j, Len, Gene_Len, Start;

   if  (argc < 3)
       {
        Usage (argv [0]);
        exit (EXIT_FAILURE);
       }

   Process_Options (argc, argv);

   Process_Ignore (Ignore);

   Data = (char *) Safe_malloc (Input_Size);

   fp = File_Open (argv [1], "r");

   Read_Probability_Model (argv [2]);

   if  (Separate_Multifasta_Orfs)
       {
        if  (! GC_From_Parameter)
            Set_Indep_Probs_From_Data (Ch_Ct, fp);

        Set_Ignore_Indep_Len ();

        Make_Codon_Log_Prob (Codon_Log_Prob, Ch_Ct);

        for  (i = 0;  i < ALPHABET_SIZE;  i ++)
          Ch_Ct [i] = log (Ch_Ct [i]);

        Print_Separate_Score_Headings ();

        Score_Multifasta_Orfs (fp);

        return  0;
       }

   Read_String (fp, Data, Input_Size, Name, FALSE);
   fclose (fp);

   Data_Len = strlen (Data + 1);
   for  (i = 1;  i <= Data_Len;  i ++)
     {
      Data [i] = Filter (tolower (Data [i]));
      if  (! GC_From_Parameter)
          {
           switch  (Data [i])
             {
              case  'a' :
              case  't' :
                Ch_Ct [0] += 1.0;
                break;
              case  'c' :
              case  'g' :
                Ch_Ct [1] += 1.0;
                break;
             }
          }
     }

   if  (! GC_From_Parameter)
       {
        Ch_Ct [2] = Ch_Ct [1];
        Ch_Ct [3] = Ch_Ct [0];
        for  (i = 0;  i < ALPHABET_SIZE;  i ++)
          Ch_Ct [i] = Ch_Ct [i] / (2.0 * Data_Len);
       }

   Set_Ignore_Indep_Len ();

   Make_Codon_Log_Prob (Codon_Log_Prob, Ch_Ct);

   for  (i = 0;  i < ALPHABET_SIZE;  i ++)
     Ch_Ct [i] = log (Ch_Ct [i]);
   
   Orf_Buffer_Len = ORF_SIZE_INCR;
   Orf_Buffer = (char *) Safe_malloc (Orf_Buffer_Len);
   Orf_Buffer [0] = ' ';

   Gene = (Gene_Ref *) Safe_malloc (sizeof (Gene_Ref));

   if  (Orflist_Option)
       Print_Separate_Score_Headings ();
     else
       {
        printf ("Minimum gene length = %ld\n", Min_Gene_Len);
        printf ("Minimum overlap length = %ld\n", Min_Olap);
        printf ("Minimum overlap percent = %.1f%%\n", 100.0 * Min_Olap_Percent);
        printf ("Threshold score = %d\n", Threshold_Score);
        printf ("Use independent scores = %s\n", Use_Independent ? "True" : "False");
        if  (Use_Independent)
            printf ("Ignore independent score on orfs longer than %ld\n",
                       Ignore_Indep_Len - 1);
        printf ("Use strict independent model = %s\n",
                Use_Strict_Independent ? "True" : "False");
        printf ("Use first start codon = %s\n",
                       Choose_First_Start_Codon ? "True" : "False");
        if  (! Choose_First_Start_Codon)
            printf ("   Ribosome pattern = %s\n", Ribosome_Pattern);

        if( Ignore_Option )
          {
            printf("The ignore file was: \"%s\" and ", Ignore_File_Name);  
            printf("the following regions were skipped:\n");
            for(i = 0; Ignore[i].Low_Address > -1; i++)
              printf("     start: %10d   |   end: %10d \n",
                     Ignore[i].Low_Address, Ignore[i].High_Address );
          }

        putchar ('\n');
        printf ("              Orf     Gene                 Lengths"
                "     Gene    -- Frame Scores -");
        if  (Use_Independent)
            printf ("  Indep");
        putchar ('\n');
        printf ("  ID#  Fr    Start    Start      End      Orf  Gene"
                "    Score   F1 F2 F3 R1 R2 R3");
        if  (Use_Independent)
            printf ("  Score");
        putchar ('\n');
       }

   if  (Genome_Is_Circular)
       {
	 if ( Ignore_Option )
	   Max_Extend = Ignore[0].Low_Address;
	 else
	   Max_Extend = Data_Len;

        Extended_Len = Extend_Data  (Data, Data_Len, Max_Extend);
        Codon = Ch_Mask (Data [Data_Len - 1]) << 4 | Ch_Mask (Data [Data_Len]);
       }
     else
       {
        Extended_Len = Data_Len;
        Codon = Ch_Mask ('g') << 4 | Ch_Mask ('g');
        for  (i = 0;  i < 3;  i ++)
          For_Prev [i] = i;
       }

   Frame = 0;
   Initial_Base = 1;  
   Ignore_Seg = 0;

   if ( Ignore_Option )
     {
       if (Ignore[0].Low_Address == 0 && Ignore[0].High_Address != 0)
	 Initial_Base = Ignore[0].High_Address;
     }

   if  (Orflist_Option)
       {
        Process_Orflist ();

        return  0;
       }

   if  (Allow_Partial_Orfs)
       {
        if  (Genome_Is_Circular)
            {
             fprintf (stderr, "ERROR:  Must use -l option with -X option\n");
             exit (EXIT_FAILURE);
            }
        
        for  (i = 0;  i < 3;  i ++)
          {
           For_Start [i] = i + 1;
           Rev_Prev [i] = i;
          }
        Extended_Len = Data_Len + 3;
        Data = (char *) Safe_realloc (Data, Extended_Len + 2);
        strcat (Data, "tag");
       }


   for  (i = Initial_Base;  i <= Extended_Len;  i ++)
     {
      Frame = (Frame + 1) % 3;

      if  (i == Ignore[Ignore_Seg].Low_Address)
        {
          i = Ignore[Ignore_Seg].High_Address;
          for ( j = 0; j < 3; j++ )
            {
              For_Prev  [j] = LONG_MAX;
	      Rev_Prev  [j] = LONG_MAX;
              For_Start [j] = 0;
              Rev_Start [j] = 0;
            }
	  for ( j = 0; j < 6; j++ )
	    Votes[j] = 0;
          Ignore_Seg++;
	  Codon = Ch_Mask (Data [i - 1]) << 4 | Ch_Mask (Data [i]);
          i++;
        }
       
      Codon = (Codon & SHIFT_MASK) << 4;
      Codon |= Ch_Mask (Data [i]);

      if  (Is_Forward_Stop (Codon)
             || (Allow_Partial_Orfs && i > Data_Len))
          {
           Len = i - For_Prev [Frame] - 3;
           if  (Len >= Min_Gene_Len  && For_Prev [Frame] <= Data_Len)
                if  (For_Start [Frame] != 0)
                    {
                     Gene_Len = 1 + i - 3 - For_Start [Frame];
                     Start = Choose_Start (For_Start [Frame], Gene_Len);
                     Gene_Len = 1 + i - 3 - Start;
                     if  (Gene_Len >= Min_Gene_Len)
                         {
                          Score_String (Start, i - 3, Ch_Ct, Score,
                                        Use_Independent && Len < Ignore_Indep_Len,
                                        Weak_Score, Raw_Score);
                          In_Frame_Score = Score [0];
                          Is_Tentative_Gene = (In_Frame_Score >= Threshold_Score
                                 || Votes [Frame] + In_Frame_Score
                                            >= Vote_Threshold
                                 || (Weak_Score >= Threshold_Score
                                       && Gene_Len >= Min_Weak_Len));
                          if  (In_Frame_Score >= Threshold_Score)
                              Category = REGULAR;
                          else if  (Votes [Frame] + In_Frame_Score
                                            >= Vote_Threshold)
                              Category = VOTED;
                          else if  (Weak_Score >= Threshold_Score
                                       && Gene_Len >= Min_Weak_Len)
                              Category = WEAK;
                            else
                              Category = NONE;
                          if  (Is_Tentative_Gene)
                              printf ("%5ld ", ++ ID_Num);
                            else
                              printf ("%5s ", "");
                          printf (" F%1d %8ld %8ld %8ld %8ld %5ld   ",
                                 Frame + 1, For_Prev [Frame] + 1,
                                 Start, i - 3,
                                 Len, Gene_Len);
                          printf (" %4d   ", In_Frame_Score);
                          Permute (Score, Frame + 1);
                          for  (j = 0;  j < 6;  j ++)
                            if  (Score [j] < 0)
                                printf ("  _");
                              else
                                {
                                 printf (" %2d", Score [j]);
                                 Votes [j] += Score [j];
                                }
                          if  (Use_Independent)
                              printf ("   %2d", Score [6]);
                          printf ("  %4ld", Votes [Frame]);
                          printf ("  %6.3f", Raw_Score);
                          Print_Category (Category);
                          putchar ('\n');
                          if  (Is_Tentative_Gene)
                              Append_Gene_Ref (Gene, ID_Num, Start,
                                   i - 3, Frame + 1, In_Frame_Score, Category,
                                   Raw_Score);
                         }
                    }
           For_Prev [Frame] = i;
           For_Start [Frame] = 0;
           Votes [Frame] = 0;
          }
      if  (Is_Forward_Start (Codon) && For_Start [Frame] == 0)
          For_Start [Frame] = i - 2;

      if  (Is_Reverse_Stop (Codon)
             || (Allow_Partial_Orfs && i > Data_Len))
          {
           if  (Allow_Partial_Orfs && i > Data_Len)
               Rev_Start [Frame] = i - 3;
           Len = i - Rev_Prev [Frame] - 3;
           if  (Len >= Min_Gene_Len && Rev_Prev [Frame] <= Data_Len)
                if  (Rev_Start [Frame] != 0)
                    {
                     Gene_Len = Rev_Start [Frame] - Rev_Prev [Frame];
                     Start = Choose_Start (Rev_Start [Frame], - Gene_Len);
                     Gene_Len = Start - Rev_Prev [Frame];
                     if  (Gene_Len >= Min_Gene_Len)
                         {
                          Score_String (Start,
                                    Rev_Prev [Frame] + 1, Ch_Ct, Score,
                                    Use_Independent && Len < Ignore_Indep_Len,
                                    Weak_Score, Raw_Score);
                          In_Frame_Score = Score [0];
                          Is_Tentative_Gene = (In_Frame_Score >= Threshold_Score
                                 || Votes [3 + (3 - Frame) % 3] + In_Frame_Score
                                        >= Vote_Threshold
                                 || (Weak_Score >= Threshold_Score
                                       && Gene_Len >= Min_Weak_Len));
                          if  (In_Frame_Score >= Threshold_Score)
                              Category = REGULAR;
                          else if  (Votes [3 + (3 - Frame) % 3] + In_Frame_Score
                                        >= Vote_Threshold)
                              Category = VOTED;
                          else if  (Weak_Score >= Threshold_Score
                                       && Gene_Len >= Min_Weak_Len)
                              Category = WEAK;
                            else
                              Category = NONE;
                          if  (Is_Tentative_Gene)
                              printf ("%5ld ", ++ ID_Num);
                            else
                              printf ("%5s ", "");
                          printf (" R%1d %8ld %8ld %8ld %8ld %5ld   ",
                                 1 + ((2 - Frame) + 1) % 3,
                                 i - 3, Start,
                                 Rev_Prev [Frame] + 1, Len,
                                 Gene_Len);
                          printf (" %4d   ", In_Frame_Score);
                          Permute (Score, - Frame - 1);
                          for  (j = 0;  j < 6;  j ++)
                            if  (Score [j] < 0)
                                printf ("  _");
                              else
                                {
                                 printf (" %2d", Score [j]);
                                 if  ((j < 3 && For_Prev [j] < Rev_Start [Frame])
                                       || (j >= 3
                                          && Rev_Prev [(6 - j) % 3] < Rev_Start [Frame]))
                                     Votes [j] += Score [j];
                                }
                          if  (Use_Independent)
                              printf ("   %2d", Score [6]);
                          printf ("  %4ld", Votes [3 + (3 - Frame) % 3]);
                          printf ("  %6.3f", Raw_Score);
                          Print_Category (Category);
                          putchar ('\n');
                          if  (Is_Tentative_Gene)
                              Append_Gene_Ref (Gene, ID_Num, Rev_Prev [Frame] + 1,
                                   Start , - Frame - 1, In_Frame_Score, Category,
                                   Raw_Score);
                         }
                    }
           Rev_Prev [Frame] = i;
           Rev_Start [Frame] = 0;
           Votes [3 + (3 - Frame) % 3] = 0;
          }
      if  (Is_Reverse_Start (Codon))
          Rev_Start [Frame] = i;
     }

   Initial_Base = Data_Len;
   Ignore_Seg = 0;

   if ( Ignore_Option )
     {
       for(Ignore_Seg = 0; Ignore[Ignore_Seg].Low_Address > -1; Ignore_Seg++)
	 {}
       Ignore_Seg--;
       if (Ignore[Ignore_Seg].High_Address == Data_Len)
	 Initial_Base = Ignore[i].Low_Address;
     }

   if  (! Genome_Is_Circular)
       for  (i = Initial_Base;  Initial_Base - i < 3;  i --)
         {
	   Frame = i % 3;

	   if  (i == Ignore[Ignore_Seg].High_Address)
	     {
	       i = Ignore[Ignore_Seg].Low_Address;
	       for ( j = 0; j < 3; j++ )
		 {
		   For_Prev  [j] = j;
		   Rev_Prev  [j] = j;
		   For_Start [j] = 0;
		   Rev_Start [j] = 0;
		 }
	       for ( j = 0; j < 6; j++ )
		 Votes[j] = 0;
	       Ignore_Seg--;
	       Codon = Ch_Mask (Data [i - 1]) << 4 | Ch_Mask (Data [i]);
	       i--;
	     }
	   
          if  (Rev_Start [Frame] != 0
                 && (Gene_Len = Rev_Start [Frame] - Rev_Prev [Frame])
                        >= Min_Gene_Len)
              {
               Len = i - Rev_Prev [Frame];
               Start = Choose_Start (Rev_Start [Frame], - Gene_Len);
               Gene_Len = Start - Rev_Prev [Frame];
               if  (Gene_Len >= Min_Gene_Len)
                   {
                    Score_String (Start,
                              Rev_Prev [Frame] + 1, Ch_Ct, Score,
                              Use_Independent && Len < Ignore_Indep_Len,
                              Weak_Score, Raw_Score);
                    In_Frame_Score = Score [0];
                    Is_Tentative_Gene = (In_Frame_Score >= Threshold_Score
                           || Votes [3 + (3 - Frame) % 3] + In_Frame_Score
                                  >= Vote_Threshold
                           || (Weak_Score >= Threshold_Score
                                 && Gene_Len >= Min_Weak_Len));
                    if  (In_Frame_Score >= Threshold_Score)
                        Category = REGULAR;
                    else if  (Votes [3 + (3 - Frame) % 3] + In_Frame_Score
                                  >= Vote_Threshold)
                        Category = VOTED;
                    else if  (Weak_Score >= Threshold_Score
                                 && Gene_Len >= Min_Weak_Len)
                        Category = WEAK;
                      else
                        Category = NONE;
                    if  (Is_Tentative_Gene)
                        printf ("%5ld ", ++ ID_Num);
                      else
                        printf ("%5s ", "");
                    printf (" R%1d %8ld %8ld %8ld %8ld %5ld   ",
                           1 + ((2 - Frame) + 1) % 3,
                           i, Start,
                           Rev_Prev [Frame] + 1, Len,
                           Gene_Len);
                    printf (" %4d   ", In_Frame_Score);
                    Permute (Score, - Frame - 1);
                    for  (j = 0;  j < 6;  j ++)
                      if  (Score [j] < 0)
                          printf ("  _");
                        else
                          {
                           printf (" %2d", Score [j]);
                           if  ((j < 3 && For_Prev [j] < Rev_Start [Frame])
                                 || (j >= 3
                                    && Rev_Prev [(6 - j) % 3] < Rev_Start [Frame]))
                               Votes [j] += Score [j];
                          }
                    if  (Use_Independent)
                        printf ("   %2d", Score [6]);
                    printf ("  %4ld", Votes [3 + (3 - Frame) % 3]);
                    printf ("  %6.3f", Raw_Score);
                    Print_Category (Category);
                    putchar ('\n');
                    if  (Is_Tentative_Gene)
                        Append_Gene_Ref (Gene, ID_Num, Rev_Prev [Frame] + 1,
                             Start , - Frame - 1, In_Frame_Score, Category,
                             Raw_Score);
                   }
              }
         }

   printf ("End = %ld\n", Data_Len);

   if  (! Choose_First_Start_Codon)
       {
//  Find likely ribosome binding sites and shift some start sites based
//  on it.  This is Olga's code.

        Original_Coord = (long int (*) [2])
                            Safe_malloc ((1 + ID_Num) * sizeof (long int [2]));
        Revised_Start = (long int *) Safe_malloc ((1 + ID_Num) * sizeof (long int));

        for  (i = 1;  i <= ID_Num;  i ++)
         if  (Gene [i] . Frame > 0)
             {
              Original_Coord [i] [0] = Gene [i] . Lo;
              Original_Coord [i] [1] = Gene [i] . Hi;
             }
           else
             {
              Original_Coord [i] [0] = Gene [i] . Hi;
              Original_Coord [i] [1] = Gene [i] . Lo;
             }

        RNAbin (Data, Extended_Len, Original_Coord + 1, Revised_Start + 1, ID_Num);

#if  0
{
 double  Sum = 0.0;
 long int  Ct = 0, Shift;

   for  (i = 1;  i <= ID_Num;  i ++)
     if  (Original_Coord [i] [0] != Revised_Start [i])
         {
          Shift = labs (Revised_Start [i] - Original_Coord [i] [0]); 
          printf ("%5ld:  %7ld  %7ld  %7ld  %4ld  %4ld\n", i, Original_Coord [i] [0],
                 Original_Coord [i] [1], Revised_Start [i], Shift,
                 1 + labs (Original_Coord [i] [1] - Original_Coord [i] [0]));
          Sum += Shift;
          Ct ++;
         }
   printf ("Moved %ld starts by average of %.1f bases\n",
               Ct, Sum / Ct);
}
#endif

        for  (i = 1;  i <= ID_Num;  i ++)
          if  (Original_Coord [i] [0] != Revised_Start [i])
              {
               if  (Gene [i] . Frame > 0)
                   Gene [i] . Lo = Revised_Start [i];
                 else
                   Gene [i] . Hi = Revised_Start [i];
               Gene [i] . Len = 1 + Gene [i] . Hi - Gene [i] . Lo;
               Gene [i] . Set_Status (RBS_START_SHIFT);
              }
       }

   Ptr = (Gene_Ref * *) Safe_malloc ((1 + ID_Num) * sizeof (Gene_Ref *));
   for  (i = 1;  i <= ID_Num;  i ++)
     Ptr [i] = Gene + i;


   Changes_Made = 1;
   for  (i = 1;  i <= MAX_ITERATIONS && Changes_Made > 0;  i ++)
     {
      Find_Overlaps (Gene, ID_Num);

      qsort (Ptr + 1, ID_Num, sizeof (Gene_Ref *), Gene_Ref_Cmp);
                            //  Sort potential genes by descending length

      Determine_Changes (Ptr, Gene, ID_Num);

// Global_Show_Details = TRUE;
Show_Gene_Info (Gene, ID_Num);

      Changes_Made = Make_Sure_Changes (Gene, ID_Num);
fprintf (stderr, "Changes_Made = %ld\n", Changes_Made);
fprintf (stderr, "Done iteration %2ld\n", i);

     }


   Changes_Made = 1;
   for  (i = 1;  i <= MAX_ITERATIONS && Changes_Made > 0;  i ++)
     {
      Find_Overlaps (Gene, ID_Num);

      qsort (Ptr + 1, ID_Num, sizeof (Gene_Ref *), Gene_Ref_Cmp);
                            //  Sort potential genes by descending length

      Determine_Changes (Ptr, Gene, ID_Num);

// Global_Show_Details = TRUE;
Show_Gene_Info (Gene, ID_Num);

      Changes_Made = Make_Final_Changes (Ptr, Gene, ID_Num);
fprintf (stderr, "Changes_Made = %ld\n", Changes_Made);
fprintf (stderr, "Done iteration %2ld\n", i);
     }

               //  One last time

   Find_Overlaps (Gene, ID_Num);

   qsort (Ptr + 1, ID_Num, sizeof (Gene_Ref *), Gene_Ref_Cmp);
                         //  Sort potential genes by descending length

   Determine_Changes (Ptr, Gene, ID_Num);

   printf ("\n\nPutative Genes:\n");
   for  (i = 1;  i <= ID_Num;  i ++)
     if  (! Gene [i] . Has_Status (REJECTED))
         {
          Lo = Gene [i] . Lo;
          if  (Lo > Data_Len)
              Lo -= Data_Len;
          Hi = Gene [i] . Hi;
          if  (Hi > Data_Len)
              Hi -= Data_Len;
          if  (Gene [i] . Frame > 0)
              printf ("%5ld %8ld %8ld", i, Lo, Hi);
            else
              printf ("%5ld %8ld %8ld", i, Hi, Lo);
          if  (Show_Frame_And_Length)
              printf ("  [%+2d L=%4ld r=%5.3f]", Gene [i] . Frame,
                             Gene [i] . Len, Gene [i] . Raw_Score);
          switch  (Gene [i] . Category)
            {
             case  VOTED :
               printf ("  [Vote]");
               break;
             case  WEAK :
               printf ("  [Weak]");
               break;
             default :
               ; // Nothing
            }
          for  (P = Gene [i] . Overlap_List;  P != NULL;  P = P -> Next)
            {
             if  (Gene [P -> From] . Has_Status (REJECTED))
                 {
                  fprintf (stderr, "ERROR:  Unexpected reject\n");
                  assert (FALSE);
                  exit (-1);
                 }
             switch  (P -> Problem_Code)
               {
                case  REJECT_CHAR :
                  fprintf (stderr, "ERROR:  Unexpected reject\n");
                  assert (FALSE);
                  exit (-1);
                  break;
                case  NEAR_REJECT_CHAR :
                  printf ("  [NearRejectBy #%ld L=%ld S=%d]", P -> From, P -> Olap,
                                 P -> Score);
                  break;
                case  SCORES_WORSE_CHAR :
                  printf ("  [LowScoreBy #%ld L=%ld S=%d]", P -> From, P -> Olap,
                                 P -> Score);
                  break;
                case  ELIM_OLAP_CHAR :
                  printf ("  [OlapWith #%ld L=%ld S=%d]", P -> From, P -> Olap,
                                 P -> Score);
                  break;
                case  SHORTER_CHAR :
                  printf ("  [ShorterThan #%ld L=%ld S=%d]", P -> From, P -> Olap,
                                 P -> Score);
                  break;
                case  CONTAINS_CHAR :
                  printf ("  [Contains #%ld]", P -> From);
                  break;
                case  SHADOWED_CHAR :
                  printf ("  [ShadowedBy #%ld]", P -> From);
                  break;
                case  NOPROB_CHAR :
                  break;
                default :
                  assert (P -> Problem_Code == REJECT_CHAR);
               }
            }
          if  (Gene [i] . Has_Status (RBS_START_SHIFT))
              printf ("  [RBS Start Move]");
          if  (Gene [i] . Delay_Len > 0)
              printf ("  [DelayedBy #%ld L=%ld]", Gene [i] . Delay_Cause,
                              Gene [i] . Delay_Len);
          putchar ('\n');
         }

   return  0;
  }



void  Add_Overlap
    (Gene_Ref & R, long int Other, long int Lo, long int Hi,
     char Problem, int Other_Frame)

//  Add a node to  R 's overlap list for the overlap with gene number
//  Other  at positions  Lo .. Hi .  Store  Problem  and  Other_Frame
//  in this node.  Use a simple forward list and maintain the nodes
//  in order of decreasing overlap length.

  {
   Overlap_Node  * New_Node, * P, * * Attach;

   New_Node = (Overlap_Node *) Safe_malloc (sizeof (Overlap_Node));

   New_Node -> From = Other;
   New_Node -> Lo = Lo;
   New_Node -> Hi = Hi;
   New_Node -> Olap = 1 + Hi - Lo;
   New_Node -> Score = 0;
   New_Node -> Delay = 0;
   New_Node -> Problem_Code = Problem;
   New_Node -> Other_Frame = Other_Frame;

   Attach = & (R . Overlap_List);
   for  (P = R . Overlap_List;  P != NULL && New_Node -> Olap <= P -> Olap;
                   P = P -> Next)
     Attach = & (P -> Next);

   New_Node -> Next = P;
   * Attach = New_Node;

   return;
  }



void  Append_Gene_Ref
    (Gene_Ref * & Gene, long int ID, long int Lo, long int Hi,
     int Frame, int Score, Gene_Category_Type Category, double raw_score)

//  Add reference for new gene  ID  at positions  Lo .. Hi  in
//  frame  Frame  with  Score  to  Gene .

  {
   Gene = (Gene_Ref *) Safe_realloc (Gene,
                                    (1 + ID) * sizeof (Gene_Ref));

   Gene [ID] . Lo = Lo;
   Gene [ID] . Hi = Hi;
   if  (ID > 1 && Gene [ID - 1] . Max_Hi > Hi)
       Gene [ID] . Max_Hi = Gene [ID - 1] . Max_Hi;
     else
       Gene [ID] . Max_Hi = Hi;      // Hi's may be out of order because
                                         // of start codon position.
   Gene [ID] . Len = 1 + Hi - Lo;
   Gene [ID] . Delay_Len = 0;
   Gene [ID] . Delay_Cause = 0;
   Gene [ID] . Frame = Frame;
   Gene [ID] . Status = OK;
   Gene [ID] . Overlap_List = NULL;
   Gene [ID] . Score = Score;
   Gene [ID] . Category = Category;
   Gene [ID] . Raw_Score = raw_score;
  }



double  Bulge_Cost  (int N)

/* Return the energy cost of a bulge on one side of  N  bases. */

  {
   if  (N <= 0)
       return  BIG_NEGATIVE;

   if  (N < 4)
       return  -3.3;

   return  -3.3 - (N - 3) * (15.8 - 3.3) / 27.0;
  }



int  Can_Delay_Start
    (Gene_Ref & Gene, Overlap_Node * P, char Code, long int  Min_Delay)

//  Determine whether the start of gene  Gene  can be moved downstream
//  by at least  Min_Delay  bases to eliminate the overlap in  P .
//  If so, indicate by how much, mark  Gene  as potentially changeable,
//  and return  TRUE .  Otherwise, return  FALSE .  In any case,
//  save  Code  in  * P .

  {
   char  Codon [4];
   int  Score [7], Weak_Score;
   double  Raw_Score;
   long int  i, j, Len;

   P -> Problem_Code = Code;
   if  (Gene . Frame > 0)
       {
        if  (P -> Lo != Gene . Lo)
            return  FALSE;
        i = Gene . Lo + 3 * ((Min_Delay - 1) / 3);
        Len = 1 + Gene . Hi - i;
        do
          {
           i += 3;
           Len -= 3;
           Transfer (Codon, i, 3);
          }  while  (! Is_Start (Codon) && ! Is_Stop (Codon)
                            && Len > Min_Gene_Len + 2);
        if  (! Is_Start (Codon) || Len < Min_Gene_Len)
            return  FALSE;

        j = Choose_Start (i, Len);
        Len -= j - i;
        if  (Len < Min_Gene_Len)
            return  FALSE;

        Score_String (j, Gene . Hi, Ch_Ct, Score,
                         Use_Independent && Len < Ignore_Indep_Len,
                         Weak_Score, Raw_Score);
        if  (Score [0] < Threshold_Score)
            return  FALSE;

        P -> Delay = j - Gene . Lo;
        Gene . Set_Status (MIGHT_CHANGE);
       }
     else
       {
        if  (P -> Hi != Gene . Hi)
            return  FALSE;
        i = Gene . Hi - 3 * ((Min_Delay - 1) / 3);
        Len = 1 + i - Gene . Lo;
        do
          {
           i -= 3;
           Len -= 3;
           Transfer (Codon, i, -3);
          }  while  (! Is_Start (Codon) && ! Is_Stop (Codon)
                            && Len > Min_Gene_Len + 2);
        if  (! Is_Start (Codon) || Len < Min_Gene_Len)
            return  FALSE;

        j = Choose_Start (i, - Len);
        Len -= i - j;
        if  (Len < Min_Gene_Len)
            return  FALSE;

        Score_String (i, Gene . Lo, Ch_Ct, Score,
                         Use_Independent && Len < Ignore_Indep_Len,
                         Weak_Score, Raw_Score);
        if  (Score [0] < Threshold_Score)
            return  FALSE;

        P -> Delay = Gene . Hi - j;
        Gene . Set_Status (MIGHT_CHANGE);
       }
   return  TRUE;
  }



int  Choose_Score  (int S [7], int F)

//  Return the score in  S  corresponding to frame  F .

  {
   switch  (F)
     {
      case  1 :
        return  S [0];
      case  2 :
        return  S [1];
      case  3 :
        return  S [2];
      case  -1 :
        return  S [3];
      case  -2 :
        return  S [5];
      case  -3 :
        return  S [4];
      default :
        fprintf (stderr, "ERROR:  Bad frame value  %d  in  Choose_Score ()\n", F);
     }

   return  S [0];
  }



long int  Choose_Start  (long int Begin, long int Len)

/* Return the position of the first base of the most likely start
*  codon for the gene whose first start codon is at base  Begin
*  and has length  Len , which is positive in the forward direction
*  and negative in the reverse complement direction. */

  {
   double  Adjustment, Score;
   long int  Min_Len, Original_Start;
   char  Buffer [1 + UPSTREAM_LEN], Codon [4];

   if  (Choose_First_Start_Codon)
       return  Begin;

   Original_Start = Begin;
   Codon [3] = '\0';
   Min_Len = Max (Min_Gene_Len, Len - MAX_START_SHIFT);

   if  (Len > 0)
       {
        Transfer (Codon, Begin, 3);
        switch  (Codon [0])
          {
           case  'a' :
             Adjustment = 1.0;
             break;
           case  'g' :
             Adjustment = 0.0;
             break;
           case  't' :
             Adjustment = -1.0;
             break;
           default :
             Adjustment = -1.0;
          }
        do
          {
           Transfer (Buffer, Begin - UPSTREAM_LEN - UPSTREAM_OFFSET, UPSTREAM_LEN);
           Score = Edit_Distance (Ribosome_Pattern - 1, Buffer - 1);
           switch  (Codon [0])
             {
              case  'a' :
                if  (Score >= ATG_THRESHOLD + Adjustment)
                    return  Begin;
                break;
              case  'g' :
                if  (Score >= GTG_THRESHOLD + Adjustment)
                    return  Begin;
                break;
              case  't' :
                if  (Score >= TTG_THRESHOLD + Adjustment)
                    return  Begin;
                break;
             }
           do
             {
              Begin += 3;
              Len -= 3;
              if  (Begin > Data_Len)
                  Begin -= Data_Len;
              Transfer (Codon, Begin, 3);
             }  while  (! Is_Start (Codon) && ! Is_Stop (Codon)
                               && Len > Min_Len);
          }  while  (! Is_Stop (Codon) && Len > Min_Len);
       }
     else
       {
        Transfer (Codon, Begin, -3);
        switch  (Codon [0])
          {
           case  'a' :
             Adjustment = 1.0;
             break;
           case  'g' :
             Adjustment = 0.0;
             break;
           case  't' :
             Adjustment = -1.0;
             break;
           default :
             Adjustment = -1.0;
          }
        do
          {
           Transfer (Buffer, Begin + UPSTREAM_LEN + UPSTREAM_OFFSET, - UPSTREAM_LEN);
           Score = Edit_Distance (Ribosome_Pattern - 1, Buffer - 1);
           switch  (Codon [0])
             {
              case  'a' :
                if  (Score >= ATG_THRESHOLD + Adjustment)
                    return  Begin;
                break;
              case  'g' :
                if  (Score >= GTG_THRESHOLD + Adjustment)
                    return  Begin;
                break;
              case  't' :
                if  (Score >= TTG_THRESHOLD + Adjustment)
                    return  Begin;
                break;
             }
           do
             {
              Begin -= 3;
              Len -= 3;
              if  (Begin < 1)
                  Begin += Data_Len;
              Transfer (Codon, Begin, -3);
             }  while  (! Is_Start (Codon) && ! Is_Stop (Codon)
                               && Len > Min_Len);
          }  while  (! Is_Stop (Codon) && Len > Min_Len);
       }

   return  Original_Start;
  }


int  Cmp_Ignore (const void * A, const void * B)

// Comparison function for qsort to sort Ignore_Nodes by
// assending base pair number in the lower address

  {
   
    if  ( ((Ignore_Ptr) A) -> Low_Address < ((Ignore_Ptr) B) -> Low_Address)
      return  -1;
    else if  ( ((Ignore_Ptr) A) -> Low_Address > ((Ignore_Ptr) B) -> Low_Address)
      return  1;
    else
      return  0;
  }


void  Determine_Changes
    (Gene_Ref * Ptr [], Gene_Ref Gene [], long int N)

//  Consider all overlaps in  Gene [1 .. N]  in order by
//  pointers in  Ptr [1 .. N] .  Based on them reject or
//  annotate entries in  Gene .  If a gene's start site is
//  delayed, then possibly shift its entry in  Ptr .

  {
   Overlap_Node  * P;
   long int  i, Sub;

   for  (i = 1;  i <= N;  i ++)
     {
      if  (Ptr [i] -> Has_Status (REJECTED))
          continue;
      Sub = Ptr [i] - Gene;
      for  (P = Ptr [i] -> Overlap_List;  P != NULL;  P = P -> Next)
        {
         if  (Gene [P -> From] . Has_Status (REJECTED))
             continue;
         if  (P -> Problem_Code == SHADOWED_CHAR
               || P -> Problem_Code == CONTAINS_CHAR)
             continue;   // Analyze subwindows here???
         if  (Gene [Sub] . Len < Gene [P -> From] . Len
                || (Gene [Sub] . Len == Gene [P -> From] . Len
                       && Sub < P -> From))
             continue;
         Evaluate_Overlap (P, Sub, Gene);
        }
     }

   return;
  }



double  Doublet_Score  (char A, char B, char P, char Q)

/* Return the energy released by consecutive bases  AB  binding
*  to pair  PQ  where  PQ  is in  5'-3' order.   Values from
*  Lewin's Genes V, p. 115. */

  {
   B = tolower (B);
   P = tolower (P);
   Q = tolower (Q);

   switch  (tolower (A))
     {
      case  'a' :
        switch  (B)
          {
           case  'a' :
             if  (P == 't' && Q == 't')
                 return  0.9;
             goto  Error;
           case  'c' :
             if  (P == 't' && Q == 'g')
                 return  1.8;
             goto  Error;
           case  'g' :
             if  (P == 't' && Q == 'c')
                 return  2.3;
             else if  (P == 't' && Q == 't')
                 return  1.15;                    /* Guess */
             goto  Error;
           case  't' :
             if  (P == 't' && Q == 'a')
                 return  1.1;
             else if  (P == 't' && Q == 'g')
                 return  0.65;                    /* Guess */
             goto  Error;
          }

      case  'c' :
        switch  (B)
          {
           case  'a' :
             if  (P == 'g' && Q == 't')
                 return  2.1;
             goto  Error;
           case  'c' :
             if  (P == 'g' && Q == 'g')
                 return  2.9;
             goto  Error;
           case  'g' :
             if  (P == 'g' && Q == 'c')
                 return  3.4;
             else if  (P == 'g' && Q == 't')
                 return  1.50;                    /* Guess */
             goto  Error;
           case  't' :
             if  (P == 'g' && Q == 'a')
                 return  2.3;
             else if  (P == 'g' && Q == 'g')
                 return  1.15;                    /* Guess */
             goto  Error;
          }

      case  'g' :
        switch  (B)
          {
           case  'a' :
             if  (P == 'c' && Q == 't')
                 return  1.7;
             else if  (P == 't' && Q == 't')
                 return  0.85;                    /* Guess */
             goto  Error;
           case  'c' :
             if  (P == 'c' && Q == 'g')
                 return  2.0;
             else if  (P == 't' && Q == 'g')
                 return  1.00;                    /* Guess */
             goto  Error;
           case  'g' :
             if  (P == 'c' && Q == 'c')
                 return  2.9;
             else if  (P == 't' && Q == 'c')
                 return  1.45;                    /* Guess */
             else if  (P == 'c' && Q == 't')
                 return  1.45;                    /* Guess */
             else if  (P == 't' && Q == 't')
                 return  0.5;                     /* Guess */
             goto  Error;
           case  't' :
             if  (P == 'c' && Q == 'a')
                 return  1.8;
             else if  (P == 't' && Q == 'a')
                 return  0.9;                     /* Guess */
             else if  (P == 'c' && Q == 'g')
                 return  0.9;                     /* Guess */
             else if  (P == 't' && Q == 'g')
                 return  0.5;                     /* Guess */
             goto  Error;
          }

      case  't' :
        switch  (B)
          {
           case  'a' :
             if  (P == 'a' && Q == 't')
                 return  0.9;
             else if  (P == 'g' && Q == 't')
                 return  0.5;                     /* Guess */
             goto  Error;
           case  'c' :
             if  (P == 'a' && Q == 'g')
                 return  1.7;
             else if  (P == 'g' && Q == 'g')
                 return  0.85;                    /* Guess */
             goto  Error;
           case  'g' :
             if  (P == 'a' && Q == 'c')
                 return  2.1;
             else if  (P == 'g' && Q == 'c')
                 return  1.05;                    /* Guess */
             else if  (P == 'a' && Q == 't')
                 return  1.05;                    /* Guess */
             else if  (P == 'g' && Q == 't')
                 return  0.5;                     /* Guess */
             goto  Error;
           case  't' :
             if  (P == 'a' && Q == 'a')
                 return  0.9;
             else if  (P == 'g' && Q == 'a')
                 return  0.5;                     /* Guess */
             else if  (P == 'a' && Q == 'g')
                 return  0.5;                     /* Guess */
             else if  (P == 'g' && Q == 'g')
                 return  0.5;                     /* Guess */
             goto  Error;
          }

     }
   
  Error:
   fprintf (stderr, "ERROR:  Bad doublet pair  %c%c  and  %c%c\n",
              A, B, P, Q);

   return  0;
  }



double  Edit_Distance  (const char * P, const char * T)

/* Find and return the highest enery match of string  P [1 ...]  within
*  string  T [1 ...] . */

  {
   double  Max, Best, Final_Score, X;
   int  Best_i = 0, Best_j = 0;
   int  a, b, i, j, M, N, Len, Len1, Max_i = 0;

   M = strlen (P + 1);
   N = strlen (T + 1);

   for  (i = 1;  i <= M;  i ++)
     {
      ED_Score [i] [0] . Free_i = 0.0;
      ED_Score [i] [0] . Free_j = BIG_NEGATIVE;
      ED_Score [i] [0] . Both_Free = BIG_NEGATIVE;
      ED_Score [i] [0] . Match = BIG_NEGATIVE;
      ED_Score [i] [0] . Free_i_Len = i;
      ED_Score [i] [0] . Free_j_Len = 0;
      ED_Score [i] [0] . Both_i_Len = 0;
      ED_Score [i] [0] . Both_j_Len = 0;
     }
   for  (j = 1;  j <= N;  j ++)
     {
      ED_Score [0] [j] . Free_i = BIG_NEGATIVE;
      ED_Score [0] [j] . Free_j = 0.0;
      ED_Score [0] [j] . Both_Free = BIG_NEGATIVE;
      ED_Score [0] [j] . Match = BIG_NEGATIVE;
      ED_Score [0] [j] . Free_i_Len = 0;
      ED_Score [0] [j] . Free_j_Len = j;
      ED_Score [0] [j] . Both_i_Len = 0;
      ED_Score [0] [j] . Both_j_Len = 0;
     }
   ED_Score [0] [0] . Free_i = 0.0;
   ED_Score [0] [0] . Free_j = 0.0;
   ED_Score [0] [0] . Both_Free = 0.0;
   ED_Score [0] [0] . Match = BIG_NEGATIVE;
   ED_Score [0] [0] . Free_i_Len = 0;
   ED_Score [0] [0] . Free_j_Len = 0;
   ED_Score [0] [0] . Both_i_Len = 0;
   ED_Score [0] [0] . Both_j_Len = 0;

   Final_Score = BIG_NEGATIVE;
   for  (j = 1;  j <= N;  j ++)
     {
      Max = BIG_NEGATIVE;
      for  (i = 1;  i <= M;  i ++)
        {
         Best = BIG_NEGATIVE;
         Len = 0;
         X = ED_Score [i - 1] [j] . Match;
         if  (X > Best)
             {
              Best = X;
              Len = 1;
             }
         X = ED_Score [i - 1] [j] . Free_i;
         a = ED_Score [i - 1] [j] . Free_i_Len;
         if  (X > Best && a < MAX_FREE_LEN)
             {
              Best = X;
              Len = 1 + a;
             }
         ED_Score [i] [j] . Free_i = Best;
         ED_Score [i] [j] . Free_i_Len = Len;
         if  (Best > Max)
             {
              Max = Best;
              Max_i = i;
             }
         
         Best = BIG_NEGATIVE;
         Len = 0;
         X = ED_Score [i] [j - 1] . Match;
         if  (X > Best)
             {
              Best = X;
              Len = 1;
             }
         X = ED_Score [i] [j - 1] . Free_j;
         a = ED_Score [i] [j - 1] . Free_j_Len;
         if  (X > Best && a < MAX_FREE_LEN)
             {
              Best = X;
              Len = 1 + a;
             }
         ED_Score [i] [j] . Free_j = Best;
         if  (Best > BIG_NEGATIVE)
             ED_Score [i] [j] . Free_j_Len = Len;
           else
             ED_Score [i] [j] . Free_j_Len = 0;

         Best = BIG_NEGATIVE;
         Len = Len1 = 0;
         X = ED_Score [i - 1] [j - 1] . Match;
         if  (X > Best)
             {
              Best = X;
              Len = Len1 = 1;
             }
         X = ED_Score [i - 1] [j] . Free_j;
         if  (X > Best)
             {
              Best = X;
              Len = 1;
              Len1 = ED_Score [i - 1] [j] . Free_j_Len;
             }
         X = ED_Score [i] [j - 1] . Free_i;
         if  (X > Best)
             {
              Best = X;
              Len = ED_Score [i] [j - 1] . Free_i_Len;
              Len1 = 1;
             }
         X = ED_Score [i - 1] [j] . Both_Free;
         a = ED_Score [i - 1] [j] . Both_i_Len;
         if  (X > Best && a < MAX_FREE_LEN)
             {
              Best = X;
              Len = a + 1;
              Len1 = ED_Score [i - 1] [j] . Both_j_Len;
             }
         X = ED_Score [i] [j - 1] . Both_Free;
         a = ED_Score [i] [j - 1] . Both_j_Len;
         if  (X > Best && a < MAX_FREE_LEN)
             {
              Best = X;
              Len = ED_Score [i] [j - 1] . Both_i_Len;
              Len1 = a + 1;
             }
         X = ED_Score [i - 1] [j - 1] . Both_Free;
         a = ED_Score [i - 1] [j - 1] . Both_i_Len;
         b = ED_Score [i - 1] [j - 1] . Both_j_Len;
         if  (X > Best && a < MAX_FREE_LEN && b < MAX_FREE_LEN)
             {
              Best = X;
              Len = a + 1;
              Len1 = b + 1;
             }
         ED_Score [i] [j] . Both_Free = Best;
         ED_Score [i] [j] . Both_i_Len = Len;
         ED_Score [i] [j] . Both_j_Len = Len1;

         if  (! Match (P [i], T [j]))
             ED_Score [i] [j] . Match = BIG_NEGATIVE;
           else
             {
              Best = 0.0;
              X = ED_Score [i - 1] [j - 1] . Free_i
                      + Bulge_Cost (ED_Score [i - 1] [j - 1] . Free_i_Len);
              if  (X > Best)
                  Best = X;
              X = ED_Score [i - 1] [j - 1] . Free_j
                      + Bulge_Cost (ED_Score [i - 1] [j - 1] . Free_j_Len);
              if  (X > Best)
                  Best = X;
              X = ED_Score [i - 1] [j - 1] . Both_Free
                      + Loop_Cost (ED_Score [i - 1] [j - 1] . Both_i_Len,
                                      ED_Score [i - 1] [j - 1] . Both_j_Len);
              if  (X > Best)
                  Best = X;
              X = ED_Score [i - 1] [j - 1] . Match;
              if  (X != BIG_NEGATIVE)
                  {
                   X += Doublet_Score (P [i - 1], P [i], T [j - 1], T [j]);
                   if  (X > Best)
                       Best = X;
                  }
              ED_Score [i] [j] . Match = Best;
              if  (Best > Max)
                  {
                   Max = Best;
                   Max_i = i;
                  }
             }
        }
      if  (Max > Final_Score)
          {
           Final_Score = Max;
           Best_i = Max_i;
           Best_j = j;
          }
     }

   return  Final_Score;
  }



void  Evaluate_Overlap  (Overlap_Node * A_Olap_Node, long int A, Gene_Ref Gene [])

//  Analyze the overlap pointed to by  A_Olap_Node  with  Gene [A]  and
//  save the results in  (* A_Olap_Node)  and  Gene [A] .

  {
   Overlap_Node  * B_Olap_Node;
   Olap_Fix_Type  Olap_Fix;
   long int  A_Lo, A_Hi, B_Lo, B_Hi;
   long int  B, Min_Shift, Percent_Min;
   int  A_Score, B_Score;

   B = A_Olap_Node -> From;
   Score_Olap_Region (A_Olap_Node -> Lo, A_Olap_Node -> Hi,
                         Gene [A] . Frame, A_Olap_Node -> Other_Frame,
                         A_Score, B_Score);

   for  (B_Olap_Node = Gene [B] . Overlap_List;
            B_Olap_Node != NULL && B_Olap_Node -> From != A;
               B_Olap_Node = B_Olap_Node -> Next)
     ;
   assert (B_Olap_Node != NULL);

   A_Olap_Node -> Score = A_Score;
   B_Olap_Node -> Score = B_Score;

   Percent_Min = (long int) ceil (Min_Olap_Percent *
        Min (Gene [A] . Len, Gene [B] . Len));
   Min_Shift = 1 + A_Olap_Node -> Olap - Max (Min_Olap, Percent_Min);
   
   if  (Min_Shift <= 0 || Min_Shift > A_Olap_Node -> Olap)
       {
        fprintf (stderr, "ERROR:  Shouldn't be here.  Overlap is ignorable\n");
        fprintf (stderr, "Min_Shift = %ld for genes %ld and %ld   Olap = %ld\n",
                            Min_Shift, A, B, A_Olap_Node -> Olap);
        fprintf (stderr, "Percent_Min = %ld  A_Len = %ld   B_Len = %ld\n",
                            Percent_Min, Gene [A] . Len, Gene [B] . Len);
        exit (-3);
       }

   assert (Gene [A] . Len >= Gene [B] . Len);

   if  (Gene [A] . Category == REGULAR
          && (Gene [B] . Category == WEAK
                || Gene [B] . Category == VOTED))
       {
        Gene [B] . Set_Status (MIGHT_CHANGE);
        B_Olap_Node -> Problem_Code = REJECT_CHAR;
        return;
       }
   if  (Gene [B] . Category == REGULAR
          && (Gene [A] . Category == WEAK
                || Gene [A] . Category == VOTED))
       {
        Gene [A] . Set_Status (MIGHT_CHANGE);
        A_Olap_Node -> Problem_Code = REJECT_CHAR;
        return;
       }

   A_Lo = Gene [A] . Lo;
   A_Hi = Gene [A] . Hi;
   B_Lo = Gene [B] . Lo;
   B_Hi = Gene [B] . Hi;
   if  (A_Hi > Data_Len && B_Hi < A_Lo)
       {
        B_Lo += Data_Len;
        B_Hi += Data_Len;
       }
   else if  (B_Hi > Data_Len && A_Hi < B_Lo)
       {
        A_Lo += Data_Len;
        A_Hi += Data_Len;
       }

   Olap_Fix = Get_Olap_Fix (A_Lo, A_Hi, Gene [A] . Frame,
                            B_Lo, B_Hi, Gene [B] . Frame);

// Approximately equal lengths

   if  (Gene [A] . Len - Gene [B] . Len < MIN_PERCENT_LEN_DIFF * Gene [B] . Len)
       {
        if  (A_Score > B_Score && A_Score >= OLAP_THRESHOLD_SCORE)
            {
             switch  (Olap_Fix)
               {
                case  NEITHER_CAN_MOVE :
                  A_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
                  B_Olap_Node -> Problem_Code = SCORES_WORSE_CHAR;
                  return;
                case  ONLY_A_CAN_MOVE :
                  if  (Min_Shift <= SMALL_OLAP_PERCENT * Gene [A] . Len
                         && Can_Delay_Start (Gene [A], A_Olap_Node,
                                             ELIM_OLAP_CHAR, Min_Shift))
                      return;
                  A_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
                  B_Olap_Node -> Problem_Code = SCORES_WORSE_CHAR;
                  return;
                case  ONLY_B_CAN_MOVE :
                  if  (Can_Delay_Start (Gene [B], B_Olap_Node,
                                             SCORES_WORSE_CHAR, Min_Shift))
                      return;
                  A_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
                  B_Olap_Node -> Problem_Code = NEAR_REJECT_CHAR;
                  return;
                case  BOTH_CAN_MOVE :
                  Slide_Both_Starts (Gene [B], B_Olap_Node, NEAR_REJECT_CHAR,
                                     Gene [A], A_Olap_Node, Min_Shift);
                  return;
                default :
                  assert (FALSE);
               }
            }
        else if  (B_Score > A_Score && B_Score >= OLAP_THRESHOLD_SCORE)
            {
             switch  (Olap_Fix)
               {
                case  NEITHER_CAN_MOVE :
                  A_Olap_Node -> Problem_Code = SCORES_WORSE_CHAR;
                  B_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
                  return;
                case  ONLY_A_CAN_MOVE :
                  if  (Can_Delay_Start (Gene [A], A_Olap_Node,
                                             SCORES_WORSE_CHAR, Min_Shift))
                      return;
                  A_Olap_Node -> Problem_Code = SCORES_WORSE_CHAR;
                  B_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
                  return;
                case  ONLY_B_CAN_MOVE :
                  if  (Min_Shift <= SMALL_OLAP_PERCENT * Gene [B] . Len
                         && Can_Delay_Start (Gene [B], B_Olap_Node,
                                             ELIM_OLAP_CHAR, Min_Shift))
                      return;
                  A_Olap_Node -> Problem_Code = NEAR_REJECT_CHAR;
                  B_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
                  return;
                case  BOTH_CAN_MOVE :
                  Slide_Both_Starts (Gene [A], A_Olap_Node, NEAR_REJECT_CHAR,
                                     Gene [B], B_Olap_Node, Min_Shift);
                  return;
                default :
                  assert (FALSE);
               }
            }
          else    // Scores are essentially tied
            {
             A_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
             B_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
             switch  (Olap_Fix)
               {
                case  NEITHER_CAN_MOVE :
                  return;
                case  ONLY_A_CAN_MOVE :
                  if  (Can_Delay_Start (Gene [A], A_Olap_Node,
                                             ELIM_OLAP_CHAR, Min_Shift))
                      return;
                  return;
                case  ONLY_B_CAN_MOVE :
                  Can_Delay_Start (Gene [B], B_Olap_Node,
                                   ELIM_OLAP_CHAR, Min_Shift);
                  return;
                case  BOTH_CAN_MOVE :
                  Slide_Both_Starts (Gene [B], B_Olap_Node, ELIM_OLAP_CHAR,
                                     Gene [A], A_Olap_Node, Min_Shift);
                  return;
                default :
                  assert (FALSE);
               }
            }
        return;
       }

//  A is significantly longer

   if  (A_Score > B_Score && A_Score >= OLAP_THRESHOLD_SCORE)
       {
        Gene [B] . Set_Status (MIGHT_CHANGE);
        switch  (Olap_Fix)
          {
           case  NEITHER_CAN_MOVE :
             B_Olap_Node -> Problem_Code = REJECT_CHAR;
             return;
           case  ONLY_A_CAN_MOVE :
             if  (Min_Shift <= SMALL_OLAP_PERCENT * Gene [A] . Len
                    && Gene [B] . Len >= MIN_LONG_GENE_LEN
                    && Can_Delay_Start (Gene [A], A_Olap_Node,
                                        ELIM_OLAP_CHAR, Min_Shift))
                 return;
             B_Olap_Node -> Problem_Code = REJECT_CHAR;
             return;
           case  ONLY_B_CAN_MOVE :
             if  (Can_Delay_Start (Gene [B], B_Olap_Node,
                                   ELIM_OLAP_CHAR, Min_Shift))
                 return;
             B_Olap_Node -> Problem_Code = REJECT_CHAR;
             return;
           case  BOTH_CAN_MOVE :
             Slide_Both_Starts (Gene [B], B_Olap_Node, REJECT_CHAR,
                                Gene [A], A_Olap_Node, Min_Shift);
             return;
           default :
             assert (FALSE);
          }
       }
   else if  (B_Score > A_Score && B_Score >= OLAP_THRESHOLD_SCORE)
       {
        A_Olap_Node -> Problem_Code = SCORES_WORSE_CHAR;
        B_Olap_Node -> Problem_Code = SHORTER_CHAR;
        switch  (Olap_Fix)
          {
           case  NEITHER_CAN_MOVE :
             return;
           case  ONLY_A_CAN_MOVE :
             Can_Delay_Start (Gene [A], A_Olap_Node,
                              SCORES_WORSE_CHAR, Min_Shift);
             return;
           case  ONLY_B_CAN_MOVE :
             if  (Min_Shift <= SMALL_OLAP_PERCENT * Gene [B] . Len)
                 Can_Delay_Start (Gene [B], B_Olap_Node,
                                  SHORTER_CHAR, Min_Shift);
             return;
           case  BOTH_CAN_MOVE :
             Slide_Both_Starts (Gene [A], A_Olap_Node, SCORES_WORSE_CHAR,
                                Gene [B], B_Olap_Node, Min_Shift);
             return;
           default :
             assert (FALSE);
          }
       }
     else
       {
        A_Olap_Node -> Problem_Code = ELIM_OLAP_CHAR;
        B_Olap_Node -> Problem_Code = SHORTER_CHAR;
        switch  (Olap_Fix)
          {
           case  NEITHER_CAN_MOVE :
             return;
           case  ONLY_A_CAN_MOVE :
             Can_Delay_Start (Gene [A], A_Olap_Node,
                              ELIM_OLAP_CHAR, Min_Shift);
             return;
           case  ONLY_B_CAN_MOVE :
             if  (Min_Shift <= SMALL_OLAP_PERCENT * Gene [B] . Len)
                 Can_Delay_Start (Gene [B], B_Olap_Node,
                                  SHORTER_CHAR, Min_Shift);
             return;
           case  BOTH_CAN_MOVE :
             Slide_Both_Starts (Gene [A], A_Olap_Node, ELIM_OLAP_CHAR,
                                Gene [B], B_Olap_Node, Min_Shift);
             return;
           default :
             assert (FALSE);
          }
       }

   return;
  }



long int  Extend_Data  (char * & Data, long int Data_Len, long int Max_Extend)

//  Allocate additional memory at the end of  Data [1 .. Len]
//  and duplicate a long enough prefix of it to ensure a
//  stop codon in all 6 reading frames.  Return the length of
//  the extended version.  This will allow processing without
//  calculating wraparounds.

  {
   unsigned  Codon;
   int  Frame, Found_Stop [6] = {0}, Num_Stops_Found = 0;
   long int  i, j, New_Len;

   Codon = Ch_Mask (Data [Data_Len - 1]) << 4 | Ch_Mask (Data [Data_Len]);
   Frame = 0;

   for  (i = 1;  Num_Stops_Found < 6 && i <= Data_Len;  i ++)
     {
      Codon = (Codon & SHIFT_MASK) << 4;
      Codon |= Ch_Mask (Data [i]);
      Frame = (Frame + 1) % 3;
      if  (Is_Forward_Stop (Codon))
          {
           if  (! Found_Stop [Frame])
               {
                Found_Stop [Frame] = TRUE;
                Num_Stops_Found ++;
               }
          }
      if  (Is_Reverse_Stop (Codon))
          {
           if  (! Found_Stop [3 + Frame])
               {
                Found_Stop [3 + Frame] = TRUE;
                Num_Stops_Found ++;
               }
          }
     }

   if (i - 1 > Max_Extend)
     New_Len = Data_Len + Max_Extend;
   else
     New_Len = Data_Len + i - 1;

   Data = (char *) Safe_realloc (Data, 2 + New_Len);
   for  (j = 1;  j < i;  j ++)
     Data [Data_Len + j] = Data [j];
   Data [Data_Len + i] = '\0';

   if  (i == Data_Len)
       {
        //  No stops found in string at all.  Shouldn't really happen.

        New_Len += 11;
        Data = (char *) Safe_realloc (Data, 2 + New_Len);
        strcat (Data, "tagctagctag");  // Ensure a stop codon in each frame.
       }

   return  New_Len;
  }



void  Find_Overlaps  (Gene_Ref * Gene, long int N)

//  Find all overlaps between genes in  Gene [1 .. N]  and
//  put entries for them on the  Overlap_List 's for each gene.

  {
   Overlap_Node  * Save;
   char  Prob_i, Prob_j;
   int  Other_Frame;
   long int  i, j, Len_i, Len_j, Olap_Hi, Olap_Lo, Olap_Len;

   Gene [N] . Min_Lo = Gene [N] . Lo;
   for  (i = N - 1;  i > 0;  i --)
     if  (Gene [i] . Lo < Gene [i + 1] . Min_Lo)
         Gene [i] . Min_Lo = Gene [i] . Lo;
       else
         Gene [i] . Min_Lo = Gene [i + 1] . Min_Lo;

   for  (i = 1;  i <= N;  i ++)
     while  (Gene [i] . Overlap_List != NULL)
       {
        Save = Gene [i] . Overlap_List;
        Gene [i] . Overlap_List = Save -> Next;
        free (Save);
       }

   for  (i = 2;  i <= N;  i ++)
     {
      if  (Gene [i] . Has_Status (REJECTED))
          continue;
      Gene [i] . Status = OK;
      Len_i = 1 + Gene [i] . Hi - Gene [i] . Lo;
      for  (j = i - 1;  j > 0 && Gene [i] . Lo <= Gene [j] . Max_Hi;  j --)
        if  (! Gene [j] . Has_Status (REJECTED)
                 && Gene [j] . Lo <= Gene [i] . Hi
                 && Gene [i] . Lo <= Gene [j] . Hi)
            {
             Len_j = 1 + Gene [j] . Hi - Gene [j] . Lo;
             Olap_Lo = Max (Gene [i] . Lo, Gene [j] . Lo);
             Olap_Hi = Min (Gene [i] . Hi, Gene [j] . Hi);
             Olap_Len = 1 + Olap_Hi - Olap_Lo;
             if  (Olap_Lo == Gene [i] . Lo && Olap_Hi == Gene [i] . Hi)
                 {
                  Prob_i = SHADOWED_CHAR;
                  Prob_j = CONTAINS_CHAR;
                 }
             else if  (Olap_Lo == Gene [j] . Lo && Olap_Hi == Gene [j] . Hi)
                 {
                  Prob_i = CONTAINS_CHAR;
                  Prob_j = SHADOWED_CHAR;
                 }
               else
                 Prob_i = Prob_j = NOPROB_CHAR;
             if  (Olap_Len >= Min_Olap
                   && (Olap_Len >= Min_Olap_Percent * Len_i
                         || Olap_Len >= Min_Olap_Percent * Len_j))
                 {
                  Add_Overlap (Gene [j], i, Olap_Lo, Olap_Hi, Prob_j,
                               Gene [i] . Frame);
                  Add_Overlap (Gene [i], j, Olap_Lo, Olap_Hi, Prob_i,
                               Gene [j] . Frame);
                 }
            }
      if  (Gene [i] . Hi > Data_Len)    // Check wraparounds
          for  (j = 1;  j < i
                    && Data_Len + Gene [j] . Min_Lo <= Gene [i] . Hi;  j ++)
            if  (! Gene [j] . Has_Status (REJECTED)
                     && Data_Len + Gene [j] . Lo <= Gene [i] . Hi
                     && Gene [i] . Lo <= Data_Len + Gene [j] . Hi)
                {
                 Len_j = 1 + Gene [j] . Hi - Gene [j] . Lo;
                 Olap_Lo = Max (Gene [i] . Lo, Data_Len + Gene [j] . Lo);
                 Olap_Hi = Min (Gene [i] . Hi, Data_Len + Gene [j] . Hi);
                 Olap_Len = 1 + Olap_Hi - Olap_Lo;
                 if  (Olap_Lo == Gene [i] . Lo && Olap_Hi == Gene [i] . Hi)
                     {
                      Prob_i = SHADOWED_CHAR;
                      Prob_j = CONTAINS_CHAR;
                     }
                 else if  (Olap_Lo == Data_Len + Gene [j] . Lo
                             && Olap_Hi == Data_Len + Gene [j] . Hi)
                     {
                      Prob_i = CONTAINS_CHAR;
                      Prob_j = SHADOWED_CHAR;
                     }
                   else
                     Prob_i = Prob_j = NOPROB_CHAR;
                 if  (Olap_Len >= Min_Olap
                       && (Olap_Len >= Min_Olap_Percent * Len_i
                             || Olap_Len >= Min_Olap_Percent * Len_j))
                     {
                      Other_Frame = (Gene [i] . Hi - Data_Len) % 3;
                      if  (Gene [i] . Frame > 0)
                          Other_Frame = 1 + Other_Frame;
                        else
                          Other_Frame = - Other_Frame - 1;
                      Add_Overlap (Gene [j], i, Olap_Lo - Data_Len,
                                   Olap_Hi - Data_Len, Prob_j,
                                   Other_Frame);
                      Other_Frame = (Gene [j] . Hi + Data_Len) % 3;
                      if  (Gene [j] . Frame > 0)
                          Other_Frame = 1 + Other_Frame;
                        else
                          Other_Frame = - Other_Frame - 1;
                      Add_Overlap (Gene [i], j, Olap_Lo, Olap_Hi,
                                   Prob_i, Other_Frame);
                     }
                }
     }

   return;
  }



int  Gene_Ref_Cmp  (const void * A, const void * B)

/* Comparison function for  qsort  to sort  Gene_Refs  by
*  descending length. */

  {
   long int  A_Len, B_Len;

   A_Len = 1 + (* ((Gene_Ref * *) A)) -> Hi - (* ((Gene_Ref * *) A)) -> Lo;
   B_Len = 1 + (* ((Gene_Ref * *) B)) -> Hi - (* ((Gene_Ref * *) B)) -> Lo;

   if  (A_Len > B_Len)
       return  -1;
   else if  (A_Len < B_Len)
       return  1;
     else
       return  0;
  }



void  Indep_Eval  (char X [], int T, double P [], double & Prob_X)

//  Set  Prob_X  to the log of the probability of generating DNA string
//  X [1 .. T]  using the independent logs of probabilities of single
//  characters in  P [] .

  {
   const double  MIN_LOG_PROB_FACTOR = -6.0;
   double  fwd_score, rev_score, new_score;
   int  i, j, frame;

   if  (Use_Strict_Independent)
       {  // New, stronger independent model, fewer predictions
        new_score = MIN_LOG_PROB_FACTOR * T;
        for  (frame = 0;  frame < 3;  frame ++)
          {
           fwd_score = rev_score = 0.0;
           for  (j = 1;  j <= frame;  j ++)
             {
              fwd_score += P [Nucleotide_To_Subscript (X [j])];
              rev_score += P [Rev_Nucleotide_To_Subscript (X [j])];
             }
           for  (i = 1 + frame;  i <= T - 2;  i += 3)
             {
              fwd_score += Codon_Log_Prob [Codon_To_Subscript (X + i)];
              rev_score += Codon_Log_Prob [Rev_Codon_To_Subscript (X + i)];
             }
           for  (j = i;  j <= T;  j ++)
             {
              fwd_score += P [Nucleotide_To_Subscript (X [j])];
              rev_score += P [Rev_Nucleotide_To_Subscript (X [j])];
             }
           if  (fwd_score > new_score)
               new_score = fwd_score;
           if  (rev_score > new_score)
               new_score = rev_score;
          }
        Prob_X = new_score;
       }
     else
       {  // Old, weaker independent model, more predictions
        Prob_X = 0.0;
        for  (i = 1;  i <= T;  i ++)
          switch  (X [i])
            {
             case  'a' :
               Prob_X += P [0];
               break;
             case  'c' :
               Prob_X += P [1];
               break;
             case  'g' :
               Prob_X += P [2];
               break;
             case  't' :
               Prob_X += P [3];
               break;
            }
        Prob_X = Max (Prob_X, MIN_LOG_PROB_FACTOR * T);
       }

   return;
  }



Olap_Fix_Type  Get_Olap_Fix
    (long int A_Lo, long int A_Hi, int A_Frame,
     long int B_Lo, long int B_Hi, int B_Frame)

//  Return the allowable start moves for the overlap between
//  gene A at positions  A_Lo .. A_Hi  in frame  A_Frame
//  and gene B at positions  B_Lo .. B_Hi  in frame  B_Frame .
//  Only the sign of the frame matters.  The actual frame
//  maybe wrong for "wraparound" overlaps.


  {
   if  (A_Lo < B_Lo)                      // A is on the left
       {
//        assert (
if  (! (B_Lo <= A_Hi && A_Hi < B_Hi))
    {
     printf ("ERROR:  Unexpected overlap\n");
     printf ("A_Lo = %7ld  A_Hi = %7ld  A_Frame = %2d\n",
                A_Lo, A_Hi, A_Frame);
     printf ("B_Lo = %7ld  B_Hi = %7ld  B_Frame = %2d\n",
                B_Lo, B_Hi, B_Frame);
     exit (-2);
    }
        if  (A_Frame > 0)
            {
             if  (B_Frame > 0)
                 return  ONLY_B_CAN_MOVE;
               else
                 return  NEITHER_CAN_MOVE;
            }
          else
            {
             if  (B_Frame > 0)
                 return  BOTH_CAN_MOVE;
               else
                 return  ONLY_A_CAN_MOVE;
            }
       }
     else                                // A is on the right
       {
//        assert (A_Lo <= B_Hi && B_Hi < A_Hi);
if  (! (A_Lo <= B_Hi && B_Hi < A_Hi))
    {
     printf ("ERROR:  Unexpected overlap\n");
     printf ("A_Lo = %7ld  A_Hi = %7ld  A_Frame = %2d\n",
                A_Lo, A_Hi, A_Frame);
     printf ("B_Lo = %7ld  B_Hi = %7ld  B_Frame = %2d\n",
                B_Lo, B_Hi, B_Frame);
     exit (-2);
    }
        if  (A_Frame > 0)
            {
             if  (B_Frame > 0)
                 return  ONLY_A_CAN_MOVE;
               else
                 return  BOTH_CAN_MOVE;
            }
          else
            {
             if  (B_Frame > 0)
                 return  NEITHER_CAN_MOVE;
               else
                 return  ONLY_B_CAN_MOVE;
            }
       }
  }



double  Loop_Cost  (int M, int N)

/* Return the energy cost of a loop with  M  bases on one side and
*  N  bases on the other. */

  {
   double  Cost;
   int  Min;

   if  (M <= 0 || N <= 0)
       return  BIG_NEGATIVE;

   if  (M < N)
       Min = M;
     else
       Min = N;

   if  (Min < 4)
       Cost = -0.8;
     else
       Cost = -0.8 - (Min - 3) * (8.4 - 0.8) / 27.0;

   if  (M == N)
       return  Cost;

   return  Cost - abs (M - N) * 1.1;
  }



void  Make_Codon_Log_Prob
    (double clp [64], double bp [4])

//  Set entries in  clp  to the log of the probability of
//  each codon using the indepedent base probabilities in  bp
//  but normalized so that stop codons have zero probability.

  {
   char  alphabet [] = "acgt";
   char  codon [4] = "aaa";
   double  sum = 0.0;
   int  i, j, k, sub;

   for  (i = 0;  i < 4;  i ++)
     {
      codon [0] = alphabet [i];
      for  (j = 0;  j < 4;  j ++)
        {
         codon [1] = alphabet [j];
         for (k = 0;  k < 4;  k ++)
           {
            codon [2] = alphabet [k];

            sub = 16 * i + 4 * j + k;
            if  (Is_Stop (codon))
                clp [sub] = 0.0;
              else
                {
                 clp [sub] = bp [i] * bp [j] * bp [k];
                 sum += clp [sub];
                }
           }
        }
     }

   if  (sum <= 0.0 || sum > 1.0)
       {
        fprintf (stderr, "ERROR:  Bad sum = %f in  Make_Codon_Log_Prob\n",
                 sum);
        exit (EXIT_FAILURE);
       }

   for  (i = 0;  i < 64;  i ++)
     if  (clp [i] == 0.0)
         clp [i] = -1000.0;
       else
         clp [i] = log (clp [i] / sum);

   return;
  }



int  Make_Final_Changes
    (Gene_Ref * Ptr [], Gene_Ref Gene [], long int N)

//  Make all remaining changes to entries in  Gene [1 .. N]  that
//  are caused by other entries.  Make changes in order of pointers
//  in  Ptr [1 .. N] .  Return the number of changes made.

  {
   Overlap_Node  * P;
   long int  i, Change_Ct, Delay_Cause, Delay_Len;

               //  First make all rejects

   Change_Ct = 0;
   for  (i = 1;  i <= N;  i ++)
     if  (Ptr [i] -> Has_Status (MIGHT_CHANGE))
         {
          for  (P = Ptr [i] -> Overlap_List;  P != NULL;  P = P -> Next)
            if  (P -> Problem_Code == REJECT_CHAR
                   && ! Gene [P -> From] . Has_Status (REJECTED))
                {
                 Ptr [i] -> Clear_Status (MIGHT_CHANGE);
                 Ptr [i] -> Set_Status (REJECTED);
                 Change_Ct ++;
                 break;
                }
         }

               //  Make longest delay for each remaining gene

   for  (i = 1;  i <= N;  i ++)
     if  (Ptr [i] -> Has_Status (MIGHT_CHANGE))
         {
          Delay_Len = 0;
          Delay_Cause = 0;
          for  (P = Ptr [i] -> Overlap_List;  P != NULL;  P = P -> Next)
            if  (! Gene [P -> From] . Has_Status (REJECTED))
                switch  (P -> Problem_Code)
                  {
                   case  REJECT_CHAR :
                     fprintf (stderr, "ERROR:  Unexpected reject\n");
                     assert (FALSE);
                     exit (-1);
                   case  SCORES_WORSE_CHAR :
                   case  ELIM_OLAP_CHAR :
                   case  SHORTER_CHAR :
                     if  (P -> Delay == 0)
                         break;
                     if  (P -> Delay > Delay_Len)
                         {
                          Delay_Len = P -> Delay;
                          Delay_Cause = P -> From;
                         }
                     break;
                   case  CONTAINS_CHAR :
                   case  SHADOWED_CHAR :
                   case  NOPROB_CHAR :
                     break;
                  }
          if  (Delay_Len > 0)
              {
               Change_Ct ++;
               Ptr [i] -> Delay_Len += Delay_Len;
               Ptr [i] -> Delay_Cause = Delay_Cause;
               if  (Ptr [i] -> Frame > 0)
                   Ptr [i] -> Lo += Delay_Len;
                 else
                   Ptr [i] -> Hi -= Delay_Len;
               Ptr [i] -> Len -= Delay_Len;
              }
         }

   return  Change_Ct;
  }



int  Make_Sure_Changes
    (Gene_Ref Gene [], long int N)

//  Make any changes to entries in  Gene [1 .. N]  that are caused
//  by other entries that are *not* going to change.  Return the
//  number of changes made.

  {
   Overlap_Node  * P;
   int  Still_Might_Change;
   long int  i, Change_Ct, Delay_Cause, Delay_Len;

   Change_Ct = 0;
   for  (i = 1;  i <= N;  i ++)
     if  (Gene [i] . Has_Status (MIGHT_CHANGE))
         {
          Still_Might_Change = FALSE;
          Delay_Len = 0;
          Delay_Cause = 0;
          for  (P = Gene [i] . Overlap_List;  P != NULL;  P = P -> Next)
            switch  (P -> Problem_Code)
              {
               case  REJECT_CHAR :
                 if  (Gene [P -> From] . Has_Status (MIGHT_CHANGE))
                     Still_Might_Change = TRUE;
                 else if  (! Gene [P -> From] . Has_Status (REJECTED))
                     Gene [i] . Set_Status (REJECTED);
                 break;
               case  SCORES_WORSE_CHAR :
               case  ELIM_OLAP_CHAR :
               case  SHORTER_CHAR :
                 if  (P -> Delay == 0)
                     break;
                 if  (Gene [P -> From] . Has_Status (MIGHT_CHANGE))
                     Still_Might_Change = TRUE;
                 else if  (! Gene [P -> From] . Has_Status (REJECTED))
                     {
                      if  (P -> Delay > Delay_Len)
                          {
                           Delay_Len = P -> Delay;
                           Delay_Cause = P -> From;
                          }
                     }
                 break;
               case  CONTAINS_CHAR :
               case  SHADOWED_CHAR :
               case  NOPROB_CHAR :
                 break;
              }
          if  (Gene [i] . Has_Status (REJECTED))
              {
               Gene [i] . Clear_Status (MIGHT_CHANGE);
               Change_Ct ++;
              }
          else if  (Delay_Len > 0)
              {
               Change_Ct ++;
               Gene [i] . Delay_Len += Delay_Len;
               Gene [i] . Delay_Cause = Delay_Cause;
               if  (Gene [i] . Frame > 0)
                   Gene [i] . Lo += Delay_Len;
                 else
                   Gene [i] . Hi -= Delay_Len;
               Gene [i] . Len -= Delay_Len;
               Still_Might_Change = FALSE;
               for  (P = Gene [i] . Overlap_List;  P != NULL;  P = P -> Next)
                 if  (P -> Delay > Delay_Len
                        && ! Gene [P -> From] . Has_Status (REJECTED))
                     {
                      Still_Might_Change = TRUE;
                      break;
                     }
               if  (! Still_Might_Change)
                   Gene [i] . Clear_Status (MIGHT_CHANGE);
              }
         }

   return  Change_Ct;
  }



int  Match  (char P, char Q)

/* Return true iff bases  P  and  Q  bind together. */

  {
   Q = tolower (Q);
   switch  (tolower (P))
     {
      case  'a' :
        return  (Q == 't');
      case  'c' :
        return  (Q == 'g');
      case  'g' :
        return  (Q == 'c' || Q == 't');
      case  't' :
        return  (Q == 'a' || Q == 'g');
     }

   return  0;
  }



void  Permute  (int S [], int F)

/* Permute the values in  S  which are in frame  F  to make them
*  consistent with scores from frame  +1 . */

  {
   int  Save;

   switch  (F)
     {
      case  1 :
        Save = S [4];
        S [4] = S [5];
        S [5] = Save;
        return;
      case  2 :
        Save = S [0];
        S [0] = S [2];
        S [2] = S [1];
        S [1] = Save;
        Save = S [3];
        S [3] = S [5];
        S [5] = Save;
        return;
      case  3 :
        Save = S [0];
        S [0] = S [1];
        S [1] = S [2];
        S [2] = Save;
        Save = S [3];
        S [3] = S [4];
        S [4] = Save;
        return;
      case  -1 :
        Save = S [0];
        S [0] = S [3];
        S [3] = Save;
        Save = S [1];
        S [1] = S [5];
        S [5] = S [2];
        S [2] = S [4];
        S [4] = Save;
        return;
      case  -2 :
        Save = S [0];
        S [0] = S [4];
        S [4] = S [2];
        S [2] = S [5];
        S [5] = Save;
        Save = S [1];
        S [1] = S [3];
        S [3] = Save;
        return;
      case  -3 :
        Save = S [0];
        S [0] = S [5];
        S [5] = S [1];
        S [1] = S [4];
        S [4] = Save;
        Save = S [2];
        S [2] = S [3];
        S [3] = Save;
        return;
     }
   return;
  }


static void  Print_Category
    (Gene_Category_Type Category)

//  Print to  stdout  a representation of  Category .

  {
   switch  (Category)
     {
      case  NONE :
      case  REGULAR :
        printf ("     ");
        break;
      case  VOTED :
        printf (" vote");
        break;
      case  WEAK :
        printf (" weak");
        break;
      default :
        fprintf (stderr, "ERROR:  Unexpected category = %d\n",
                 (int) Category);
        exit (-1);
     }

   return;
  }


static void  Print_Separate_Score_Headings
    (void)

// Print headings for scoring of separate orfs without overlap/voting
// rules.

  {
   printf ("Threshold score = %d\n", Threshold_Score);
   printf ("Ignore independent score on orfs longer than %ld\n",
           Ignore_Indep_Len - 1);
   putchar ('\n');
   printf ("                             ---- Frame Scores ----"
           "  Indep    Raw\n");
   printf ("   Tag      Start      End   +1  +2  +3  -1  -2  -3"
           "  Score   Score\n");

   return;
  }



void  Process_Ignore ( Ignore_Ptr &Ignore_Array )

// Function to take a file of ignore regions to an array of pointers 
// of type Ignore_Node. The input filename obtained by Process_Options
// is used, and the address pairs are sorted in assending order
// afterwhich all overlapping entries are combined.

   {
     FILE * Ignore_File;
     char Ignore_Line [MAX_INPUT], *Token, Delim[] = "\t\n\r\f\x20";
     int  i, j, Temp[2], Current, Line_No, Mem_Hunk_Incr;
     int  Ignore_Regions = 0;
     int  Shrink_Ignore;     

     if ( !Ignore_Option )
      {
	Ignore_Array = (Ignore_Ptr) Safe_malloc (sizeof(Ignore_Node));
	Ignore_Array[0].Low_Address  = -1;
	Ignore_Array[0].High_Address = -1;
	return;
      }

     Mem_Hunk_Incr = 10;
     assert (Ignore_File_Name != NULL);
     Ignore_File = File_Open (Ignore_File_Name, "r");
     Ignore_Array = (Ignore_Ptr) Safe_malloc (Mem_Hunk_Incr*sizeof(Ignore_Node));
     
     i = 0;
     Line_No = 0;
     while ( fgets (Ignore_Line, MAX_INPUT, Ignore_File) )
       {
	 Line_No++;
	 if ( !(i % Mem_Hunk_Incr ) && i > 0)
	   Ignore_Array = (Ignore_Ptr) Safe_realloc  
	     (Ignore_Array, (i + Mem_Hunk_Incr + 1)*sizeof(Ignore_Node));
	 
	 Token  = strtok (Ignore_Line, Delim);	
	 j = -1;
	 while ( Token )
	   {
	     if( isdigit(Token[0]) )
	       Temp[++j] = atoi( Token );
	     
	     if( j == 1 )
	       break;
	     
	     Token = strtok (NULL, Delim);
	   }
	 
	 switch ( j )
	   {
	   case -1 :   // no integers on the line get another line
	     break;
	     
	   case  0 :   // one iteger on the line this is a probably an error
	     fprintf(stderr, "ERROR: Error on line %d of ignore file ", Line_No );
	     fprintf(stderr, "it must contain either two integers or none.\n");
	     fprintf(stderr, "       Line %d skipped.\n", Line_No );
	     break;
	     
	   case 1  :
	     if ( Temp[0] < Temp[1] )
	       {
		 Shrink_Ignore = (Temp[1] - Temp[0] + 1) % 3;
		 if ( Temp[1] - Temp[0]  >  3 )
		    Temp[1] -= Shrink_Ignore;
		 Ignore_Array[i].Low_Address  = Temp[0];
		 Ignore_Array[i].High_Address = Temp[1];
	       }
	     else
	       {
		 Shrink_Ignore = (Temp[0] - Temp[1] + 1) % 3;
		 if ( Temp[0] - Temp[1]  >  3 )
		    Temp[0] -= Shrink_Ignore;
		 Ignore_Array[i].Low_Address  = Temp[1];
		 Ignore_Array[i].High_Address = Temp[0];
	       }

	     Ignore_Regions++;
	     i++;
	     break;
	     
	   default :
	     break;
	   }
       }
     fclose (Ignore_File);
     
     qsort(Ignore_Array, Ignore_Regions, sizeof(Ignore_Node), Cmp_Ignore);
     
     // reduce the overlapping ignore regions if any.
     Current = 0;
     for ( i = 1; i < Ignore_Regions; i++ )
       {
	 if( Ignore_Array[Current].High_Address > Ignore_Array[i].High_Address )
	   {
	     // do nothing, i is completely shadowed
	   }
	 else if ( Ignore_Array[Current].High_Address > Ignore_Array[i].Low_Address )
	   {      //  arrays overlap combine both
	     Ignore_Array[Current].High_Address = Ignore_Array[i].High_Address;
	   }
	 else if ( ++Current < i )
	   {     
	     Ignore_Array[Current].Low_Address  = Ignore_Array[i].Low_Address;
	     Ignore_Array[Current].High_Address = Ignore_Array[i].High_Address;
	   }
       }
     Ignore_Regions = Current + 1;
     Ignore_Array[Ignore_Regions].Low_Address  = -1;   // Signal end of data
     Ignore_Array[Ignore_Regions].High_Address = -1;   //  

   }


void  Process_Options  (int argc, char * argv [])

//  Process command-line options and set corresponding global switches
//  and parameters.
//
//    -C n   Use n as GC percentage for independent model
//    -f     Use ribosome-binding energy to choose start codon
//    +f     Use first codon in orf as start codon
//    -g n   Set minimum gene length to n
//    -i <filename> Use <filename> to select regions of bases that are off 
//           limits, so that no bases within that area will be examined
//    -l     Assume linear rather than circular genome, i.e., no wraparound
//    -L <filename> Use <filename> to specify a list of orfs that should
//           be scored separately, with no overlap rules
//    -M     Input is a multifasta file of separate genes to be scored
//           separately, with no overlap rules
//    -o n   Set minimum overlap length to n.  Overlaps shorter than this
//           are ignored.
//    -p n   Set minimum overlap percentage to n%.  Overlaps shorter than
//           this percentage of *both* strings are ignored.
//    -q n   Set the maximum length orf that can be rejected because of
//           the independent probability score column to n
//    -r     Don't use independent probability score column
//    +r     Use independent probability score column
//    -s s   Use string s as the ribosome binding pattern to find start codons.
//    -S     Don't use stricter independent intergenic model
//    +S     Do use stricter independent intergenic model that doesn't
//           give probabilities to in-frame stop codons.
//    -t n   Set threshold score for calling as gene to n.  If the in-frame
//           score >= n, then the region is given a number and considered
//           a potential gene.
//    -w n   Use "weak" scores on tentative genes n or longer.  Weak
//           scores ignore the independent probability score.
//    -X     Allow orfs that extend off the ends of the sequence

  {
   char  * P;
   long int  W;
   double  X;
   bool  errflg = false;
   int  i, L;

   for  (i = 3;  i < argc;  i ++)
     {
      switch  (argv [i] [0])
        {
         case  '-' :
           switch  (argv [i] [1])
             {
              case  'C' :       // use value as GC percentage of independent model
                GC_From_Parameter = true;
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                X = strtod (P, NULL);
                if  (errno == ERANGE || X < 0.0 || X > 100.0)
                    fprintf (stderr, "ERROR:  Bad GC percentage %s\n", P);
                  else
                    {
                     Ch_Ct [1] = Ch_Ct [2] = X / 200.0;
                     Ch_Ct [0] = Ch_Ct [3] = 0.50 - Ch_Ct [1];
                    }
                break;
              case  'f' :       // use function to choose start codon in gene
                Choose_First_Start_Codon = FALSE;
                break;
              case  'g' :       // minimum gene length
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                W = strtol (P, NULL, 10);
                if  (errno == ERANGE)
                    fprintf (stderr, "ERROR:  Bad minimum gene length %s\n", P);
                  else
                    Min_Gene_Len = W;
                assert (Min_Gene_Len > 0);
                break;
	      case  'i' :       // ignore regions of the genome
		if  (argv [i] [2] != '\0')
		  P = argv [i] + 2;
		else
		  P = argv [++ i];
                P = strtok (P, " \t\n\"'");
                L = strlen (P);
		Ignore_File_Name = (char *) Safe_malloc(MAX_LINE);
		strcpy( Ignore_File_Name, P );
		Ignore_Option = TRUE;
                break;
              case  'l' :       // linear, not circular genome
                Genome_Is_Circular = FALSE;
                break;
	      case  'L' :       // list of separate orfs to score
		if  (argv [i] [2] != '\0')
		  P = argv [i] + 2;
		else
		  P = argv [++ i];
                P = strtok (P, " \t\n\"'");
                L = strlen (P);
		Orflist_File_Name = (char *) Safe_malloc(MAX_LINE);
		strcpy( Orflist_File_Name, P );
		Orflist_Option = TRUE;
                break;
              case  'M' :       // input is multifasta list of genes to score separately
                Separate_Multifasta_Orfs = true;
                break;
              case  'o' :       // minimum overlap length
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                W = strtol (P, NULL, 10);
                if  (errno == ERANGE)
                    fprintf (stderr, "ERROR:  Bad minimum overlap length %s\n", P);
                  else
                    Min_Olap = W;
                assert (Min_Olap >= 0);
                if  (Min_Olap == 0)
                    Min_Olap = 1;
                break;
              case  'p' :       // minimum overlap percent
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                X = strtod (P, NULL);
                if  (errno == ERANGE)
                    fprintf (stderr, "ERROR:  Bad minimum overlap percent %s\n", P);
                  else
                    Min_Olap_Percent = X / 100.0;
                assert (Min_Olap_Percent >= 0.0 && Min_Olap_Percent <= 100.0);
                break;
              case  'q' :       // max length of orf rejected by independent score
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                W = strtol (P, NULL, 10);
                if  (errno == ERANGE)
                    fprintf (stderr, "ERROR:  Bad reject orf length %s\n", P);
                  else
                    Ignore_Indep_Len = W;
                assert (Ignore_Indep_Len >= 0 && Ignore_Indep_Len < LONG_MAX);
                break;
              case  'r' :       // don't use random/independent score column
                Use_Independent = FALSE;
                break;
              case  's' :       // string for ribosome binding pattern
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                P = strtok (P, " \t\n\"'");
                L = strlen (P);
                assert (L <= MAX_RIBOSOME_PATTERN_LEN);
                for  (i = 0;  i < L;  i ++)
                  Ribosome_Pattern [i] = Filter (P [i]);
                Ribosome_Pattern [L] = '\0';
                break;
#if  0
              case  'S' :       // don't use strict independent model
                Use_Strict_Independent = FALSE;
                break;
#endif
              case  't' :       // threshold score for calling as gene
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                W = strtol (P, NULL, 10);
                if  (errno == ERANGE)
                    fprintf (stderr, "ERROR:  Bad threshold score %s\n", P);
                  else
                    Threshold_Score = W;
                assert (Threshold_Score > 0 && Threshold_Score < 100);
                break;
              case  'w' :       // length of genes to use weak score on
                errno = 0;
                if  (argv [i] [2] != '\0')
                    P = argv [i] + 2;
                  else
                    P = argv [++ i];
                W = strtol (P, NULL, 10);
                if  (errno == ERANGE)
                    fprintf (stderr, "ERROR:  Bad weak score length %s\n", P);
                  else
                    Min_Weak_Len = W;
                assert (Min_Weak_Len >= 0 && Min_Weak_Len < INT_MAX);
                break;
              case  'X' :       // process orfs that extend off sequence ends
                Allow_Partial_Orfs = TRUE;
                break;
              default :
                fprintf (stderr, "Unrecognized option %s\n", argv [i]);
                errflg = true;
             }
           break;
         case  '+' :
           switch  (argv [i] [1])
             {
              case  'f' :       // automatically use first start codon in gene
                Choose_First_Start_Codon = TRUE;
                break;
              case  'r' :       // use random/independent score column
                Use_Independent = TRUE;
                break;
              case  'S' :       // use strict version of independent model
                Use_Strict_Independent = TRUE;
                break;
              default :
                fprintf (stderr, "Unrecognized option %s\n", argv [i]);
                errflg = true;
             }
           break;
         default :
           fprintf (stderr, "Unrecognized option %s\n", argv [i]);
        }
     }

   if  (errflg)
       {
        Usage (argv [0]);
        exit (EXIT_FAILURE);
       }

   return;
  }



void  Process_Orflist
    (void)

//  Read the list of orf coordinates from file name  Orflist_File_Name
//  and score each separately, printing the results to stdout.
//  No overlap rules are used and the orfs are not added to the
//  list for any further processing.

  {
   FILE  * fp;
   char  line [MAX_LINE];
   char  tag [MAX_LINE];
   int  score [7];
   int  weak_score;
   double  raw_score;
   int  total, bad_ct;
   int  i, start, stop;

   fp = File_Open (Orflist_File_Name, "r");

   total = bad_ct = 0;

   while  (fgets (line, MAX_LINE, fp) != NULL)
     {
      if  (sscanf (line, "%s %d %d", tag, & start, & stop) != 3)
          continue;

      total ++;

      Score_String (start, stop, Ch_Ct, score, TRUE,
                    weak_score, raw_score);
      printf ("%8s %8d %8d ", tag, start, stop);
      for  (i = 0;  i < 6;  i ++)
        printf (" %3d", score [i]);
      printf (" %6d", score [6]);
      printf (" %7.3f", raw_score);

      if  (score [0] < Threshold_Score)
          {
           if  (1 + abs (stop - start) >= Ignore_Indep_Len)
               printf ("  ignore--too long");
             else
               {
                bad_ct ++;
                printf ("  reject");
               }
          }

      putchar ('\n');
     }

   fclose (fp);

   printf ("\nReject = %d (%.1f%%)  Keep = %d (%.1f%%)  Total = %d\n",
           bad_ct, Percent (bad_ct, total), total - bad_ct,
           Percent (total - bad_ct, total), total);

   return;
  }



void  Read_Probability_Model  (char * Param)

//  Read in the probability model indicated by  Param .

  {
   FILE  * fp;

   fp = File_Open (Param, "r");   // maybe rb ?

   Read_Scoring_Model (fp);

   fclose (fp);

   return;
  }



void  Score_Multifasta_Orfs
    (FILE * fp)

//  Read each fasta record in  fp  and score it as a separate
//  gene.  Print its scores to  stdout  and the string
//  "reject" at the end if its main score is below global
//   Threshold_Score .

  {
   int  total, bad_ct;

   total = bad_ct = 0;

   while  (Read_String (fp, Data, Input_Size, Name, FALSE))
     {
      int  score [7], has_stop [7];
      int  weak_score;
      double  raw_score;
      bool  all_stops;
      int  i, len;

      len = strlen (Data + 1);
      total ++;

      printf ("%8s %8d %8d ", Name, 1, len);
      if  (len % 3 != 0)
          {
           printf (" len = %d mod 3  frameshift?\n", len % 3);
           continue;
          }

      Find_Stop_Codons (Data, len, has_stop);
      all_stops = true;
      for  (i = 0;  i < 6 && all_stops;  i ++)
        all_stops = has_stop [i];
      if  (all_stops)
          {
           printf (" stop in all 6 reading frames   reject\n");
           continue;
          }

      Score_String (1, len, Ch_Ct, score, TRUE,
                    weak_score, raw_score);
      for  (i = 0;  i < 6;  i ++)
        printf (" %3d", score [i]);
      printf (" %6d", score [6]);
      printf (" %7.3f", raw_score);

      if  (score [0] < Threshold_Score)
          {
           if  (len >= Ignore_Indep_Len)
               printf ("  ignore--too long");
             else
               {
                bad_ct ++;
                printf ("  reject");
               }
          }

      putchar ('\n');
     }

   fclose (fp);

   printf ("\nReject = %d (%.1f%%)  Keep = %d (%.1f%%)  Total = %d\n",
           bad_ct, Percent (bad_ct, total), total - bad_ct,
           Percent (total - bad_ct, total), total);

   return;
  }



void  Score_Olap_Region
    (long int Lo, long int Hi, int A_Frame, int B_Frame,
     int & A_Score, int & B_Score)

//  Score the region in  Data [Lo .. Hi]  and set  A_Score
//  and  B_Score  to the scores in frames  A_Frame  and  B_Frame
//  respectively.

  {
   int  Frame, Score [7], Weak_Score;
   double  Raw_Score;

   Score_String (Lo, Hi, Ch_Ct, Score, FALSE, Weak_Score, Raw_Score);

   Frame = Lo % 3;
   if  (Frame == 0)
       Frame = 3;
   Permute (Score, Frame);

   A_Score = Choose_Score (Score, A_Frame);
   B_Score = Choose_Score (Score, B_Frame);

   return;
  }



void  Score_String
    (long int Start, long int Stop, double Ch_Ct [ALPHABET_SIZE],
     int Score [7], int Use_Independent, int & Weak_Score,
     double & Raw_Score)

//  Set  Score []  to integer scores from 0 to 99 for the string in
//  global  Data [Start .. Stop]  using the simple Markov model in
//  global  Context_Delta  and the simple independent log probabilities
//  in  Ch_Ct .  Data_Len  is the last position in  Data  to compute
//  wraparounds.
//  Scores in  Score [0 .. 5]  represent scores in each of 6 reading
//  frames.  If  Use_Independent  is true, also use the independent model
//  and put its score in  Score [6] ; otherwise, set  Score [6]  to an
//  artificially low value.  Set  Weak_Score  to what  Score [0]
//  would be if the independent model were not used.  Set  Raw_Score
//  to the log probability per base of  Score [0]  without normalizing
//  to 0..99 with the other scores.

  {
   long int  Len;

   if  (Start < Stop)
       {
        Len = 1 + Stop - Start;
        if  (2 + Len > Orf_Buffer_Len)
            {
             Orf_Buffer_Len = Max (2 + Len, Orf_Buffer_Len + ORF_SIZE_INCR);
             Orf_Buffer = (char *) Safe_realloc (Orf_Buffer, Orf_Buffer_Len);
            }
        Transfer (Orf_Buffer + 1, Start, Len);
       }
     else
       {
        Len = 1 + Start - Stop;
        if  (2 + Len > Orf_Buffer_Len)
            {
             Orf_Buffer_Len = Max (2 + Len, Orf_Buffer_Len + ORF_SIZE_INCR);
             Orf_Buffer = (char *) Safe_realloc (Orf_Buffer, Orf_Buffer_Len);
            }
        Transfer (Orf_Buffer + 1, Start, - Len);
       }

   Simple_Score (Orf_Buffer, Len, MODEL_LEN, Ch_Ct,
                   Score, Use_Independent, Weak_Score, Raw_Score);

   return;
  }



static void  Set_Ignore_Indep_Len
    (void)

//  Print GC content from global  Ch_Ct  and then set global
//   Ignore_Indep_Len  to length of orf would expect to occur
//  once at random in a million bases.

  {
   double  poisson_lambda;

   printf ("GC Proportion = %.1f%%\n", 100.0 * (Ch_Ct [1] + Ch_Ct [2]));

   if  (Ignore_Indep_Len == LONG_MAX)
       {
        poisson_lambda = Ch_Ct [3] * Ch_Ct [0]
                           * (2.0 * Ch_Ct [2] + Ch_Ct [0]);
        assert (poisson_lambda != 0.0);
        Ignore_Indep_Len
             = (long int) floor (3.0 * log (2.0 * 1000000 * poisson_lambda)
                 / poisson_lambda);
       }

   return;
  }



void  Set_Indep_Probs_From_Data
    (double Ch_Ct [], FILE * fp)

//  Set entries in  Ch_Ct  to probabilities of each letter in
//  multifasta file  fp  (which must already be opened).
//  Rewind  fp  when finished.

  {
   long int  total = 0L;
   int  i;

   for  (i = 0;  i < ALPHABET_SIZE;  i ++)
     Ch_Ct [i] = 0.0;

   while  (Read_String (fp, Data, Input_Size, Name, FALSE))
     {
      int  len;

      len = strlen (Data + 1);

      for  (i = 1;  i <= len;  i ++)
        {
         switch (tolower (Data [i]))
           {
            case  'a' :
            case  't' :
              Ch_Ct [0] += 1.0;
              total ++;
              break;
            case  'c' :
            case  'g' :
              Ch_Ct [1] += 1.0;
              total ++;
              break;
           }
        }
     }

   Ch_Ct [2] = Ch_Ct [1];
   Ch_Ct [3] = Ch_Ct [0];
   for  (i = 0;  i < ALPHABET_SIZE;  i ++)
     Ch_Ct [i] = Ch_Ct [i] / (2.0 * total);

   rewind (fp);

   return;
  }



void  Show_Gene_Info
    (Gene_Ref Gene [], long int N)

//  Print out summary information on what's in  Gene [1 .. N] .

  {
   Overlap_Node  * P;
   int  Is_Maybe_Reject, Is_Sure_Reject;
   long int  Change_Ct = 0L, Reject_Ct = 0L, Sure_Reject_Ct = 0L;
   long int  Olap_Ct = 0L, Potential_Ct = 0L;
   long int  i;

   for  (i = 1;  i <= N;  i ++)
     {
      if  (Global_Show_Details)
          printf ("Gene %5ld  %+2d  %7ld  %7ld  %4ld  %03o  Sco = %2d\n",
                  i, Gene [i] . Frame, Gene [i] . Lo, Gene [i] . Hi,
                  Gene [i] . Len, Gene [i] . Status, Gene [i] . Score);
      if  (Gene [i] . Has_Status (REJECTED))
          continue;
      Potential_Ct ++;
      if  (Gene [i] . Has_Status (MIGHT_CHANGE))
          Change_Ct ++;
      Is_Maybe_Reject = Is_Sure_Reject = FALSE;
      for  (P = Gene [i] . Overlap_List;  P != NULL;  P = P -> Next)
        {
         if  (Gene [P -> From] . Has_Status (REJECTED))
             continue;
         Olap_Ct ++;
         if  (P -> Problem_Code == REJECT_CHAR)
             {
              Is_Maybe_Reject = TRUE;
              if  (! Gene [P -> From] . Has_Status (MIGHT_CHANGE))
                  {
                   Is_Sure_Reject = TRUE;
                   if  (Global_Show_Details)
                       printf ("    Gene %5ld (%03o) is sure reject from %5ld (%03o)\n",
                               i, Gene [i] . Status, P -> From,
                               Gene [P -> From] . Status);
                  }
             }
         if  (Global_Show_Details)
             printf ("    From %5ld  %7ld  %7ld  %4ld  Del = %3ld  Sco = %2d  Cod = `%c'  OF = %+2d\n",
                     P -> From, P -> Lo, P -> Hi, P -> Olap, P -> Delay,
                     P -> Score, P -> Problem_Code, P -> Other_Frame);
        }
      if  (Is_Maybe_Reject)
          Reject_Ct ++;
      if  (Is_Sure_Reject)
          Sure_Reject_Ct ++;
     }

   putchar ('\n');
   printf ("   Original Genes = %5ld\n", N);
   printf ("  Potential Genes = %5ld\n", Potential_Ct);
   printf ("        Avg Olaps = %5.1f\n",
           Potential_Ct == 0 ? 0.0 : double (Olap_Ct) / Potential_Ct);
   printf ("Potential Changes = %5ld\n", Change_Ct);
   printf ("Potential Rejects = %5ld\n", Reject_Ct);
   printf ("     Sure Rejects = %5ld\n", Sure_Reject_Ct);

   return;
  }



void  Simple_Score
    (char X [], long int T, int Model_Len, double Ch_Ct [ALPHABET_SIZE],
     int Score [], int Use_Independent, int & Weak_Score,
     double & Raw_Score)

//  Set  Score  to the probabilites of string  X [1 .. T]  being
//  generated in each of the 3 forward and 3 reverse reading frames
//  using simple nonhomogeneous Markov models in global  Context_Delta []
//  with model length equal to  Model_Len .   If  Use_Independent  is true,
//  also use the independent model and put its score in  Score [6] ;
//  otherwise, set  Score [6]  to an artificially low value.
//  Set  Weak_Score  to what  Score [0]  would be in the independent
//  model is not used.  Set  Raw_Score  to the log probability per base
//  of  Score [0]  without normalizing to 0..99 with the other scores.

  {
   double  Max, Min, Sum, S [7], W [7];
   double  Weak_Max, Weak_Min, Weak_Sum;
   int  i, Has_Stop [7], Offset;

   Find_Stop_Codons (X, T, Has_Stop);

   Max = - DBL_MAX;
   Min = DBL_MAX;

   if  (! Has_Stop [0])
       {
        Fast_Evaluate (X + 1, T, Model_Len, MODEL [0],
                         MODEL [1], MODEL [2], S [0]);
        if  (S [0] > Max)
            Max = S [0];
        if  (S [0] < Min)
            Min = S [0];
       }
   if  (! Has_Stop [1])
       {
        Fast_Evaluate (X + 1, T, Model_Len, MODEL [2],
                         MODEL [0], MODEL [1], S [1]);
        if  (S [1] > Max)
            Max = S [1];
        if  (S [1] < Min)
            Min = S [1];
       }
   if  (! Has_Stop [2])
       {
        Fast_Evaluate (X + 1, T, Model_Len, MODEL [1],
                         MODEL [2], MODEL [0], S [2]);
        if  (S [2] > Max)
            Max = S [2];
        if  (S [2] < Min)
            Min = S [2];
       }

   Offset = T % 3;
   Reverse_Complement (X, T);
   if  (! Has_Stop [3 + Offset])
       {
        Fast_Evaluate (X + 1, T, Model_Len, MODEL [0],
                         MODEL [1], MODEL [2], S [3 + Offset]);
        if  (S [3 + Offset] > Max)
            Max = S [3 + Offset];
        if  (S [3 + Offset] < Min)
            Min = S [3 + Offset];
       }
   Offset = (Offset + 1) % 3;
   if  (! Has_Stop [3 + Offset])
       {
        Fast_Evaluate (X + 1, T, Model_Len, MODEL [1],
                         MODEL [2], MODEL [0], S [3 + Offset]);
        if  (S [3 + Offset] > Max)
            Max = S [3 + Offset];
        if  (S [3 + Offset] < Min)
            Min = S [3 + Offset];
       }
   Offset = (Offset + 1) % 3;
   if  (! Has_Stop [3 + Offset])
       {
        Fast_Evaluate (X + 1, T, Model_Len, MODEL [2],
                         MODEL [0], MODEL [1], S [3 + Offset]);
        if  (S [3 + Offset] > Max)
            Max = S [3 + Offset];
        if  (S [3 + Offset] < Min)
            Min = S [3 + Offset];
       }

   Weak_Max = Max;
   Weak_Min = Min;

   Has_Stop [6] = ! Use_Independent;
   if  (Use_Independent)
       {
        Indep_Eval (X, T, Ch_Ct, S [6]);
        if  (S [6] > Max)
            Max = S [6];
        if  (S [6] < Min)
            Min = S [6];
       }

   assert (Max != - DBL_MAX && Min != DBL_MAX);

   if  (Min < Max + MAX_LOG_DIFF)
       Min = Max + MAX_LOG_DIFF;
   if  (Weak_Min < Weak_Max + MAX_LOG_DIFF)
       Weak_Min = Weak_Max + MAX_LOG_DIFF;

   Sum = 0.0;
   for  (i = 0;  i < 7;  i ++)
     if  (Has_Stop [i])
         W [i] = -1.0;
     else if  (S [i] >= Min)
         {
          W [i] = exp (S [i] - Min);
          Sum += W [i];
         }
       else
         W [i] = 0.0;
   assert (Sum > 0.0);

   for  (i = 0;  i < 7;  i ++)
     if  (Has_Stop [i])
         Score [i] = -1;
       else
         {
          Score [i] = int (100.0 * (W [i] / Sum));
          if  (Score [i] > 99)
              Score [i] = 99;
         }

   if  (! Use_Independent)
       Weak_Score = Score [0];
     else
       {
        Weak_Sum = 0.0;
        for  (i = 0;  i < 6;  i ++)
          if  (! Has_Stop [i] && S [i] >= Weak_Min)
              {
               W [i] = exp (S [i] - Weak_Min);
               Weak_Sum += W [i];
              }
        assert (Weak_Sum > 0.0);
        Weak_Score = int (100.0 * (W [0] / Weak_Sum));
        if  (Weak_Score > 99)
            Weak_Score = 99;
       }

   Raw_Score = S [0] / T;

   if  (Score [6] < 0)
       Score [6] = 0;

   return;
  }



void  Slide_One_Start
    (Gene_Ref & Gene, Overlap_Node * P, long int & Distance_Moved)

//  Try to move the start of gene  Gene  until it scores better
//  than the other frame in the remaining portion of the
//  overlap pointed to by  P .  It also must meet the minimum
//  length and overall score criteria for being a gene.
//  If successful, set  Distance_Moved  to the number of bases the
//  start shifted; otherwise, set  Distance_Moved  to  0 .

  {
   char  Codon [4];
   int  Olap_Is_OK, Score [7], This_Score, Other_Score, Weak_Score;
   double  Raw_Score;
   long int  i, Len;

   if  (Gene . Frame > 0)
       {
        i = Gene . Lo + P -> Delay;
        Len = 1 + Gene . Hi - i;
        do
          {
           do
             {
              i += 3;
              Len -= 3;
              Transfer (Codon, i, 3);
             }  while  (! Is_Start (Codon) && ! Is_Stop (Codon)
                               && Len > Min_Gene_Len + 2);
           if  (! Is_Start (Codon) || Len < Min_Gene_Len)
               {
                Distance_Moved = 0;
                return;
               }
           if  (1 + P -> Hi - i < MIN_SCORABLE_LEN)
               Olap_Is_OK = TRUE;
             else
               {
                Score_Olap_Region (i, P -> Hi,
                                   Gene . Frame, P -> Other_Frame,
                                   This_Score, Other_Score);
                Olap_Is_OK = (Other_Score <= This_Score);
               }
           Score_String (i, Gene . Hi, Ch_Ct, Score,
                            Use_Independent && Len < Ignore_Indep_Len,
                            Weak_Score, Raw_Score);
          }  while  (Score [0] < Threshold_Score || ! Olap_Is_OK);
        Distance_Moved = i - Gene . Lo - P -> Delay;
       }
     else
       {
        i = Gene . Hi - P -> Delay;
        Len = 1 + i - Gene . Lo;
        do
          {
           do
             {
              i -= 3;
              Len -= 3;
              Transfer (Codon, i, -3);
             }  while  (! Is_Start (Codon) && ! Is_Stop (Codon)
                               && Len > Min_Gene_Len + 2);
           if  (! Is_Start (Codon) || Len < Min_Gene_Len)
               {
                Distance_Moved = 0;
                return;
               }
           if  (1 + i - P -> Lo < MIN_SCORABLE_LEN)
               Olap_Is_OK = TRUE;
             else
               {
                Score_Olap_Region (P -> Lo, i,
                                   Gene . Frame, P -> Other_Frame,
                                   This_Score, Other_Score);
                Olap_Is_OK = (Other_Score <= This_Score);
               }
           Score_String (i, Gene . Lo, Ch_Ct, Score,
                            Use_Independent && Len < Ignore_Indep_Len,
                            Weak_Score, Raw_Score);
          }  while  (Score [0] < Threshold_Score || ! Olap_Is_OK);
        Distance_Moved = Gene . Hi - P -> Delay - i;
       }

   Gene . Set_Status (MIGHT_CHANGE);

   return;
  }



void  Slide_Both_Starts
    (Gene_Ref & Gene_A, Overlap_Node * A_Node, char Failure_Code,
     Gene_Ref & Gene_B, Overlap_Node * B_Node, long int Min_Shift)

//  Try to move the starts of genes  Gene_A  and  Gene_B  to
//  resolve the overlap indicated in their respective overlap
//  nodes  A_Node  and  B_Node .  Try to move  A  first.
//  If unsuccessful, set  A_Node -> Problem_Code  to  Failure_Code .
//  Otherwise, successively alternate between the genes.
//  If ultimately succeed set problem codes to  ELIM_OLAP_CHAR .
//  Otherwise, set the problem code of the gene that fails to
//  move to  SCORES_WORSE_CHAR .  The combination of all moves
//  must be at least  Min_Shift .

  {
   const int  MAX_SLIDE_STEPS = 50;
   long int  i, A_Move, B_Move, Total_Move;

   assert (A_Node -> Delay == 0 && B_Node -> Delay == 0);

   Total_Move = 0;
   for  (i = 0;  i < MAX_SLIDE_STEPS;  i ++)
     {
      Slide_One_Start (Gene_A, A_Node, A_Move);
      if  (A_Move == 0)
          {
           if  (Total_Move == 0)
               A_Node -> Problem_Code = Failure_Code;
             else
               A_Node -> Problem_Code = SCORES_WORSE_CHAR;
           B_Node -> Problem_Code = ELIM_OLAP_CHAR;
           return;
          }
      A_Node -> Delay += A_Move;
      Total_Move += A_Move;

      if  (Total_Move >= Min_Shift)
          {
           A_Node -> Problem_Code = ELIM_OLAP_CHAR;
           B_Node -> Problem_Code = ELIM_OLAP_CHAR;
           return;
          }
      
      Slide_One_Start (Gene_B, B_Node, B_Move);
      if  (B_Move == 0)
          {
           B_Node -> Problem_Code = SCORES_WORSE_CHAR;
           A_Node -> Problem_Code = ELIM_OLAP_CHAR;
           return;
          }
      B_Node -> Delay += B_Move;
      Total_Move += B_Move;

      if  (Total_Move >= Min_Shift)
          {
           A_Node -> Problem_Code = ELIM_OLAP_CHAR;
           B_Node -> Problem_Code = ELIM_OLAP_CHAR;
           return;
          }
     }

   assert (FALSE);

   return;
  }



void  Transfer  (char * S, long int Start, int Len)

//  Transfer  |Len|  characters from  Data [Start ...]  to
//   S  and add null terminator.  If  Len > 0 go in forward direction;
//  otherwise, go in reverse direction and use complements.

  {
   long int  i, j;

   if  (Len > 0)
       {
        for  (i = 0;  i < Len;  i ++)
          {
           j = Start + i;
           if  (j > Data_Len)
               j -= Data_Len;
           else if  (j < 1)
               j += Data_Len;
           S [i] = Filter (tolower (Data [j]));
          }
        S [i] = '\0';
       }
     else
       {
        for  (i = 0;  i < - Len;  i ++)
          {
           j = Start - i;
           if  (j > Data_Len)
               j -= Data_Len;
           else if  (j < 1)
               j += Data_Len;
           S [i] = Filter (tolower (Complement (Data [j])));
          }
        S [i] = '\0';
       }

   return;
  }



static void  Usage
    (char * command)

//  Print to stderr description of options and command line for
//  this program.   command  is the command that was used to
//  invoke it.

  {
   fprintf (stderr,
       "USAGE:  %s <genome-file> <icm-file> [options] \n"
       "\n"
       "Find/Score potential genes in <genome-file> using\n"
       "the probability model in <icm-file>\n"
       "\n"
       "Options:\n"
       " -C n   Use n as GC percentage of independent model\n"
       "        Note:  n should be a percentage, e.g., -C 45.2\n"
       " -f     Use ribosome-binding energy to choose start codon\n"
       " +f     Use first codon in orf as start codon\n"
       " -g n   Set minimum gene length to n\n"
       " -i <filename> Use <filename> to select regions of bases that are off \n"
       "        limits, so that no bases within that area will be examined\n"
       " -l     Assume linear rather than circular genome, i.e., no wraparound\n"
       " -L <filename> Use <filename> to specify a list of orfs that should\n"
       "        be scored separately, with no overlap rules\n"
       " -M     Input is a multifasta file of separate genes to be scored\n"
       "        separately, with no overlap rules\n"
       " -o n   Set minimum overlap length to n.  Overlaps shorter than this\n"
       "        are ignored.\n"
       " -p n   Set minimum overlap percentage to n%%.  Overlaps shorter than\n"
       "        this percentage of *both* strings are ignored.\n"
       " -q n   Set the maximum length orf that can be rejected because of\n"
       "        the independent probability score column to (n - 1)\n"
       " -r     Don't use independent probability score column\n"
       " +r     Use independent probability score column\n"
       " -s s   Use string s as the ribosome binding pattern to find start codons.\n"
       " +S     Do use stricter independent intergenic model that doesn't\n"
       "        give probabilities to in-frame stop codons.  (Option is obsolete\n"
       "        since this is now the only behaviour\n"
       " -t n   Set threshold score for calling as gene to n.  If the in-frame\n"
       "        score >= n, then the region is given a number and considered\n"
       "        a potential gene.\n"
       " -w n   Use \"weak\" scores on tentative genes n or longer.  Weak\n"
       "        scores ignore the independent probability score.\n"
       " -X     Allow orfs extending off ends of sequence to be scored\n"
       "\n",
       command);

   return;
  }